Preliminary Analysis of vcc C/C++ Compiler for VIRAM

Sam Williams

samw@cs.berkeley.edu

Abstract

VIRAM is a vector machine integrating a high performance scalar core, a vector coprocessor, and DRAM, and vcc is the vectorizing C/C++ compiler for this machine. In this paper, I present an analysis of the quality of the compiler based on the currently available version (3.7.5). This analysis focuses on the compiler’s ability to recognize vectorizable loops, to produce code which is significantly faster than scalar versions of the loop and is comparable to hand crafter versions. Whenever possible, I try to separate the performance of the compiler and VIRAM ISA from micro-architecture details of VIRAM-1. To this end, I used one of the benchmarks used by Cray to test their other compilers. The results of this analysis will be used to guide work on the compiler to ensure that when benchmarks of real world applications are performed on VIRAM, the compiler is not the limiting factor.

1 - Introduction

1.1 - VIRAM

VIRAM, being a SIMD coprocessor, conceptually arrays a series of virtual processors (vp) together. Operations are performed on vp’s up to the vector length (vl). There is of course a maximum vector length (mvl), which actually depends on the virtual processor width (vpw). For VIRAM, vpw can vary from 1 (half words) to 3 (double words). In addition to the registers in the scalar core, VIRAM has a vector register file of 32 entries, each 2048-bits. So for a vpw of 1, this corresponds to a mvl of 128, and with a vpw of 3, mvl is 32. Additionally, based on the micro-architecture of January of 2000, there is a separate scalar register file of 32 64-bit entries which can be used directly by vector instructions. More importantly, there is a flag register file of 32 entries. The number of bits of each entry varies just like the number of elements varies in a vector register as vpw is changed. These provide a pair of mask registers, as well as 9 exception registers and the remaining registers can be used to hold additional masks. These additional flag registers and the ability to set them through a large number of instructions should facilitate vectorization of more loops. Finally there is a control register file which holds values like vl, mvl, vpw, shift, and index, as well as addressing registers for base, increment, and stride.

The instructions are actually just an extension to the MIPS instruction set for a second coprocessor. Instructions can be vector-vector (.vv), scalar-vector (.sv), and vector-scalar (.vs). In addition to a set of integer and floating-point arithmetic operations, there are instructions to permute the elements in a vector, as well as flag-processing instructions. These can make certain loops very easy to code, where before they could be difficult or even impossible. The big question is since they are so much more difficult to implement in hardware, will they be worth implementing if the compiler never can decide when to use them? Of course routines can be hand-coded to use them, but is this sufficient? I strongly suggest that the reader familiarize himself with the VIRAM ISA manual. Each instruction includes a C-like functional description, as well as a simple text description.

Memory can be written to and from the scalar core, as well as the vector unit. This is implemented with a weak consistency model. Thus a vsync must be inserted whenever a RAW, WAR, WAW hazard might occur between the scalar core and the vector unit. Thus the compiler will have to keep track of all memory dependencies, and insert syncs where appropriate. This can become very expensive when dealing with vector spills to the stack. This is because potentially the entire vector unit would have to be drained to satisfy the sync.

1.2 - vcc

The C/C++ compiler (vcc) is currently under development for use with VIRAM by programmers at Cray, and is thus based on the vectorizing compilers used for Cray’s own supercomputers. It is functional, yet incomplete. Some of the features which have not been implemented include inlining, syncs, scheduler, etc… Nevertheless, the vectorizer is functional and I was able to use it to gauge the compiler’s ability to vectorize loops on VIRAM. It is capable of performing the necessary data dependence analysis and creating a vectorized version of the loop if it thinks it will be faster. However there has been no previous attempt to examine the speedup from vectorization and compare this new level of performance to that which could be obtained by hand-coding the functions in question.

2 - Vector Optimizations

There are several optimizations which the compiler is supposed to implement. These include strip mining, loop distribution, loop interchange, inlining, loop unrolling, and scheduling for the specific processor. Strip mining is required since vector machines are restricted by mvl, and thus need the compiler to break a vector operation into many operations on vectors of size up to mvl. Loop distribution will break a loop up into a vectorizable section and a non-vectorizable section, e.g. partially vectorized. Loop interchange can help memory performance, depending on how the array is laid out in memory. Inlining is essential in C since because it is so easy to call a function to perform some computation in the middle of the loop. Applying a vector transformation with this form of inlining, a computation like: A(1:N)=f(B(1:N)), can be vectorized. Finally, scheduling instructions so that they flow smoothly through the machine is important, and the compiler with micro-architectural knowledge in hand can perform this optimization. For vector machines, it is even more important to apply concepts like code motion and value analysis, since a cost effective vector machine will have a finite number of functional units (much less than mvl), and thus a vector instruction will take many cycles to complete (even though the units might be pipelined).

