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Mid-Tertiary Isopach and Lithofacies Maps for 
the Los Angeles Region, California: Templates 
for Palinspastic Reconstruction to 17.4 Ma

By Thane H. McCulloh and Larry A. Beyer

A preliminary palinspastic reconstruction is presented of the region of the Los Angeles Basin at its 17.4 Ma inception.  To create 
this reconstruction, pertinent paleomagnetic declination data are combined with new maps of the areal extent, thickness varia-
tions, and depositional facies of the  >17.4 Ma Sespe-Vaqueros Formations and their equivalents.
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Abstract
Opening of the Neogene Los Angeles Basin began 

abruptly about 17.4 Ma.  Extensional rifting, with local basaltic 
volcanism, began the process and accompanied its early stages.  
Crustal detachment, followed by clockwise tectonic rotation 
and translation of large crustal blocks has been shown by previ-
ous paleomagnetic declination measurements in the western 
Transverse Ranges Province northwest of the basin and by 
large strike-slip and dip-slip separations on several major faults 
transecting it.  Successful palinspastic reconstruction of the 
region to its arrangement before 17.4 Ma depends on under-
standing and integration of many stratigraphic and structural 
components.

Before 17.4 Ma, fluviatile, alluvial and floodplain depos-
its, interstratified in the younger part with shallow marine to 
deeper shelf transgressive equivalents, accumulated to thick-
nesses as great as several kilometers.  This report maps the 
surface and subsurface extents, thickness variations, and facies 
patterns of these strata, the Sespe plus Vaqueros and Trancas 
Formations or equivalents.   Separate southeast and northwest 
sectors are revealed, each with distinctive internal thickness 
and facies patterns, which must have been related before rift-
ing and transrotation. Terrestrial vertebrate and marine mol-
luscan and foraminiferal fossils, plus magnetostratigraphic 
profiles of other workers and a few dates of igneous rocks, 
provide timing for key depositional and structural events.

Our preliminary reconstruction of the region brings the 
internal patterns of the northwest and southeast sectors toward 
congruity but leaves unsatisfied discrepancies that suggest 
important information is missing.  The reconstruction focuses 
attention on critical elements, specific uncertainties, and defi-
ciencies of prior reconstructions.   It also provides a new foun-
dation for further work.

Introduction
Conceptual understanding of the origin and evolution 

of the Los Angeles Basin and its surroundings—shown 

with selected geographic features, faults, and structural ele-
ments in figure 1—began a notable shift following publica-
tion of the first paleomagnetic evidence implying regional 
detachment, translation, and large (“about 70˚”) clockwise 
steep-axis rotation of the western Santa Monica Mountains 
since early Miocene time (Kamerling and Luyendyk, 1979).  
Subsequent studies enlarged the paleomagnetic data base 
geographically and stratigraphically, made clear that the 
entire western Transverse Ranges Province (and some con-
tiguous areas including the Channel Islands; see Kamerling 
and Luyendyk, 1985) have rotated more or less together as a 
block (Liddicoat, 1990), established that some younger for-
mations record smaller rotations than some older formations 
(Hornafius and others, 1986), and suggest that declination 
has changed linearly since about 17 Ma at a rate of about 
“5.79 degrees/m.y.”(Luyendyk, 1990, fig. 3a).  Based on 
the declination data and various assumptions or estimates 
about strike-slip separations on major to minor zones, at least 
seven substantially different regional palinspastic reconstruc-
tions have been proposed (Hornafius and others, 1986, fig. 
9; Wright, 1991, fig. 36; Crouch and Suppe, 1993; Howard 
and Lowry, 1995; Dickinson, 1996; Bohannon and Geist, 
1998; Fritsche, 1998; Ingersoll and Rumelhart, 1999).  These 
models lead to differing paleogeographic reconstructions for 
the time preceding the onset of transrotation.  To gauge the 
validity of those reconstructions and to improve on them if 
possible, this report presents quantitative maps of the extent, 
thickness variations, gross lithofacies distributions, and 
evidences of age for the nonmarine Eocene-lower Miocene 
Sespe Formation and the interfingering Oligocene-lower 
Miocene transgressive marine Vaqueros Formation (and its 
equivalents) in the Los Angeles Basin region.  These pre-
sumed prerift and prerotational formations provide the foun-
dation for a new preliminary reconstruction.

