Space Weather Highlights 21 January – 27 January 2008

SEC PRF 1691 29 January 2008

Solar activity was very low. No flares were detected. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels during each day of the period.

The geomagnetic field was at mostly quiet levels during 21 - 24 January. Activity increased to active levels on 25 January. Activity decreased to mostly quiet levels for the balance of the period. ACE solar wind measurements indicated a recurrent coronal hole high-speed stream (HSS) was in progress at the start of the period. Peak velocity during this stream was 606.7 km/sec at 21/0107 UTC followed by a gradual decrease through 22 January. A solar sector boundary crossing (away (+) to toward (-)) occurred during 22 - 23 January associated with increased proton densities (peak 9.6 p/cc at 23/2038 UTC) and increased IMF Bt (peak 5.9 nT at 22/1839 UTC). Another solar sector boundary crossing (toward (-) to away (+)) was detected on 24 January in advance of a coronal hole-related co-rotating interaction region (CIR) and HSS. The CIR began late on 24 January and was associated with an increase in proton densities (peak 17.9 p/cc at 24/1302 UTC) and IMF changes including increased Bt (peak 10.2 nT at 25/0216 UTC) and intermittent periods of southward Bz (minimum -7.2 nT at 25/0458 UTC). Velocities associated with the HSS increased during 25 January and reached a peak of 574.1 km/sec at 25/0731 UTC, then gradually decreased during the rest of the period.

Space Weather Outlook 30 January – 25 February 2008

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels during 03 - 24 February.

The geomagnetic field is expected to be quiet during 30 - 31 January. Activity is expected to increase to unsettled to active levels on 01 - 02 February due to the onset of a recurrent coronal hole high-speed stream. Quiet to unsettled conditions are expected during 03 - 05 February as the high-speed stream gradually subsides. Quiet conditions are expected during 06 - 08 February. Activity is expected to increase to unsettled to active levels during 09 - 10 February due to another recurrent coronal hole high-speed stream. Quiet to unsettled conditions are expected during 11 - 13 February as coronal hole effects subside. Activity is expected to decrease to quiet levels during the rest of the period.

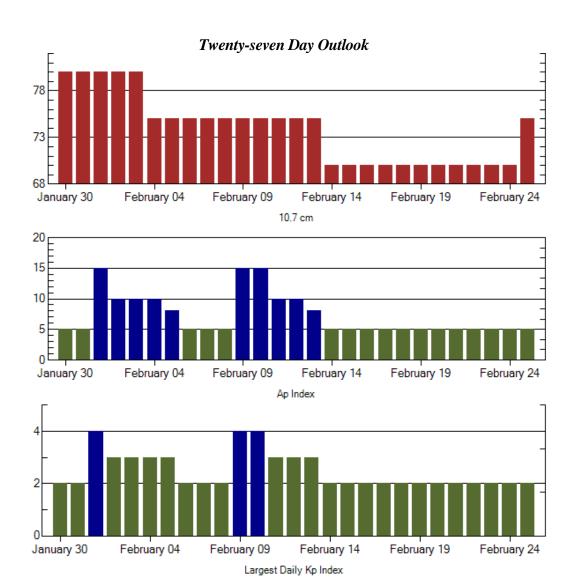
Daily Solar Data

	Daily Sour Baid											
	Radio	Sun	Sunspot	X-ray				Flares				
	Flux	spot	Area	Background	X	-ray F	lux		Or	otical		
Date	10.7 cm	No.	<u>(10⁻⁶ hemi.</u>))	С	M	X	S	1	2	3	4
21 January	72	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
22 January	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
23 January	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
24 January	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
25 January	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
26 January	73	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
27 January	72	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence ons/cm ² -day-si	r)	Electron Fluence (electrons/cm ² -day-sr)				
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV	>2MeV >4 MeV			
21 January	2.3E+6	1.8E+4	4.2E+3		2.6E+8			
22 January	2.3E+6	1.8E+4	4.1E+3		3.2E + 8			
23 January	3.0E+6	1.9E+4	4.2E+3		3.3E+8			
24 January	2.9E+6	1.8E+4	4.0E+3		1.8E + 8			
25 January	2.1E+6	1.8E+4	4.1E+3		5.4E+7			
26 January	1.7E+6	1.8E+4	4.3E+3		5.8E+7			
27 January	2.7E+6	1.9E+4	4.0E+3		7.3E+7			