3 - Dongarra Loops

The Dongarra loops is a set of 100 loops designed to test the compilers ability to detect potentially vectorizable code. They are not necessarily representative of real scientific code, nevertheless they do examine various structures and access patterns which are likely to show up in scientific code. These includes non-unit strides, multiple loops, many instances of potential data dependencies, conditional execution, etc… In addition to for-loops, goto’s are included for complete language syntax testing. The loops were originally written in FORTRAN, but have since been rewritten in C. The loops are all single precision floating point which is actually a much better test of hardware, since although VIRAM ISA supports double precision floating-point arithmetic, there will not be support in hardware.

4 - Simulation Methodology

First, in order to isolate the performance the compiler gains by fully exploiting the ISA, I will assume the processor has sufficient memory bandwidth and functional units so that no stalls will occur due to hardware limitations. Otherwise micro-architecture details would cloud the capabilities of the ISA and the compiler. I will assume, however, that the core is a single-issue inorder processor, which it really is. Since there will never be a stall to micro-architectural limitations including lack of functional units in a lane, latency, etc…, I can bound the performance increase of vectorized code by how many instructions are actually executed.

I used the ISA simulator (vsim-isa) for this since it does not reflect any micro-architectural details. The performance simulator (vsim-p) has not been maintained for the last 6 months, leading to concerns that any numbers from it would not necessarily reflect the current micro-architecture. Additionally, there are no plans for it to be in the next cvs release when the final micro-architectural changes are made. Furthermore, I was able to use tracing abilities (-verify_trace), which I used in debugging the simulators and RTL model to get a dynamic program trace which I could then examine. A simple write of a unique value to a locator variable allowed me to easily automate the ability to pick out the loops of interest from the several million instruction trace. Compiling with vectorization turned off, and the again with it on, allowed me to determine the speedup that vectorization could buy. I also wrote a series of scripts to analyze things like filled branch slots, typical vector length, etc….

The actual compiler command lines I used were:

> vcc -hvector3 -hscalar3 -hinline3

 -htask3 *.c -o dlv

> vcc -hvector0 -hscalar3 -hinline3

 -htask3 *.c -o dls
Here there should be (assuming they have been implemented) full scalar optimizations, imlining, etc… There is an additional optimization switch for the aggressiveness of the vectorizer.

-h vector [n]

0
no vectorization

1
conservative – no search loops or

reductions

2
moderate – search loops and

reductions

3
aggressive – restructuring, alias

information is used

The second two options are meaningless, since the compiler currently does not implement these options, which could limit the performance on vectorized code in which functions are called inside a loop. The first switches between vectorized and not.

5 - Performance

5.1 – Vectorization Speedup

First I examined the ability of the compiler to recognize vectorizable loops. Each test loop function is actually three structures: one loop to initialize the arrays so a checksum can be computed, the main loop to test the compiler, which is typically just adds or copies, and a final one to ensure the checksum is correct. The final one is actually a reduction, and as noted before, reductions had not been implemented in the version I was using, so all of these loops required a pragma to prevent any attempt at vectorization.

I examined the small-scale speedup by looking only at the loop structure in question, and not the entire function, which would include overhead, initialization, and checksum computations. Furthermore, in scientific computing it is quite likely that many structures will have very large arrays which will amortize the relatively small overhead of function entry and exit. For speed of the simulation, I kept array sizes relatively small. Even with small loops, the overall speedup for the entire set of loops, including all overhead and checksum computations, was a factor of 2. As seen from the following tables and graphs, many loop structures weren’t vectorized at all. A speedup of approximately 1 means that the loop was probably not run in vector mode. There could have been a little extra vector code run before the main part of the loop, which would tend to add a little offset to the scalar mode base.

