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Abstract

We present a new integer-programming formulation for sensor place-
ment in municipal water systems. Berry, Fleischer, Hart, and Phillips [1]
introduced a time-independent sensor-placement model. To avoid explicit
references to time, this model assumed conservatively that consumers are
protected only if every path from a contaminant introduction site is guarded
by a sensor. The model also assumed that flow within the pipes was rea-
sonably swift, if not quantified, so that flow patterns will not shift before a
contaminant is detected.

We allow more realistic modeling of water transport by decoupling con-
taminant transportation from sensor placement decisions and explicitly con-
sidering time. We use discrete-event simulation, using velocity information
derived from EPANET, to calculate contamination timing in the network
for each of an enumerable number of attack scenarios. We then use an in-
teger program to select a set of sensor locations that minimizes the release
of contaminant across all these attack scenarios.

Initial computational experience on two real networks shows that the
discrete-event simulator is very fast and the resulting integer programs are
tractable for moderate-sized attack sets.
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1 Introduction

In this paper we introduce a new integer-programming-based model for sensor
placement in municipal water systems to detect maliciously injected contaminants.
We wish to place a limited number of perfect sensors in the pipes or junctions of
a water network so as to minimize the expected amount of damage to the public
before detection assuming the attack occurs on a “typical” day. This general
model decouples the sensor placement problem from the water transport model.
The decoupling allows researchers to experiment considerably with the transport
model, gradually adding realism, while working with a consistent integer program
model.

Integer programs are a class of optimization problem. Specifically, an integer
program maximizes or minimizes a linear objective function subject to a set of
linear constraints on the variables. Some of the variables must have integer values.
Such variables usually represent a decision where a fractional value is impossible.
In our model, a set of variables represent decisions to place a sensor at particular
locations. Each decision has only two choices: yes (1) and no (0); one cannot
partially install a sensor to achieve partial benefit. The introduction of this non-
linearity makes the general problem formally intractable. However many integer
programs can be solved to optimality by intelligent branch-and-bound methods
using a commercial code like CPLEX from iLog or a free research code such as
PICO[2].

We model a municipal water network as a graph G = (V, E), where the vertex
set V is a set of junctions, tanks, or locations of water consumption and the edge
set E is a set of pipes. In higher-granularity models of a network, each node could
represent an entire neighborhood or city region. We assume that water demands
follow a small set of patterns, perhaps 4-24 per day. These patterns represent the
demand during a particular time interval (say midnight to 2am) on a “typical”
day. Because each pattern holds steady for one or more hours, we assume the
gross water flow induced by these demands holds steady during the time period
associated with that pattern.

We assume an attacker will contaminate the network at precisely one point
through a single continuous injection (e.g. from a single full water tanker truck
with a maximum capacity of 5500 gallons). Our model requires a risk profile, that
is, a probability distribution that weights the likelihood of an attack at a particular
point at a particular time of day. As the contaminant is injected into the system,
it travels through the network according to the shifting velocities (directions and
speeds) induced by the demand pattern at any given time of day. For example,
contamination could enter a pipe, travel part way down, and then, with a shift in
use pattern, it could reverse, never touching the far end of the pipe. Thus, the
evolution of the plume of contamination could vary considerably depending upon
the precise timing of the attack (for example, if it is at the start of a particular
flow /demand pattern or at the end of it). Running a full EPANET simulation for
every possible attack point and time could be prohibitively expensive. Because
we assume flow patterns are stable for long periods, we replace the detailed hy-



draulic simulation with a much faster and simpler discrete event simulation. This
simulation models the evolution of the contaminant plume and extracts the data
necessary for the integer-programming model. We can replace this piece with a
higher fidelity simulation without changing the integer program.

We wish to place a limited number of sensors in a water network to most ef-
fectively protect the city’s population. For this paper, we allow sensor placement
on any node or in the geometric center of any edge. We can easily replace these
assumptions with more a more general model of edge sensor placement. In prac-
tice, some locations may be too difficult to access. Therefore our model allows
forbidden sensor location, though we did not exercise this option on our initial
tests.