Nonmarine clastic strata of late Eocene to late early 
Miocene age interbedded with partly marine Oligocene to 
late early Miocene clastic strata are critical to this study and 
occur in two separate sectors. A southeast sector spans the 
San Joaquin Hills, northwestern Santa Ana Mountains, east-
ern portion of the Los Angeles Basin, two areas north of the 
Whittier fault, and a small area northeast of the Chino and 
Elsinore Fault Zones (fig. 1).  A northwest sector covers the 
central and western Santa Monica Mountains plus buried and 
outcropping areas farther north, including the Simi Valley 
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2 Mid-Tertiary Isopach and Lithofacies Maps for the Los Angeles Region, California

and Oakridge uplift to as far as the Oakridge-Santa Susana 
Fault Zone (fig. 1).  Between the two sectors, strata of late 
Eocene to late early Miocene age are either known to be 
absent or are buried so deeply that their presence is not dem-
onstrated.

 In both sectors, widespread thick nonmarine sandstone, 
conglomerate, and sandy claystone, with local fanglomerate 
and fluvial channel fill, are called Sespe Formation.  The 
oldest floodplain and fluvial deposits are late Uintan (middle 
Eocene), on the basis of land mammal fossils from both sec-
tors (Stock, 1948; Kelly, 1990; Calvano and others, 2003; 
Whistler and Lander, 2003).  The youngest nonmarine strata 
in the sequence are Oligocene to latest early Miocene.  These 
nonmarine strata are interbedded with or overlain by better 
sorted and generally finer grained greenish-gray to very dark 
gray marine sandstones and siltstones of the Vaqueros For-
mation in parts of both sectors.  Such marine strata are abun-
dantly fossiliferous locally, yielding mollusks and, in a few 
places, foraminifers that are indicative of early Miocene ages 
(24 to 17.5 Ma) (Loel and Corey, 1932; Yerkes and Camp-

bell, 1979, p. E11; Schoellhamer and others, 1981; Blake, 
1983).  Nonmarine interbeds and correlative facies, as well 
as some littoral Vaqueros Formation beds, have yielded land 
mammal fossils locally that are interpreted to range from 
early Arikareean (28 Ma) to latest early Hemingfordian (17.5 
Ma) in land mammal ages  (Lander, 1983; Lucas and others, 
1997; Whistler and Lander, 2003).  In most of the western 
Santa Ana Mountains the marine Vaqueros Formation facies 
and nonmarine Sespe Formation facies are interbedded inti-
mately and have been mapped as “Sespe-Vaqueros undiffer-
entiated” (Woodford and Gander, 1980, fig. 3; Schoellhamer 
and others, 1981, p. D31).

Internal depositional gaps and unconformities, some of 
long duration, are recognized within the Sespe and Vaqueros 
Formations.  One spans approximately the period 40-30 Ma 
and probably is of major regional extent (Minch and others, 
1989, fig. 4; Lander, 1994, fig. 2; Prothero and others, 1996, 
figs. 8 and 9).  Another is important in the southeastern 
sector (Belyea and Minch, 1989, fig. 3; McCulloh and others, 
2000, p. 1168; Calvano and others, 2003).  Some are minor 

Figure 1.—The greater Los Angeles Basin region, showing major structural elements, faults (dashed or queried where uncertain), geographic 
features, and frames of subordinate southeast and northwest sectors (figs. 3, 4).  Fault abbreviations: A—Anacapa, BC—Benedict Canyon, 
C—Chino, E—Elsinore, H—Hollywood, LC—Las Cienegas, MC—Malibu Coast, NIZ—Newport-Inglewood zone, O—Oakridge, PV—Palos Verdes, 
R—Raymond, S—Simi, SG—San Gabriel, SGNB—San Gabriel north branch, SM—Santa Monica, SS—Santa Susana, VC—Vasquez Creek, 
V—Verdugo, W—Whittier.  Geographic abbreviations: CP—Cahuenga Pass, PH—Pacoima Hills.  Oil fields: 1—Las Cienegas, 2—Inglewood, 
3—Sawtelle, 4—Cheviot Hills.

central
trough

O C E A N

1
2

3
4

34°00'

33°45'

33°30'

34°15' N

119° W 118°118° 30' 117° 30'

?
???

?

OAKRIDGE UPLIFT

SIMI HILLS

SANTA           MONICA           MTNS.