	Loop
	Speedup
	Loop
	Speedup
	Loop
	Speedup
	Loop
	Speedup
	Loop
	Speedup

	1
	15.0
	21
	16.7
	41
	10.4
	61
	11.0
	81
	6.3

	2
	17.6
	22
	14.3
	42
	10.3
	62
	15.0
	82
	8.0

	3
	17.9
	23
	14.4
	43
	12.4
	63
	14.2
	83
	1.0

	4
	1.0
	24
	16.3
	44
	12.7
	64
	14.8
	84
	6.5

	5
	0.8
	25
	12.0
	45
	20.7
	65
	1.0
	85
	7.1

	6
	18.6
	26
	15.1
	46
	12.0
	66
	9.3
	86
	8.9

	7
	1.1
	27
	21.7
	47
	1.0
	67
	1.0
	87
	1.0

	8
	14.4
	28
	0.8
	48
	15.0
	68
	0.9
	88
	17.0

	9
	8.2
	29
	1.0
	49
	1.0
	69
	1.0
	89
	17.9

	10
	1.0
	30
	1.0
	50
	19.0
	70
	1.0
	90
	1.0

	11
	19.4
	31
	1.4
	51
	10.0
	71
	1.0
	91
	1.0

	12
	12.8
	32
	1.0
	52
	7.6
	72
	21.1
	92
	17.5

	13
	1.0
	33
	18.0
	53
	22.0
	73
	22.4
	93
	9.3

	14
	15.1
	34
	1.6
	54
	21.1
	74
	1.0
	94
	23.4

	15
	15.4
	35
	12.1
	55
	1.0
	75
	1.0
	95
	22.1

	16
	7.2
	36
	1.0
	56
	11.6
	76
	1.0
	96
	26.9

	17
	1.0
	37
	1.7
	57
	11.5
	77
	1.0
	97
	12.8

	18
	17.7
	38
	10.4
	58
	1.0
	78
	6.7
	98
	6.6

	19
	10.1
	39
	22.9
	59
	12.0
	79
	13.3
	99
	2.6

	20
	8.9
	40
	20.6
	60
	12.0
	80
	6.2
	100
	31.8

Table 1 – Speedup for Dongarra Loops

The theoretical speedup will be at most 64 since with a vpw of 2, there are 64 elements per vector register. Thus any single vector instruction can perform at most 64 operations. Furthermore, the ISA provides additional capabilities for removing loop overhead, like auto-incrementing a base address register. This could provide a speedup much greater than 64. It is clear from the table that even at the best, the compiler was only able to get a speedup of 32, and the average speedup was slightly over 10. Nevertheless, vcc and the VIRAM ISA allows for many more of the loops to be vectorized than the previous Cray compilers for their vector machines.

The following graph is Table 1 sorted by speedup. It is clear from the graph that once a loop could be vectorized, the speedup was dramatic. Still, a significant percentage of the loops would not vectorize at all, and thus were run in scalar mode. The question is why some loops did not vectorize, and why, considering the ISA specifies that single precision elements allows for a mvl of 64, the speedup was not more dramatic? Table 2 provides the reasons (if given) by the compiler for not vectorizing a loop. Typically it was due to a data dependence, but there are a few more interesting cases.

[image: image1.wmf]0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Speedup

Figure 1 - Loops sorted by speedup

	5
	Recurrence, but used a safe VL
	70
	Compiler omitted it both for scalar and vector

	28
	Partially vectorized
	71
	Compiler omitted it both for scalar and vector

	68
	Recurrence
	74
	Was vectorized

	58
	Conditionally vectorized
	75
	Was vectorized

	67
	Recurrence
	76
	Was vectorized

	69
	Recurrence
	77
	Recurrence

	10
	Recurrence
	83
	Recurrence

	13
	Recurrence
	90
	Function call

	17
	Removed from test suite
	91
	Function call

	29
	Recurrence
	87
	pragma not to vectorize (no vector sin() or cos() functions yet)

	32
	Recurrence
	4
	Recurrence

	36
	Recurrence
	30
	Recurrence

	47
	Recurrence
	7
	Recurrence

	49
	Recurrence
	31
	Recurrence / unspecified / vectorized

	55
	Recurrence
	34
	Partially

	65
	Recurrence (really a reduction)
	37
	Partially

Table 2 – Reasons Given by the compiler for not vectorizing

Although Dongarra loop #74 was vectorized, it does not run any faster than the scalar version. It should run very fast since it is just a vector add, however there is a bug in the code (in the benchmark!) for this loop. The same applies to 75, 76, and 77. I am surprised this has gone unnoticed. It is somewhat subtle, but….

 int i=0;

 float t, cksum=0.0;

 for (i=0; i<n; i++)

b[i]=c[i]=1.;

 BEFORE

 L140: ;

 if(i>=n)goto L141;

 a[i] = b[i] + c[i];

 i = i + 1;

 goto L140;

 L141: ;

 AFTER(74)

The first for-loop will change the value of i, so even though it was initialized to 0, it is n by the time the main loop starts. Thus, although the main loop was vectorized, it is never executed, which is why it is no faster than the scalar version (which does not run either). It is no surprise that after correcting this, the speedups were:

 074 17.86879

 075 17.58333

 076 10.15373

 077 01.06749 (no surprise since

 the recurrence

 prevented

 vectorization)

This increased the average speedup to 10.4.

The compiler cannot currently inline a function, so any loop which calls a function will not be vectorized. The libraries, when done, will contain vectorized versions of the math functions, thus allowing functions which call sin() or cos(), etc… to be vectorized, however at this time they are not ready. This is why Dongarra loop #87 required a pragma.

Some structures, like those in Dongarra #70 and #71, were completely skipped by the compiler, and no warning or information was given. It turns out that it completely eliminated the loops since the results they produced were never used.

for (i=0; i<n; i++) {

 if(a[i]==0) j = i;

}
Since j was created inside the function and never used, the compiler removed the loop completely, which might not have been the intention.