Daily Geomagnetic Data


		Middle Latitude		High Latitude	I	Estimated	
	Fredericksburg			College]	Planetary	
Date	A	K-indices	A	K-indices	A	K-indices	
21 January	3	0-1-1-1-1-2-1	6	0-1-2-3-3-1-2-0		4	1-1-1-1-1-1
22 January	2	0-1-0-0-0-1-1-1	0	0-0-0-0-1-0-0		2	0-1-0-0-0-1-0-1
23 January	3	0-0-1-1-2-2-1-1	1	0-0-0-0-0-1-1		3	0-0-1-0-0-1-1-2
24 January	3	2-1-1-1-1-1-0	4	0-0-2-2-3-1-1-0		5	1-1-2-1-2-1-2-2
25 January	8	2-3-3-2-1-1-2-1	8	1-3-3-3-1-1-1-2		11	2-4-3-2-1-1-3-2
26 January	6	3-2-1-2-1-2-0-1	8	2-1-1-4-3-1-2-0		5	2-2-1-2-2-1-1-1
27 January	2	1-0-0-0-0-1-1-1	2	0-0-0-0-1-1-1-1		2	1-0-0-0-1-1-2

Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC			
21 Jan 0506	ALERT: Electron 2MeV Integral Flux >1000pfu	21 Jan 0500			
22 Jan 0503	ALERT: Electron 2MeV Integral Flux >1000pfu	22 Jan 0500			
23 Jan 0504	ALERT: Electron 2MeV Integral Flux >1000pfu	23 Jan 0500			
24 Jan 0501	ALERT: Electron 2MeV Integral Flux >1000pfu	24 Jan 0500			
25 Jan 0229	WARNING: Geomagnetic K=4	25 Jan 0230 - 1600			
25 Jan 0553	ALERT: Geomagnetic K=4	25 Jan 0552			
25 Jan 1422	ALERT: Electron 2MeV Integral Flux >1000pfu	25 Jan 1400			
26 Jan 1413	ALERT: Electron 2MeV Integral Flux >1000pfu	26 Jan 1400			
27 Jan 1251	ALERT: Electron 2MeV Integral Flux >1000pfu	27 Jan 1245			

	Radio Flux	•	Largest		Radio Flux	•	_
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
30 Jan	80	5	2	13 Feb	75	8	3
31	80	5	2	14	75	5	2
01 Feb	80	15	4	15	75	5	2
02	80	10	3	16	70	5	2
03	80	10	3	17	70	5	2
04	75	10	3	18	70	5	2
05	75	8	3	19	70	5	2
06	75	5	2	20	70	5	2
07	75	5	2	21	70	5	2
08	75	5	2	22	70	5	2
09	75	15	4	23	70	5	2
10	75	15	4	24	70	5	2
11	75	10	3	25	75	5	2
12	75	10	3				

Energetc Events

					Dittigt	ic Dienis				
Time			X-ray	Op	tical Information	n	Peak	Sweep Freq		
Date			1/2	Integ	g Imp/	Imp/ Location		Radio Flux	Intensity	
	Begin	Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV	
No l	No Events Observed									

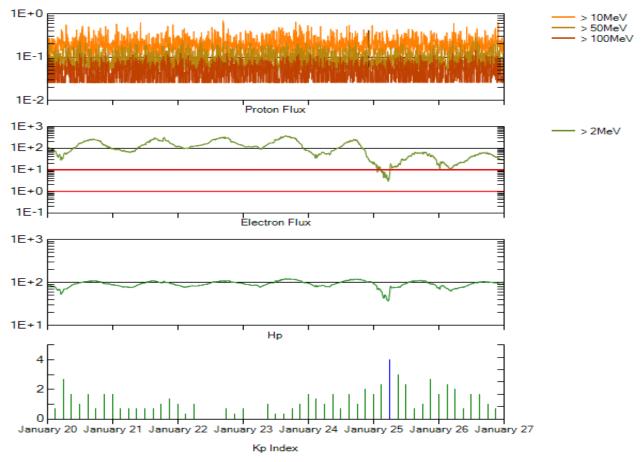
Flare List

		2 100. 0 22.00				
		Optical				
	Time	X-ray	Imp/	Location	Rgn	
Date	Begin Max End	Class.	Brtns	Lat CMD		
21 January	No Flares Observed					
22 January	No Flares Observed					
23 January	No Flares Observed					
24 January	No Flares Observed					
25 January	No Flares Observed					
26 January	No Flares Observed					
27 January	No Flares Observed					