We assume these perfect sensors raise a general alarm precisely when passed by
contamination of sufficient magnitude. Any contaminated water that leaves the
system before this detection could cause harm. Ultimately, we wish to minimize
the number of people exposed to a dangerous level contaminant across the attack
profile. When the risk profile is a probability distribution, the objective is then
to minimize expected dangerous exposure, as measured by the number of people
consuming water at contaminated nodes. Though this is correlated with the
volume of contaminant leaving the system, it is not necessarily directly related.
Counterexamples include a manufacturing facility that consumes large amounts
of water to cool equipment and a playground water fountain where a relatively
tiny amount of consumption exposes a large, particularly vulnerable population.
However, because of data issues that will be discussed in section 7, the preliminary
computational experiments in this paper minimize the amount of contaminant
released to the public before detection.

The most closely related work to our current model is Kessler, Ostfeld, Sinai,
and Salomon’s set cover model to place a minimum number of sensors to insure
detection before a given volume of contaminant is consumed [4, 5]. They consider
net point-to-point flow rates based on EPANET simulations and assume that a
point-to-point contaminant flow is detected if there is a sensor on the shortest
path between these points. They solve their set cover problem using heuristics.
Our IP has set cover structure, though each element has a different value for each
set it covers and a set is uniquely covered by its most valuable element. [1] cites
other related work.

The remainder of the paper is organized as follows. In Section 2, we discuss
the water transportation model and the design of our discrete-event simulator.
In Section 3 we describe our general integer-programming model. In Sections 4,
5 and 6 we describe our experimental design, data sets, and results respectively.
Finally in Section 7 we discuss population modeling and give some conclusions.

2 Water Transport Model

In this section we describe the design of our discrete-event simulator DEWS
(discrete-event water simulator). For each demand pattern, DEWS requires as
input the edge flow velocities, determined by running EPANET until the flows
stabilize; the demand for each node; and the time interval during which it holds.



It also requires a time threshold 7. Given an (attack point, time) pair, DEWS
computes the time each potential sensor location (node or edge midpoint) is first
contaminated. Then for each possible sensor location £ that is contaminated at
time ¢, < T, DEWS computes (and outputs) the total contaminant released from
the network by time ¢,. This is the contaminant that would be released to the
public if a sensor at location £ is the first to signal an alarm. DEWS also outputs
the total volume consumed by the network during the entire attack duration. This
is the amount consumed if the attack is never detected.

Contaminant travels through the network at pipe velocities as discrete balls,
each tagged with a size. If flow in a pipe reverses while a ball is traveling down
(due to a pattern switch), then the ball reverses direction at that time. We as-
sume perfect mixing at nodes. We assume that for every non-tank node, water
flow is conserved for each flow pattern (total volume rate in = total volume rate
out + demand rate for each pattern). Tanks have storage capacity and can there-
fore support an unbalanced flow in either direction. Since we are only tracking
contamination, all tanks are initially empty (of contaminants).

We model the attack as a single continuous 5500-gallon injection. We as-
sume contaminant flows into the attacked node cause negligible perturbations to
baseline network flow rates. Initial contaminant flow rate will depend upon the
adversary’s pumping power, and hence his budget. According to our assump-
tion, the contaminant cannot enter the system faster than the normal output rate
from the attacked node. For this paper, we assume this worst-case pumping rate.
DEWS models the injection as a release of balls of the appropriate size from the
attack point every minute, possibly crossing flow pattern time boundaries, until
the full 5500 gallons is released. Thus the attacker creates a temporary (one-way)
tank at the attack point.

DEWS tracks the creation and flow of contaminant balls through the network
as follows. There are two fundamental event types: the arrival of a ball at a node
or edge and a change in flow pattern. To simplify the discussion, we consider edge
midpoints to be demand-free degree-two nodes. The first event in the system is
the arrival of a ball at the attack node. In general, when a ball hits a node, it
is coalesced with any balls arriving at the same time, then divided among the
outgoing edges and any local demand based on flow rate. For example, if there
are two outgoing edges, each carrying 49% of the incoming flow and 2% of the
incoming water is consumed, then DEWS combines all the contaminant balls
arriving at the node into a single ball and then creates two balls, each with 49%
of the original size. The 2% of the incoming ball that is consumed is removed from
the system. If any of the newly-created balls has size below a specified threshold,
then they are also removed from the system. DEWS then schedules an event for
each of the newly-created balls: either the arrival at the endpoint of the edge it
will traverse, or, if the ball will not arrive at the endpoint before the flow changes,
an indication of the ball’s location at the next flow change somewhere partially
down the pipe. If a tank node is storing during a particular flow pattern, it will
accumulate contaminant volume as balls arrive (again, at a rate proportional to
the storage rate). If a tank node is dispersing water, then we assume it disperses
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pure contaminant (up to the amount it has stored), again at increments of one
minute. Future versions of DEWS will reduce the amount returned to the system
from tanks to account for dilution.