A couple of loops were conditionally vectorized, which means that at compile time it could not be determined if the loop could be run in vectorized form, so the compiler generates both vector and scalar versions of the loop, as well as a runtime check, which will determine which is appropriate. For one of these loops, the runtime check is meaningless, since it can never happen (if n<0 do nothing, else if n<0 run in vector mode), yet the loop could be run in vector form. I will discuss this one later.

For some loops, either completely or partially vectorized, the code was so complex that it actually ran slower than the scalar version.

5.3 - ISA Utilization

This benchmark is primarily designed to test the compilers ability to recognize vectorizable structures, so not every instruction is applicable to the subset of computations performed. Nevertheless in some cases, it would have been more appropriate to use a single more powerful instruction than many smaller ones. Very few of the vector processing instructions, without a doubt the most complicated in the ISA, were ever used. Instructions like vins, vcompress, vexpand, vhalfup/dn were never used, although the butterfly transformations vhalfup/dn are more understandable since they were put in the ISA to facilitate FFTs. However, the expand and compress instructions can be very useful, and in many cases they can make certain loops very easy to implement when hand coding them. Since it is a floating-point test, it was no surprise that the integer instructions like saturating arithmetic and multiply-adds were never used. However, I would have expected more than just 4 of the 16 floating-point compare predicates would have been used. Most loads and stores were used, although as I will show later, sometimes unnecessarily.

Given that the average vector length (after saturations) was 42, I expected a better average speedup. However, upon closer examination it seems that for many loops, there was a great deal of overhead, which if they had been hand coded, would not be there.

Table 3 provides the vector instructions used by the entire program sorted by their usage counts. The move to and from control registers in coprocessor 2 (ctc2 / cfc2) are used far more than expected. These are used to set registers like vl, vpw, vindex, as well as base, increment, and stride. There is really no need to continually set vl to the same value, nor given the fact that vector loads and stores support auto-increment, is there typically any need to continually set the base or increment registers. Most computations are adds, so I was expecting a large number of vadd.vv instructions. It also appears that the compiler is using the vector scalar registers as temporaries for the vector control registers (vmcts / vmstc).

	Instruction
	Num
	Instruction
	Num

	ctc2
	21467
	vfand.vv
	72

	cfc2
	8229
	vfnor.vv
	72

	vst
	4253
	vstxo
	57

	vsatvl
	3306
	vdiv.vv
	53

	vadd.vv
	2579
	viota
	53

	vfor.vv
	2540
	vcmp.neq.sv
	46

	vld
	2456
	vsub.sv
	44

	mtc2
	1942
	vmullo.sv
	36

	vmerge.vs
	1759
	vcmp.lt.vv
	36

	vmstc
	1651
	vsqrt
	32

	vhalf
	1311
	vcmp.le.sv
	32

	vmcts
	1022
	vsub.vv
	23

	vcvt
	636
	vabs
	16

	vlds
	522
	vdiv.sv
	12

	vfset
	513
	vdiv.vs
	8

	vfclr
	512
	vcmp.le.vv
	8

	vmerge.vv
	506
	vffl1
	8

	vmul.vv
	378
	vsub.vs
	6

	vfpop
	266
	vcmp.eq.sv
	6

	vext.u.sv
	216
	vcmp.lt.vs
	6

	vadd.sv
	126
	vext.sv
	3

	vmul.sv
	118
	vfff1
	2

	vor.vv
	103
	vfld
	2

	vldx
	101
	vfst
	2

	vcmp.lt.sv
	88
	vsll.sv
	1

	vsll.vs
	84
	vsra.vs
	1

	vsts
	83
	
	

Table 3 – Instruction Usage

As seen from the table, the number of control register accesses and vector length saturations is an order of magnitude more than computations, and five times more than memory accesses. Although vhalf’s are used to some extent, other more complex vector operations, like extracts, are hardly ever used.

5.4 - Quality of codegen

In this section, I will examine in detail the code generated by the compiler and look for major trends which could be improved upon. I will examine only the relatively simple cases based on the logic that if the compiler cannot generate efficient code for these there is no hope that it will for the really complex loops.

First, I looked at:

for (i=0; i< n; i++)

 a[i]=1.;

which is, or is similar to, the initialize statements found in every loop. At a high level this is just a memory fill, which can be done with a series of vector stores. Since the VIRAM ISA supports auto-increment, this can be done extremely efficiently. The following is the code produced by the compiler:

 # vpw = 2

 # vl = 64

 # $2 and vbase0 contain the base

 # address of array a

 # $16 is n

 # $14 initially contains n

 # $13 is the saturated

 # vector length

$L6:

 li.s $f0,1.00000e+00

 mfc1 $4,$f0

 mtc2 $4,$vs1

 ctc2 $13,vl

 vmerge.vs $vr1,$vr1,$vs1

 li $3,4

 mul $2,$3,$13

 ctc2 $2,vinc1

 vst.w $vr1,vbase0,vinc1

 subu $14,$14,$13

 ctc2 $14,vl

 vsatvl

 cfc2 $13,vl

 bgt $14,$0,$L6
We can see that this is a prime candidate for optimization, yet no optimization was performed. The first 3 instructions are essentially a lwc2 instruction (which unfortunately neither the compiler nor the simulators yet support). Regardless, these can be moved outside of the loop. The next instruction sets the strip-mined vector length, and following that it fills elements 0..vl-1 of $vr1 with $vs1. The merge takes time, and could also be moved outside of the loop. The next 3 instructions will recompute the auto-increment for the store, which is unnecessary. It stores, and auto-increments vbase0. We then decrement the number of elements by the strip-mined vector length, and compute a new strip-mined vector length.

In general I would propose a different method for strip-mining loops of this nature, which should remove some of the unnecessary loop overhead. Very simply put:

1. Compute the strip-mined

 vector length (vlsm), this

 should be mvl

2. Compute the number of strip-

 mined iterations (n / vlsm)

3. Execute the loops

4. Compute the residual vector

 length (vlres), just (n % vlsm)

5. Execute the residual loop
Applying these rules, some code motion, and the same initial registers:

 # vpw = 2

 # vl = 64
 # vbase0 contains the base

 # address of array a

 # $16 is n

 # $13 is the saturated

 # vector length (mvl if n>mvl)

 # load $vs1 with 1.0, will

 # be replaced by a lwc2

 .

 .

 .
 li.s $f0,1.000000e+00

 mfc1 $4,$f0

 mtc2 $4,$vs1

 # compute number of

 # iterations, since we

 # know vpw,mvl

 # we could just do a srl by

 # 6, and an andi with 0x3f

 # (strength reductions)
 cfc2 $17,mvl

 div $14,$16,$17

 mod $15,$16,$17

 # compute vinc (applied

 # code motion), and could

 # also be

 # replaced by a shift by 2

 # (strength reduction)
 li $3,4

 mul $2,$3,$13

 ctc2 $2,vinc1

 # don’t execute if n<MVL

 ble $14,$0,$LRES

 nop

 li $17,1

 # more code motion

 vmerge.vs $vr1,$vr1,$vs1

$L6_SM:

 vst.w $vr1,vbase0,vinc1

 subu $14,$14,$17

 bgt $14,$0,$LSM

 nop

$L6_RES:

 ctc2 $15,vl

 vst.w $vr1,vbase0,vinc1
We can see that this loop will execute several times faster (ignoring hardware specific limitations, e.g. ld/st unit capabilities). With the current implementation of the VIRAM-1 micro-architecture, the store will take 8 cycles for all 64 elements, so the loop can only be executed at half the speed. However, this is still twice as fast as the original.

Next let us look at the main loop from Dongarra loop #3 (similarly just replicate the first element).

for (i=1; i<n; i++){

 a[i] = a[0];

}

This is essentially the same loop as before, except instead of replicating some constant, the first element is replicated throughout the vector.

The loop was compiled into:

 # vpw = 2

 # vl = 64

 # vbase0 is address of a[1]

 # $14 initially contains

 # n-1

 # $13 is the saturated

 # vector length

$L77:

 ctc2 $13,vl

 vmerge.vs $vr1,$vr1,$vs1

 li $6,4

 mul $5,$6,$13

 cfc2 $4,vbase0

 addu $3,$4,$5

 vst.w $vr1,vbase0,vinc0

 move $2,$3

 ctc2 $2,vbase0

 subu $14,$14,$13

 ctc2 $14,vl

 vsatvl

 cfc2 $13,vl

 bgt $14,$0,$L77
Clearly this loop doesn’t require vbase0 to be continually recomputed, since auto-increment could be used. And as before, the loop could be restructured, and code could be moved out of the loop.

Next, Dongarra loop #20 has an important access pattern.

for (i=0; i<n; i++) {

 a[i*n] = a[i*n] + b[i];

}
Here, as expected, the compiler takes advantage of strided loads and produces:

$L726:

 move $14,$17

$L709:

 ctc2 $14,vl
 vld.u.w $vr2,vbase2,vinc0

 vlds.u.w $vr3,vbase1,vstride0,

 vinc0

 mul $7,$14,$13

 li $6,4

 .

 .

 .

 ctc2 $7,vinc1

 mul $5,$6,$14

 vadd.s.vv $vr1,$vr2,$vr3

 cfc2 $4,vbase2

 addu $3,$4,$5

 move $2,$3

 ctc2 $2,vbase2

 subu $15,$15,$14

 ctc2 $15,vl

 vsatvl

 cfc2 $17,vl

 ctc2 $14,vl

 vsts.w $vr1, vbase1, vstride0,

 vinc1

 bgt $15,$0,$L726
From before, vbase2 does not need to be recomputed since something like vinc2 could be used instead. As before, vinc1 does not need to be recomputed. For simple loops like this, all that is needed in the strip-mined iterations is a load/compute/store. The load and store can be enabled with auto-increment to avoid any unnecessary computations.