SANTA ANA MTNS.

10 0 10 20

Miles
10 0 10 20 30

Kilometers

NORTHWEST
SECTOR (figure 4)

SOUTHEAST
SECTOR (figure 3)

O
SS

SG

SGNBVC

R

W C

E

LC

PV

A

S

BC

SM

CP
H

PH

SAN
JOAQUIN

HILLS

SIMI VALLEY

Los Angeles

NIZ

SAN
FERNANDO

VALLEY V

MC

N

Laguna Beach

Pomona

P A C I F I C   

figure 1

WESTERN TRANSVERSE RANGES PROVINCE

PENINSULA

     RANGES

          PROVINCE

LOS
ANGELES

BASIN

PACIFIC
OCEAN

LOCATION MAP

34°
N

120° W 119° 118° 117°



3

E
O
C
E
N
E

P
A
L
.

E
A
R
L
Y

L
A
T
E

C23

C24

C25

C26

C22

C21

C20

C19

C18

C17
C16 L

A
T
E

M
AG
.P
OL
.S
TR
AT
.

25

30

35

C8
C9
C10

L
A
T
E

O
L
IG
O
C
E
N
E

E
A
R
L
YC11

C12

C15
C13

10

C5

M
IO
C
E
N
E

M
ID
D
L
E

E
A
R
L
Y

TIM
E
(M
a)

CH
RO
NS

15

20

C6

M
ID
D
L
E

55

60

45

50

40

L
EP
OC
H

N.
AM
ER
IC
AN

LA
ND
M
AM
M
AL

AG
ES

CA
LIF
OR
NI
A

M
OL
LU
SC
AN

ST
AG
ES

CLARENDONIAN

BARSTOVIAN

HEMINGFORDIAN

ARIKAREEAN

WHITNEYAN

ORELLAN

CHADRONIAN

DUCHESNEAN

UINTAN

BRIDGERIAN

WASATCHIAN

CLARKFORDIAN

TIFFANIAN

"MARGARITAN'

"TEMBLOR"

"VAQUEROS"

UNNAMED
of Addicott, 1973

"TEJON"

"TRANSITION"

"DOMENGINE"

"CAPAY"

"MEGANOS"

"MARTINEZ"

C7

OAKRIDGE-
SIMI

WESTERN
SANTA
MONICA
MTNS.

MALIBU
COAST

(S OF FAULT)

CENTRAL
SANTA
MONICA
MTNS.

EASTERN
SANTA
MONICA
MTNS.

LOS
ANGELES
BASIN
SYNCLINE

PUENTE
HILLS
BLOCK

SANTA
ANA
MTNS.

SAN
JOAQUIN
HILLS

Conejo
Volcanics

"L.Topanga"

"Vaqueros"

Sespe

Llajas Llajas
Llajas

Santa Susana Coal Canyon

Monterey Conejo
Volcanics

Zuma Volc.

Trancas

Modelo

Topanga

Santiago

Silverado

Mtn.
Meadows
Dacite

Puente or
Modelo

volcanics

Topanga C.

Vaq.

Topanga with
volcanics Topanga

Vaqueros

Monterey

Simi Cong. Simi Cong.

"Vaqueros"

Topanga with
volcanics

BASIN
OPENING
WITH
MAJOR
RIFTING
STARTING
AFTER
17.4 Ma

Puente

SOUTHEAST SECTORNORTHWEST SECTOR

?

??

?

?

? ?

??

?

??

?

??

?

?

?

?

?

?

?

? ?

Sespe

Sespe

Sespe

Sespe

Sespe

Puente

?

?

Conejo
Volcanics

Santiago

Silverado

?

?

Puente

SOB Topanga

Santa Susana

Coal Cyn.

SOB
?
??

??

Figure 2.—Chronostratigraphic diagram of time and facies relationships and formation nomenclature for post-Cretaceous and pre-Pliocene rock units in the principal parts of the Los Angeles 
Basin region, including the southeast and northwest sectors outlined in figure 1. In magnetic polarity column, normal polarity is shown in black, reversed polarity is shown in white.  Diagonal 
striping indicates absence of section; wavy lines mark unconformities or edges of time gaps. SOB = San Onofre Breccia.
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(Oborne, 1993, fig. 3) or only intimated; many others prob-
ably are unrecognized.