DEWS uses a priority queue. At each step it removes all events with a min-
imum time tag. This allows coalescing of balls at nodes (though we expect this
may be a rare event in practice) and effectively implements a synchronization at
flow-change times. DEWS records when a node or edge mid-point is hit by a ball
for the first time.

The simulator stops when all contaminant has been removed from the system
(via consumption or division to sizes below threshold) or after the time threshold
T, whichever comes first. DEWS can enforce the time limit from the time of
attack or from the time the first populated node is contaminated. In the latter
case, we assume the contaminant has some health effects that will be detected
within the simulation time limit, effectively acting like a sensor alarm.

3 The Sensor-Placement Integer Program

Given all the output from the discrete-event simulator, we determine the sensor
placement with the following integer program.
The input data is as follows:

e G=(V,FE), the network. V =wv;,...v, and E = ey,...¢€,.

o, the probability of an attack at node v; at time ¢.

Assuming exactly one location will be attacked sometime during the day,
we have 3 nea it = 1, where A C V' x 7 is the set of attacks and 7 is the
set, of times used for at least one attack.

Smax, the maximum number of sensors.

e L CV x E, the set of possible sensor locations.

L, CV x E, the set of network locations contaminated by attack a.

Wy, for a =1,...,| Al and j € LN L, U {¢}, where ¢ is a dummy location;
weights from the DEWS output.

For each v € L,, let t, be the time node v is contaminated by attack a.
Let d,(t1,k) be the total demand at node v from time of day t; through
the next k time units (d,(t1,k) = 0 if £ < 0). Recall that k£ can be longer
than a day. The weight w,; is the amount of contaminant consumed by the
network before detection if a sensor at location j raises the alarm. That is,
all potential sensor locations contaminated before ¢; are not given a sensor.
Thus we have wq; = Y ycr, do(ty, tj—1y) forall j € LNL,. wgq is the amount
consumed if no sensor raises an alarm: wqq = Y ,cr, do(ty, T — ty).

The integer program (IP) uses the following variables:
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e decision variable s; for each potential sensor location 7 € L. This variable is
1 if we place a sensor at location ¢ and is 0 otherwise.

e derived variables b,; for « € A and i € LN L, U {q}, where ¢ is a dummy
location. Variable b,; is 1 if location ¢ raised the alarm for attack a. That
is, if location 7 is the first sensor hit for attack scenario a; all better sen-
sor locations are not given sensors. These variables need not have formal
integrality constraints. They will always be binary in any optimal solution
provided the s; variables are binary. Omitting these unnecessary constraints
can improve the practical performance of TP solvers.

For ease of notation, let £ = LN L, U {q}, the set of useful sensor locations
for attack a plus the dummy location. The IP to minimize consumption is:

(MC) minimize ZZaawaibai

a€AEL
Zieﬁbaizl VCLEA
where bai < 85 Vae A,i € L

Yice Si < Smax

The first type of constraint assures that there is exactly one best sensor for
each attack scenario. The second set enforces that a sensor cannot be best if it is
never installed. The objective-function pressure then assures that the first eligible
sensor in the list for attack a is chosen as best (barring zero-demand nodes). The
last constraint enforces the limit on the total number of sensors. The objective
minimizes the total consumption over all attacks (weighted by risk).

4 Methods

We have evaluated our sensor-placement strategy experimentally using two real
networks. We ran EPANET to simulate a full day on each of the networks, once
with 4 defined flow periods, and once with 24 flow periods. For each period, we
extracted the flow rate in gallons per minute and velocity in feet per second along
each edge. This information, along with the demands, serves as input to DEWS.
We ran DEWS with a time threshold 7" = 72 hours from the time of attack. DEWS
produced the w,; values for the IP, the total amount of contaminant consumed at
all vertices from the beginning of the simulation of attack a to first detection (at
location i).