Although superficially similar, Dongarra loop #58 was conditionally vectorized.

for (i=0; i<n; i++) {

 a[i] = a[0];

}
This loop is virtually identical to loop #3, but the different bounds caused problems with the vectorizer, and although it was conditionally vectorized, it is forced to always run the scalar version. This is because the runtime condition to run the vector version was n<0, but there was already a branch if n<0 to bypass the loop. But let us examine the vector version that was generated.

$L2108:

 dla $8,a

 l.s $f0,0($8)

 mfc1 $7,$f0

 mtc2 $7,$vs1

 ctc2 $13,vl

 vmerge.vs $vr1,$vr1,$vs1

 li $6,4

 mul $5,$6,$13

 cfc2 $4,vbase0

 addu $3,$4,$5

 vst.w $vr1,vbase0,vinc0

 move $2,$3

 ctc2 $2,vbase0

 subu $14,$14,$13

 ctc2 $14,vl

 vsatvl

 cfc2 $13,vl

 bgt $14,$0,$L2108
Once again, the load of a[0] could be done in a single lwc2 instruction, and both it and the vmerge could be moved outside of the loop. There is no need to continually recompute vbase0 and use it in the computations, since vinc1 could be used instead. And once again the loop could be broken into a strip-mined version (using mvl) and another using residual array length. So the strip-mined part is just a store / sub / branch.

With the power of the flag and vector processing instructions, Dongarra loop #72 should be easy to vectorize efficiently.

for (i=0; i<n; i++) {

 if(a[i]>0){

 b[j] = a[i];

 j++;

 }

}
This loop is more complicated to compile since b[] is not written at the same rate that a[] is read.

 # $13 = a[]

 # $16 = n

 # $18 = saturated vl

$L2615:

 ctc2 $13,vbase0

 ctc2 $18,vl

 vld.u.w $vr1,vbase0,vinc0

 li $2,4

 vcmp.lt.sv $vf2,$vs0,$vr1

 mul $19,$2,$18

 vfpop $vs1,$vf2

 vmstc vcat,$vs1

 cfc2 $20,vcat

 beq $20,$0,$L2619

 ctc2 $18,vl

 viota $vr3,$vf2

 li $9,2

 mtc2 $9,$vs1

 ctc2 $20,vl

 vsll.vs $vr2,$vr3,$vs1

 dla $7,a

 li $5,4

 mul $8,$5,$14

 addu $6,$7,$8

 ctc2 $6,vbase1

 vldx.u.w $vr1,$vr2,vbase1

 dla $3,b

 mul $4,$5,$17

 addu $2,$3,$4

 ctc2 $2,vbase0

 addu $17,$17,$20

 vst.w $vr1,vbase0,vinc0

$L2619:

 addu $2,$13,$19

 subu $15,$15,$18

 move $13,$2

 addu $14,$18,$14

 ctc2 $15,vl

 vsatvl

 cfc2 $18,vl

 bgt $15,$0,$L2615
Basically the first section loads a strip, compares to 0 to generate a mask, gets the number of 1’s in the mask, if nonzero, continues, generates an index from the mask and stores it in $vr3, then $vr2, loads the values of a[] corresponding to those with an indexed load, and stores them into b[]. Once again, a vinc could be used to avoid recalculating base addresses, although unlike a[], the increment for b[] is not fixed.

Furthermore, the vcompress instruction could be used here. (vcompress takes a register and a mask and compresses unmasked elements). This way, the typically slow indexed load could be avoided, as well as the computations of the indexing vector register, i.e.

Load strip from a[],

 auto-increment vbase0

Compare to 0, store result in vf2

Compress strip using vf2

vinc2 = 4*vfpop

store strip to b[], using vbase1,

 and vinc2
This could also reduce memory bandwidth usage by as much as 33%, since the indexed load is unnecessary.

Next is Dongarra loop #78, which is essentially a vector copy with an offset.

for (i=0; i<n; i++) {

 xx[i] = yy[i+1];

}
This should be no more complicated to vectorize than a simple vector copy.

$L2847:

 move $13,$15

 cfc2 $12,vbase3

 ctc2 $12,vbase1

$L2832:

 li $6,4

 mul $5,$6,$13

 ctc2 $5,vinc1

 ctc2 $13,vl

 vld.u.w $vr1,vbase2,vinc1

 cfc2 $4,vbase1

 addu $3,$4,$5

 move $2,$3

 ctc2 $2,vbase3

 subu $14,$14,$13

 ctc2 $14,vl

 vsatvl

 cfc2 $15,vl

 ctc2 $13,vl

 vst.w $vr1,vbase1,vinc0

 bgt $14,$0,$L2847
Once again, each time vinc1 is recalculated, and no increment is used for vbase1. Here initially, vbase1 could be assigned xx[0], and vbase2 could be assigned yy[1]. Then both instructions could use vinc1, which could be calculated outside of the loop, to auto-increment their bases, e.g.

vld.u.w $vr1,vbase2,vinc1

vst.w $vr1,vbase1,vinc1

Finally, let us look at Dongarra loop #100.

for (i=0; i<n; i++) {

 a[i] = b[i] + c[i/2];

}
Although this loop, when vectorized, is 30 times faster than the scalar version, it could be considerably better.