Submarine olivine basalt flows rest disconformably 
on Paleogene strata and unconformably on older rocks in 
the easternmost Santa Monica Mountains.  These oldest of 
a regionally developed suite of Miocene basic volcanics, 
dated at 17.4 Ma (McCulloh and others, 2002), offer clues 
to tectonomagmatic events associated with onset of open-
ing of the Los Angeles Basin and the connected clockwise 
transrotation of the western Transverse Ranges region.  
They are presumably the earliest expression of deep crustal 
magmatism accompanying extensional tectonism and mark 
the close of a long period of relative crustal stability.

These and other chronostratigraphic specifics and depo-
sitional facies variations and gaps are summarized graphi-
cally in figure 2.  The formational units shown were chosen 
to emphasize depositional and other events closely preceding 
17.4 Ma; scant attention is given to all other events.

Late Eocene to Late Early Miocene 
Strata—Southeast Sector

Outcrops of coarse fluviatile conglomerate and interbed-
ded nonmarine arkosic sandstone and mudstone of the Sespe 
Formation, plus less abundant finer grained silty sandstone 
of the Vaqueros Formation facies, are exposed principally in 
the northwestern Santa Ana Mountains and San Joaquin Hills 
(Vedder and others, 1957; Woodford and Gander, 1980, fig. 
3; Schoellhamer and others, 1981; Belyea and Minch, 1989).  
Limited outcrops of partly correlative nonmarine strata also 
occur northeast of the Whittier Fault Zone (Durham and 
Yerkes, 1964), and mostly nonmarine beds crop out north-
east of the Chino and Elsinore Fault Zones (Gray, 1961; 
Schoellhamer and others, 1981).  Subsurface Sespe and 
Vaqueros Formation strata have been sampled from a few 
dozen deep petroleum exploration drill holes to the north 
and west of the outcrop areas.  The distribution of Sespe and 
Vaqueros Formation strata is thereby extended over a much 
larger area than is suggested by the outcrops (Schoellhamer 
and others, 1981, p. D72-D81; West and Redin, 1991a, 
1991b; McCulloh and others, 2001, fig. 5).  

Stratal thicknesses of Sespe plus Vaqueros Formations 
taken from drill holes (appendix 1) have been combined 
with those measured at outcrops to provide a new map of the 
distribution and thickness variations of the combined forma-
tions (fig. 3).

Edges of the mapped strata result from a combination 
of postdepositional erosion, depositional limits or basin 
margins (locally), and lack of subsurface control.  Origi-
nal depositional limits are suggested where the extent of 
postdepositional erosion can be confidently inferred.  Limits 
caused by erosion are also shown where they are recognized.

Strata north of latitude 33.85˚ N and nearly all strata east 
of longitude 117.6˚ W are nonmarine fluviatile sandstones 
and gravels.  Strata south of latitude 33.85˚ N are mostly 

nonmarine also, but with fossiliferous marine interbeds, 
especially at and near the top of the sequence.  To the 
southwest, in the San Joaquin Hills, a younger Vaqueros 
Formation is readily distinguishable at mapping scales from 
an underlying distinctive nonmarine and generally coarser 
Sespe Formation (Vedder and others, 1957; Woodford and 
Gander, 1980, fig. 3).

 The maximum areal limits of the transgressive marine 
Vaqueros Formation facies is a proxy for an early Miocene 
proximal shoreline of the Sespe-Vaqueros Formations of the 
southeastern section.  Our focused fieldwork, together with 
published data (Vedder and others, 1957; Gray, 1961; Yeats, 
1976; Woodford and Gander, 1980, fig. 3; Schoellhamer and 
others, 1981; Daniel-Lyle, 1995, fig. 6; Howard and Lowry, 
1995, fig. 2) define the shoreline in the outcrop areas.  Avail-
able drill hole samples and records have been analyzed to 
extend the marine facies and its northern limit westward 
from the northern Santa Ana Mountains outcrops to the west-
ern edge of subsurface control.  The resulting newly mapped 
area of marine facies clearly defines an early Miocene south-
westward-opening transgressive marine embayment sepa-
rated from more northerly and easterly areas of exclusively 
fluviatile and alluvial deposits, the “Santa Ana Bay” of Loel 
and Corey (1932) (fig. 3).