Our experiments on the datasets described below are divided into two cat-
egories. Broad experiments consider all vertices as potential attack points, but
limit the number of attack times, and focused experiments consider all possible
attack times (to a granularity of 15 minute intervals in the first simulated day),
but a limited set of attack vertices. If the size of the dataset permits, a full (broad
and focused) experiment can be run. The full version of this extended abstract
will augment the preliminary results we present in Section 6 below.

Each attack involves an injection of 5500 gallons of contaminant (the storage
capacity of a typical water truck) at the current rate of outflow from the attack
vertex.



We use the AMPL modeling language [3] to formulate the integer program
(MC). In all cases, we solved this IP using AMPL 9.0, which applied the CPLEX
9.0 IP solver. These tools ran on Linux workstations, and were able to formulate
and solve each experiment we attempted in less than two hours. The IP solver
never required more that 15 minutes.

5 Data

Dataset 1 The first dataset, described in more detail as Dataset 3 in [1], was
adapted from a local area network. This network has 470 nodes and 597 pipes *.
This dataset is characterized by large variations in the number of reachable vertices
from a given vertex.

With only 470 potential attack points and 96 potential attack times, we could

run a full experiment on this dataset. We employed 100 sensors.
Dataset 2 The second dataset was drawn from a moderate-sized city. There are
3647 nodes and 3803 pipes. With the quadratic combination of attack compo-
nents, it was not feasible to run a full experiment on this dataset. Rather, we ran
one suite each of broad and focused experiments. The selection of attack vertices
or attack times was random, so we ran multiple trials of each experiment.

The broad experiment consisted of four potential attack times, drawn ran-
domly from the 96 possible times. We allowed only 100 sensors to protect the
network. The focused experiment allowed 200 potential attack vertices and the
same number of sensors.

6 Results

The goal in writing our discrete-event simulator DEWS was to approximate longer,
multiperiod EPANET simulations much faster. The average execution time for
DEWS to simulate 72 hours on either data set was about a second. The largest
running time was about a minute for attacks at nodes where flow was relatively
fast and reached a large set of nodes. In comparison, an EPANET run for dataset
2 required 5 seconds to simulate 24 hours, one minute to simulate 48 hours, and
failed to converge for a 72-hour simulation. Thus DEWS is normally at least
60 times faster than EPANET for this data set. Furthermore, there are obvious
places within DEWS where some code optimization could offer considerable speed
up, should it become necessary. This runtime improvement could be critical for
obtaining a full data set for the IP model. For example, allowing an attack at
any of 500 vertices during any of 100 different times of day requires 50,000 runs of
DEWS. Even if each run takes roughly one second, as it does on a 3 Ghz modern
machine with 2Gb RAM, the simulation phase takes almost a day of computing
time. Assuming that the 500 vertices were randomly selected from a larger set and
that we wish to generate at least 10 such trials in order to evaluate the sensitivity
of the model, these runs would require roughly 10 days.

Table 1 presents the results of a single full experiment on dataset 1. The
extremely low objective value, an expected value of only 0.57 gallons consumed

!The number of pipes given in [1] was 621, but it was later found that some of these pipes
were closed off. These were deleted.



before detection, is an artifact of the node demand in this dataset. Over 250 of
the 470 nodes have demand 0.0 for most flow periods, and another 100 vertices
have demands of 0.01 gallons per minute.

Trial Number | Gallons consumed Before Detection | IP simplex iterations
1 0.57 379524

Table 1: The optimal solution for the full experiment on dataset 1 (470 potential attack points,
96 potential attack times) with 100 sensors and an attack of 5500 gallons of contaminant.

Table 2 presents the results of a focused experiments on dataset 2. For this
extended abstract, we had insufficient time to generate statistically significant
suites of experiments, so we show individual trials rather than attempting to
computing statistics.