$L3701:

 move $14,$17

 cfc2 $12,vbase3

 ctc2 $12,vbase1

$L3684:

 li $11,2

 mtc2 $11,$vs3

 ctc2 $14,vl

 vdiv.vs $vr6,$vr1,$vs3

 li $9,4

 mtc2 $9,$vs2

 vmullo.sv $vr5,$vs2,$vr6

 dla $10,c

 ctc2 $10,vbase4

 vldx.u.w $vr3,$vr5,vbase4

 mtc2 $14,$vs1

 ctc2 $13,vl

 vadd.sv $vr1,$vs1,$vr1

 ctc2 $14,vl

 vld.u.w $vr4,vbase2,vinc0

 mul $7,$9,$14

 vadd.s.vv $vr2,$vr3,$vr4

 cfc2 $8,vbase2

 addu $5,$8,$7

 cfc2 $6,vbase1

 addu $4,$6,$7

 move $3,$5

 move $2,$4

 ctc2 $3,vbase2

 subu $15,$15,$14

 ctc2 $2,vbase3

 ctc2 $15,vl

 vsatvl

 cfc2 $17,vl

 ctc2 $14,vl

 vst.w $vr2,vbase1,vinc0

 bgt $15,$0,$L3701
Since there is nothing like a 1/n stride in the ISA, the compiler has to approximate this. However, it does not do a great job, since it first uses a vdiv.vs instead of a shift and then an indexed load. However, it is easy to approximate a 1/n stride by splitting the loop into even and odd halves.

for (i=0; i<n/2; i++) {

 a[2*i] = b[2*i] + c[i];
 if((2*i+1)<n){

 a[2*i+1] = b[2*i+1] + c[i];

 }

}
This is much easier to see how to vectorize. There are half as many iterations, each with 3 loads (2 of which are stride 2), and 2 stride 2 stores, which is better than the 3 (including an indexed load) from the original. The conditional can be moved out of the strip-mined loop, or the loop could be split (requiring an extra load).

6 - Conclusion

Even in its incomplete state, the compiler is still capable of finding and vectorizing code, and it gains an overall speedup of 2 and an average small structure speedup of more than 10. It should be noted that cases where a large loop could not be vectorized would dramatically bring the overall speedup down.

I think there is still work to be done in cleaning up the loop overhead inside a strip-mined loop. The compiler needs to be more consistent in taking advantage of the features of the ISA, and the available registers. Whenever possible, indexed loads should be avoided since they will destroy the advantages gained with a wide memory bus, which could be taken full advantage of with unit and small strides. The Dongarra loops should exemplify the ISA’s abilities, yet it seems the compiler is not mature enough to show this. It would have been nice to see a set of real world applications, but the compiler needs to generate efficient code for the simplest and most common cases before moving to applications where loop structures might not dominate. The Dongarra loops probably contain a very large subset of the typical code found in most kernels intended to benchmark VIRAM.

7 – Future Work
There is of course additional work to finish the basic optimizations of the compiler for things like inlining and scheduling. Once the scheduler, which is highly dependent on micro-architectural details, is written, additional analysis will be needed to examine its performance on VIRAM-1. Unfortunately, the question of whether the performance simulator (vsim-p) will continue to exist after the forthcoming micro-architectural changes is still up in the air. Without it, verifying the scheduler will be difficult, and the only other methods of generating performance numbers is by hand or waiting for silicon to come back. Once the compiler has matured, it will then be appropriate to begin running benchmarks and kernels on it.

References:

1. D. Martin, VIRAM ISA Manual, http://iram.cs.berkeley.edu/isa.ps, 2000.

2. D. Patterson, J. Hennessey, “Computer Architecture: A Quantitative Approach”, second edition, Morgan Kaufmann, 1996.

3. “Cray C/C++ Reference Manual”, version 3.2, Silicon Graphics, 1999.

4. “Optimizing Application Code on UNICOS System”, version 3.3, Silicon Graphics, 1999.