The provenance of certain distinctive, locally derived 
Sespe Formation clasts from both outcrops and drill-hole 
samples of strata younger than 27 Ma in the northern part 
of the southeast sector (McCulloh and others, 2001, fig. 6) 
indicate transport of clasts to the southeast, south, and south-
west.  Other clasts of nondiagnostic lithologies might also be 
locally derived, and many others might have been recycled 
from older local sedimentary units.  However, many more 
distinctive exotic imports carry important paleogeographic 
implications (Woodford and others, 1968, 1972; Woodford 
and Gander, 1980; Lane, 1989; Howard, 2000).  Evidently 
most of these imports were transported into the basin from 
the east or northeast, judging from clast size gradations and 
paleocurrent indicators (Belyea and Minch, 1989, fig. 5, table 
4; Howard and Lowry, 1995, fig. 2). 

The isopach contours (fig. 3) define an apparent axis of 
greatest thickness that trends northeast to northwest and that 
is nearly orthogonal to the line showing the most northerly 
extent of marine facies. The Sespe-Vaqueros trend of great-
est thickness crudely mimics the underlying north-south- 
trending Paleocene-early Eocene axis of greatest thickness 
(McCulloh and others, 2000, fig. 4).  Possible implications 
of the north-trending Sespe-Vaqueros maximum thickness 
trough and the stratal thinning near the west end of the 
marine-nonmarine facies line are discussed later.

Late Eocene to Late Early Miocene 
Strata—Northwest Sector

Great stratal thicknesses, complex facies relationships, 
poor exposures in many places, and vexing local structural 
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Figure 3.—Outcrops and present (plus restored) surface and subsurface thickness and major facies of the Sespe plus Vaqueros Formations 
in the southeast sector.  “Reconstructed basin margin” is an estimate of the original extent of Sespe-Vaqueros strata for the depositional 
system.
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complications of the late Eocene-early Miocene sequence 
of the central and western Santa Monica Mountains all 
combine, with some weaknesses in fossil control and innu-
merable middle Miocene intrusions, to defy simple sum-
mary.  Our description attempts to make comprehensible 
a very large and complex mass of structurally disturbed 
stratified rocks. Our simple model—a single isopach map 
(fig. 4)—combines the aggregated thicknesses of the late 
Eocene-early Miocene Sespe Formation, the Oligocene-

early Miocene Vaqueros Formation, and the early Miocene 
parts of the Topanga Canyon Formation of Yerkes and 
Campbell (1979).  The most important prior sources for 
this model are Arnold (1907, p. 525-526), Kew (1923), 
Woodford and Bailey (1928), Loel and Corey (1932), Soper 
(1938), Durrell (1954), Nagle and Parker (1971), Weber and 
others (1973), Stuart (1976), Vedder and Howell (1976), 
Truex (1976), Stuart (1979), Yerkes and Campbell (1979), 
Turner and Campbell (1979), Yerkes and Campbell (1980), 
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Dibblee (1982), Howard (1989), Dibblee and Ehrenspeck 
(1990), Fritsche (1993), Oborne (1993), and Campbell and 
others (1996).  Our model relies heavily on the published 
isopach maps of Nagle and Parker (1971, figs. 7 and 8) 
in the western part of the Santa Monica Mountains and 
the part of the northwest sector that is west and southwest 
of the Simi Hills.  Sespe Formation and lower Miocene 
isopach maps of Nagle and Parker (1971) were summed and 
adjusted to agree with structure sections closely controlled 
by outcrop geology (Campbell and others, 1996; Dibblee 
and Ehrenspeck, 1990; Yerkes and Campbell, 1980) and, in 
a few places, with drill hole control.  The model also reflects 
results of our selective field work plus interpretations of 
land-mammal fossils from younger parts of the Topanga 
Canyon Formation in the east-central parts of the mountains 
(Whistler and Lander, 2003).