Trial Number | Gallons consumed Before Detection | IP simplex iterations
1 570.57 390409
2 443.32 332683
3 645.77 331922
4 656.20 376553
5 717.02 368058

Table 2: Summary of the values of optimal sensor configurations for dataset 2 with 200 po-
tential attack points, 96 potential attack times, 100 sensors, and an attack of 5500 gallons of
contaminant.

The results of our broad experiments on dataset 2 are presented in Table 3.
For this dataset, the trend shows that placing sensors on roughly 2.6% of the
possible sensor locations enables us to expect detection before roughly 32% of the
contaminant has been consumed.

7 Extensions and Conclusions

As we discussed in the introduction, we would prefer to model direct population
exposure in our IP objective. In this section, we discuss possible ways to model
population exposure and consider model extensions and open questions.

In this model, a person is at risk if he or she consumes water from a node
between the time it is first contaminated and the time of the first system wide
detection. This could cover many time periods, even days. This makes estimation
difficult since populations at nodes change over time and people move about the
network, possibly receiving multiple exposures.

One possible way to obtain estimates of population exposure is to begin with
population estimates for each node by time of day. Each node can have its own
natural time divisions. For example, a mall could have one population while it is
open and another while it is closed. There are two types of populations: stable
populations such as families in homes or employees at a business, and transient
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Trial Number | Gallons consumed Before Detection | IP simplex iterations

1 2508.25 343896
2 2467.37 369956
3 2489.84 345528
4 2488.84 373177
d 2429.35 373749

(a)

Trial Number | Gallons consumed Before Detection | IP simplex iterations

1 1840.73 271711
2 1806.19 286316
3 1825.88 266214
4 1832.99 291979
3 1778.44 289512

(b)

Table 3: Summary of the values of optimal sensor configurations for dataset 2 with 3647
potential attack points and 4 potential attack times, an attack of 5500 gallons of contaminant,
and (a) 100 sensors, (b) 200 sensors.

populations, such as customers at a grocery store. We specify a stable population
with a single number for each time interval. We specify a transient population with
a rate (number of water consumers/hour). Most nodes will have only one type
of population. For a node with a stable population, the number of people at risk
from a contamination is the mazimum of the population at any time between the
initial contamination and the detection. For a node with a transient population,
the number of people at risk is the sum of the people at the node. This is the rate
times number of hours, summed over all distinct population-rate time periods,
where hours might accumulate over multiple days.

Census data provides a reasonable estimate of stable residential population
figures and one could use population statistics such as number of people who
work outside the home to guess typical household schedules. There is no obvi-
ous source of information on transient populations, unless cities have run traffic
surveys around malls, for example. Because there will be a large amount of uncer-
tainty in the population data, we expect overcounting due to population mobility
will be a low-order effect.

For the two data sets in this study, there we had no basis for deviating signifi-
cantly from demand-proportional populations, and no basis for judging transient
populations. In cases where the population is strongly correlated with demand,
we expect the IP to have roughly the same practical computational requirements
as the one we used.

Though this problem has combinatorial structure, we are justified in using
an [P solver, even though it has worst-case exponential time complexity. The
problem IP MC is solving (choosing at most Smax sensors to minimize the total
weight accumulated across a set of (sub)permutations), is strongly NP-hard and



provably not approximable within any polynomial factor.

This work suggests some algorithmic research. Is there a way to merge (or
prune) sufficiently similar attacks so that the resulting (smaller) IP is a provably-
good approximation to the original? Given the approximations likely necessary
to specify the objective function coefficients, it seems wise to reduce computation
and space requirements by (closely) approximating the optimal solution.

Because water networks are planar, we assume a small fixed number of cycling
flows, and the weights on the objective function are highly structured, one may
be able to compute the set of attacks ((location, time) pairs) to simulate rather
than choosing times in a set stride.

Another algorithmic question is stopping criteria for DEWS. Optimally, when
there is no obvious time threshold, we’'d like to stop when we have proven no
new nodes can be visited. It’s likely to be difficult to determine this in practice,
but there is some hope with this simplified model that we can detect sufficient
conditions in some cases.

The simple DEWS model can be extended in a number of ways. For example,
DEWS could enforce different thresholds for contamination than for detection,
could model decay by reducing the total amount of contaminant in the system,
and/or could model dispersal by allowing the balls to take on finite, possibly
growing diameter.
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