Region Summary

			110	sion or		<i>y</i>			
	Location		Sunspot	Characte	ristics				
				Flares					
	Helio	Area	Extent	Spot	Spot	Mag	X-ray	Optical	
Date	(° Lat ° CMD) Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	$\overline{C M X}$	S 1 2	

No Active Regions



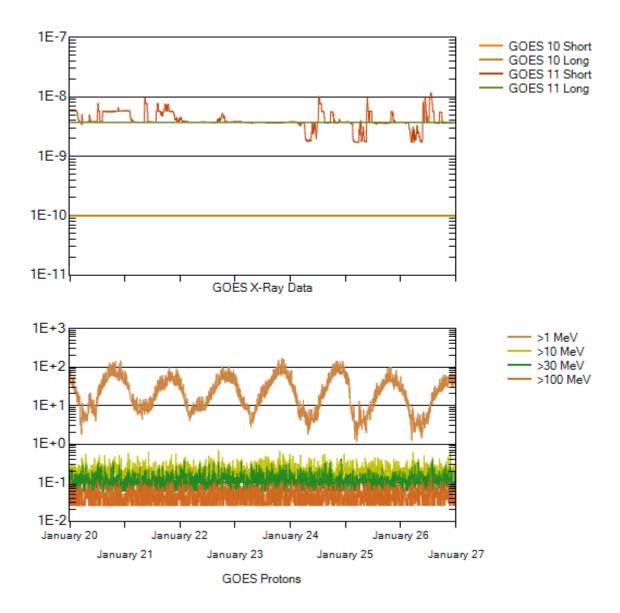
Recent Solar Indices (preliminary) Of the observed monthly mean values

	ot Numbe	Radio	Flux	Geomagnetic					
	Observed			Smooth	values	*Penticton	Smooth		
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
				,	2006			*	
January	28.0	15.4	0.55	37.2	20.8	83.8	84.0	6	9.9
February	5.3	4.7	0.89	33.4	18.7	76.6	82.6	6	9.2
March	21.3	10.8	0.51	31.0	17.4	75.5	81.6	8	8.4
April	55.2	30.2	0.55	30.6	17.1	89.0	80.9	11	7.9
May	39.6	22.2	0.56	30.7	17.3	81.0	80.8	8	7.9
June	37.7	13.9	0.37	28.9	16.3	80.1	80.6	9	8.3
July	22.6	12.2	0.54	27.2	15.3	75.8	80.3	7	8.7
August	22.8	12.9	0.57	27.6	15.6	79.0	80.3	9	8.7
September	r 25.2	14.5	0.58	27.7	15.6	77.8	80.2	8	8.7
October	15.7	10.4	0.66	25.2	14.2	74.3	79.4	8	8.6
November		21.5	0.68	22.3	12.7	86.4	78.5	9	8.5
December	22.2	13.6	0.61	20.7	12.1	84.3	77.9	15	8.5
					3005				
T	26.6	160	0.64		2007	92.5	77.5	6	0.4
January	26.6 17.2	16.9	0.64	19.7	12.0 11.6	83.5	77.5 76.9	6	8.4
February March		10.6	0.62	18.9		77.8		6 8	8.4
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
o di i c	20.0	12.0	0.00	12.0	,.,	, 3.,	75.2	,	7.0
July	15.6	10.0	0.64			71.6		8	
August	9.9	6.2	0.63			69.2		7	
September		2.4	0.50			67.1		8	
1									
October	1.3	0.9	0.70			65.5		9	
November	2.5	1.7	0.68			69.7		5	
December	16.2	10.1	0.62			78.6		4	

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 20 January 2008

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