The total aggregate thickness of the Sespe, Vaqueros, 
and the early Miocene part of the Topanga Canyon Forma-
tion is conservatively estimated to exceed 2,300 m (7,500 ft) 
in the west- central Santa Monica Mountains near longitude 
118.75˚ W, and it might be as much as 3,000 m (10,000 
ft).  This is so despite a prominent erosional unconformity 
that separates the sequence from the overlying middle Mio-
cene Conejo Volcanics (≤16.7 Ma; Turner and Campbell, 
1979, table 1) and another local erosional break within the 
sequence between the Vaqueros Formation and overlying 
early Miocene parts of Topanga Canyon Formation strata 
(Oborne, 1993, fig. 3).  The thickness diminishes eastward 
as the nonmarine Sespe Formation (facies) coarsens and 
becomes dominant (Yerkes and Campbell, 1979, fig. 3; 
Fritsche, 1993, fig. 4).  Redbeds of the Sespe Formation do 
not crop out west of about longitude 118.85˚ W, but they are 
present and thick in deep drill holes to and beyond the west-
ern edge of our map (Nagle and Parker, 1971, fig. 7; Dibblee 
and Ehrenspeck, 1990; Campbell and others, 1996; appen-
dix 1).  For example, many deep drill holes farther north-
west near longitude 119.12˚ W penetrated Sespe Formation 
that alone ranges up to 1,800 m (6,000 ft) thick (Nagle and 
Parker, 1971, fig. 7).  We estimate conservatively that the 
aggregate thickness of the Sespe, Vaqueros, and early Mio-
cene parts of the Topanga Canyon Formations is greater than 
3,000 m (10,000 ft) at the western edge of our map area.

 Exposed strata older than Conejo Volcanics are domi-
nantly muddy marine sandstone and siltstone in the western 
part of the mountains, reflecting the east-to-west transition 
from largely nonmarine to offshore marine facies during 
later early Miocene deposition. Dolomitic concretions 
and beds and thin or lenticular conglomerates are present 
but rare.  Macrofossils occur sparsely, mostly within the 
sequence mapped as “Vaqueros” (Loel and Corey, 1932; 
Weber and others, 1973).  The overlying Encinal Member of 
the Topanga Canyon Formation is dark mudstone, interbed-
ded in many places with sandstone and containing dolomitic 
concretions in its lower parts.  On the basis mainly of its 
microfauna, we agree with Nagle and Parker (1971, fig. 8) 
and Fritsche (1993, fig. 4) that the Encinal Member (facies) 
is all early Miocene, older than 16.4 Ma (Barron and Isaacs, 

2001, fig. 22.1), although Yerkes and Campbell (1979, p. 
E16) consider it to be chiefly middle Miocene. 

South of the Malibu Coast Fault 

The east-west-trending Malibu Coast Fault Zone 
bounds the south margin of the Santa Monica Mountains 
east of a point near longitude 118.94˚ W, where it crosses 
the shoreline.  West of that point it continues westward 
offshore (Junger and Wagner, 1977; Pinter and others, 
1998, fig. 1; Seeber and Sorlien, 2000, fig. 1; Sorlien and 
others, 2000, fig. 1).  Sespe Formation and older strata are 
unknown south of the Malibu Coast Fault Zone.  The oldest 
strata seen there are mostly marine sandstones interbedded 
with minor mudstone and pebbly sandstone plus distinctive 
interbedded schist breccia, also called the San Onofre Brec-
cia (Woodford and Bailey, 1928; Stuart, 1976, 1979).  This 
breccia is composed almost entirely of unsorted angular 
blocks of green schist, glaucophane schist, metagabbroic 
rocks and related lithologies derived from the distinctive 
Jurassic Catalina Schist.  The Catalina Schist is known to 
be present in place offshore and onshore to the south and 
southeast and consists of distinctive oceanic glaucophane-
bearing schist, greenschists, and related metagabbroic rocks 
(Schoellhamer and Woodford, 1951; Hill, 1971; Yeats, 1973, 
1974; Sorensen, 1985).

 The heterogeneous sedimentary sequence limited to 
the coastal strip south of the Malibu Coast-Santa Monica 
Fault Zone and west of Point Dume has been called Trancas 
Formation (Yerkes and Campbell, 1979, p. E25-E27).  It 
bears some resemblance to parts of the Vaqueros and lower 
Topanga Canyon Formations exposed north of the offshore 
projection of the fault zone (Dibblee and Ehrenspeck, 1990) 
farther west and near Point Mugu.  Marine fossils occur 
but tend to be poorly preserved and long-ranging mol-
lusks.  Turritella ocoyana Conrad has been identified and 
interpreted as “Temblor” provincial molluscan stage early 
to middle Miocene (Yerkes and Campbell, 1979, p. E27).  
These strata west of Point Dume are here considered to be 
early Miocene because they lack clasts of the <16.7 Ma 
Conejo and Zuma Volcanics and seem to predate the 17.4 
Ma oldest Topanga volcanics (Hoots, 1931) of the eastern 
Santa Monica Mountains.