PAGE
13

_1019206146.xls
Chart1

		5

		28

		68

		58

		67

		69

		10

		13

		17

		29

		32

		36

		47

		49

		55

		65

		70

		71

		74

		75

		76

		77

		83

		90

		91

		87

		4

		30

		7

		31

		34

		37

		99

		80

		81

		84

		98

		78

		85

		16

		52

		82

		9

		20

		86

		93

		66

		51

		19

		42

		38

		41

		61

		57

		56

		59

		60

		46

		25

		35

		43

		44

		12

		97

		79

		63

		22

		8

		23

		64

		1

		62

		48

		26

		14

		15

		24

		21

		88

		92

		2

		18

		89

		3

		33

		6

		50

		11

		40

		45

		54

		72

		27

		53

		95

		73

		39

		94

		96

		100

Speedup

Speedup

0.77421

0.8186

0.94069

0.99887

0.99946

0.99957

0.99992

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.00005

1.00209

1.02657

1.07432

1.39066

1.64866

1.66189

2.62667

6.2451

6.30693

6.5

6.60606

6.70526

7.07251

7.20979

7.58291

7.9505

8.22727

8.88679

8.94718

9.27679

9.34191

9.96125

10.1338

10.29429

10.35455

10.41034

11.04866

11.4658

11.59885

11.98701

11.98701

12.00063

12.006

12.08591

12.38687

12.69734

12.76025

12.80469

13.25599

14.21479

14.26257

14.39618

14.44309

14.81373

14.97537

15.03311

15.03485

15.09013

15.13213

15.40476

16.34286

16.70073

17.03385

17.45376

17.6035

17.70614

17.86299

17.93401

18.04432

18.56805

19.02347

19.38046

20.59108

20.69884

21.0795

21.13119

21.71841

21.95116

22.08784

22.36881

22.86186

23.35

26.85878

31.78788

results.compare

		5		0.8				1		15.0

		28		0.8				2		17.6

		68		0.9				3		17.9

		58		1.0				4		1.0

		67		1.0				5		0.8

		69		1.0				6		18.6

		10		1.0				7		1.1

		13		1.0				8		14.4

		17		1.0				9		8.2

		29		1.0				10		1.0

		32		1.0				11		19.4

		36		1.0				12		12.8

		47		1.0				13		1.0

		49		1.0				14		15.1

		55		1.0				15		15.4

		65		1.0				16		7.2

		70		1.0				17		1.0

		71		1.0				18		17.7

		74		1.0				19		10.1

		75		1.0				20		8.9

		76		1.0				21		16.7

		77		1.0				22		14.3

		83		1.0				23		14.4

		90		1.0				24		16.3

		91		1.0				25		12.0

		87		1.0				26		15.1

		4		1.0				27		21.7

		30		1.0				28		0.8

		7		1.1				29		1.0

		31		1.4				30		1.0

		34		1.6				31		1.4

		37		1.7				32		1.0

		99		2.6				33		18.0

		80		6.2				34		1.6

		81		6.3				35		12.1

		84		6.5				36		1.0

		98		6.6				37		1.7

		78		6.7				38		10.4

		85		7.1				39		22.9

		16		7.2				40		20.6

		52		7.6				41		10.4

		82		8.0				42		10.3

		9		8.2				43		12.4

		20		8.9				44		12.7

		86		8.9				45		20.7

		93		9.3				46		12.0

		66		9.3				47		1.0

		51		10.0				48		15.0

		19		10.1				49		1.0

		42		10.3				50		19.0

		38		10.4				51		10.0

		41		10.4				52		7.6

		61		11.0				53		22.0

		57		11.5				54		21.1

		56		11.6				55		1.0

		59		12.0				56		11.6

		60		12.0				57		11.5

		46		12.0				58		1.0

		25		12.0				59		12.0

		35		12.1				60		12.0

		43		12.4				61		11.0

		44		12.7				62		15.0

		12		12.8				63		14.2

		97		12.8				64		14.8

		79		13.3				65		1.0

		63		14.2				66		9.3

		22		14.3				67		1.0

		8		14.4				68		0.9

		23		14.4				69		1.0

		64		14.8				70		1.0

		1		15.0				71		1.0

		62		15.0				72		21.1

		48		15.0				73		22.4

		26		15.1				74		1.0

		14		15.1				75		1.0

		15		15.4				76		1.0

		24		16.3				77		1.0

		21		16.7				78		6.7

		88		17.0				79		13.3

		92		17.5				80		6.2

		2		17.6				81		6.3

		18		17.7				82		8.0

		89		17.9				83		1.0

		3		17.9				84		6.5

		33		18.0				85		7.1

		6		18.6				86		8.9

		50		19.0				87		1.0

		11		19.4				88		17.0

		40		20.6				89		17.9

		45		20.7				90		1.0

		54		21.1				91		1.0

		72		21.1				92		17.5

		27		21.7				93		9.3

		53		22.0				94		23.4

		95		22.1				95		22.1

		73		22.4				96		26.9

		39		22.9				97		12.8

		94		23.4				98		6.6

		96		26.9				99		2.6

		100		31.8				100		31.8

results.compare

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Speedup

Speedup

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Loop Number

Speedup