The base of the Trancas Formation is not exposed.  We 
and others infer that it rests directly on Catalina Schist 
without intervening thick Cretaceous, Paleocene, middle 
Eocene, or Sespe sedimentary units that are present north of 
the Malibu Coast Fault (Campbell and others, 1966, fig. 3).  
If this inference is incorrect, another complicated structural 
arrangement is needed to explain the presence within the 
Trancas Formation of coarse breccia composed predomi-
nantly of large, unworn blocks of Catalina Schist (Stuart, 
1976, fig. 6). The Anacapa Fault, which appears to mark the 
southern edge of the western Transverse Ranges Province 
(Yerkes and Lee, 1979, p. 34), may or may not have been 
a factor controlling the deposition of the schist breccia in 

Late Eocene to Late Early Miocene Strata—Northwest Sector
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the Trancas Formation.  Whatever the case, the age of the 
youngest Trancas Formation is important for understanding 
the structural evolution. 

Limit of Marine Facies and Upper Boundary of 
Lower Miocene Strata Eastward in the Santa 
Monica Mountains

The easternmost extent of marine strata in the combined 
Sespe-Vaqueros-Topanga Canyon Formations is a final 
important element of the Santa Monica Mountains part of 
the northwestern sector stratigraphy.  Most of the marine 
sequence in the western part of the mountains, the Vaqueros 
and overlying Topanga Canyon Formations, grades eastward 
into nonmarine Sespe Formation and its partial equivalent, 
the nonmarine Fernwood Member of the Topanga Canyon 
Formation (Yerkes and Campbell, 1980).  The easternmost 
outcrops of Vaqueros Formation are west of longitude 
118.56˚ W.   Land mammal fossils from the Fernwood 
Member (nonmarine) are “early late Hemingfordian (late 
early to early middle Miocene)” (Whistler and Lander, 
2003) (or 19.0-16.6 Ma), suggesting that the overlying Cold 
Creek Member (marine) is partly or entirely middle Mio-
cene.  Although the lower part of the Cold Creek Member 
might be equivalent to the uppermost parts of some of the 
undifferentiated Topanga Canyon Formation west of longi-
tude 118.67˚ W, we exclude all of it where it has been sepa-
rately mapped farther east.  Thus the type “Topanga Canyon 
fauna” (Arnold, 1907; Kew, 1923), long assigned to the 
“Temblor Stage” of the middle early to middle Miocene and 
present in the upper part of strata mapped as the Cold Creek 
Member, is excluded from our maps and correlations.  This 
exclusion does not influence the placement of the eastern-
most marine facies boundary.  

One final point of control is the Atlantic Oil Co. “Net-
tleship” No. 1 (fig. 4, prospect well No. 24; appendix 1), 
which penetrated fossiliferous “Vaqueros” and underlying 
Sespe Formation and bottomed in marine Eocene or older 
strata (core samples and U. S. Geological Survey file data).  
These drill hole data, together with outcrop fossil control, 
support both isopach lines and the location of the line 
approximating the easternmost extent of marine facies.

Northern Part of the Northwest Sector

Understanding of the distribution, thickness, and facies 
of the Sespe and Vaqueros Formations north of the Santa 
Monica Mountains is partial and uneven.  Postdepositional 
uplift and erosion completely removed evidence in a large 
area south of the Simi Fault and also limits accurate apprais-
als in extensive outcrops north of that fault.  Despite such 
limitations, approximate isopachs and an estimate of the 
reconstructed landward edge of the transgressive marine 
facies are presented here (fig. 4).  These are based impor-
tantly on the work of Bailey (1947), Hall and others (1975), 

Blake (1983), Blundell (1983), Seedorf (1983), Yeats 
(1987), and Huftile (1988) and on a few deep drill holes 
(appendix 1).  Combined Sespe and Vaqueros Formation 
strata in this northern part of the sector are more than 2,400 
m (8,000 ft) thick in the eastern part of a west-trending 
isopach maximum just south of the Oakridge Fault Zone 
(Bailey, 1947; Huftile, 1988, p. 125-132).  An erosional 
break between Vaqueros and Sespe strata in part of the area 
(Huftile, 1988) suggests an originally even greater compos-
ite thickness along part of the Oakridge uplift.

Clast Provenance and Transport Directions of 
Sespe Formation Conglomerates

Trends of maximum clast size and abundance in Sespe 
Formation conglomerates of the Santa Monica Mountains 
and Simi Valley indicate predominantly east-to-west sedi-
ment transport, consistent with indications from clast imbri-
cations and trough cross bedding (Howard, 1989, figs. 9, 10; 
Howard and Lowry, 1995, fig. 2, table 2).  Most clasts are 
compositionally unlike present-day bedrock sources to the 
east or are nondiagnostic lithologies.  Important exceptions 
include rare anorthosite clasts (unconfirmed by us) reported 
from the uppermost Sespe Formation of the Simi Hills 
(Paschall and Off, 1959, p. 6; Paschall and Off, 1961, p. 
1953; Taylor, 1984; Lander, 1994, p. 86) and from the lower 
Miocene Topanga Canyon Formation of the central Santa 
Monica Mountains (Flack, 1993, p. 67).  Probable notewor-
thy exceptions are the tourmalinized quartz monzonites, 
quartz diorites, and quartzites reported by R. R. Simonson 
from the lower Sespe Formation conglomerates of the cen-
tral Santa Monica Mountains (Soper, 1938, table 1).  As 
described, some of these strongly resemble tourmalinized 
Mesozoic rocks from the northwestern Peninsular Ranges 
about 80 miles to the east (Irving, 1937, p. 300).  Still other 
possible exceptions are clasts of nondurable schist, slate, 
meta-andesite, and metadiabase that resemble bedrock meta-
morphic rock types of the northern Santa Ana Mountains.  
Lane (1989), Howard and Lowry (1995, p. 29-32), and 
Howard (2000) discuss the latter special exceptions and sug-
gest possible sources for such metamorphic clasts and the 
much more abundant and durable distant imports.

Clast Provenance and Transport Directions in 
Trancas and Lower Topanga Canyon  
Formations

The most noteworthy exception to the overall pattern 
of sediment transport from east to west for Sespe, Vaque-
ros, and Topanga Canyon Formations of the Santa Monica 
Mountains and Simi Valley occurs in the Trancas Forma-
tion along the coast west of Point Dume and south of the 
Malibu Coast Fault and in the lower Topanga Canyon For-
mation north of the fault east and west of Point Mugu.  San 
Onofre Breccia (Woodford and Bailey, 1928), interbedded 
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with arkosic sandstone and muddy siltstone and derived 
from unique metamorphic sources nearby to the south, 
was transported northward into the basin along short paths 
that limited clast rounding or sorting (Stuart, 1976, fig. 
6).  Occurrences of breccia in the Trancas Formation are 
prominent at Lechuza Point and intermittently from there 
along the beach for almost 5 km (3 miles) to the west (Dib-
blee and Ehrenspeck, 1990).  Glaucophane schist detritus 
occurs north of the Malibu Coast Fault in Lower Topanga 
sandstones (Dibblee and Ehrenspeck, 1990) and conglomer-
ates about 14.5 km (9 miles) westerly from Lechuza Point 
and also about 1.5 km (1 mile) west of Point Mugu.  This 
sedimentation probably overlaps the time during which 
the “Piuma,” “Saddle Peak,” and parts of the “Fernwood” 
Members of the Vaqueros-Topanga Canyon Formations 
(Yerkes and Campbell, 1979, fig. 3; Fritsche, 1993, fig. 4) 
were being deposited by westward-flowing streams on a 
floodplain northeast of the Malibu Coast Fault.  Multiple 
but uncommon subrounded clasts of arkose and feldspathic 
siltstone, one boulder of foraminiferal calcareous siltstone, 
and multiple but rare subrounded clasts of fossiliferous 
oyster-bearing sandstone occur among angular blocks of 
schist at Lechuza Point.  These show that at least a thin 
blanket of sedimentary strata, resembling more durable parts 
of the Encinal Member of the Topanga Canyon Formation 
and composed of detritus from granitoid sources, probably 
covered parts of the Catalina Schist source terrain prior 
to breccia deposition. The absence of associated clasts of 
Zuma Volcanics (fig. 2) shows that both the breccias and 
associated finer grained strata west of Point Dume predate 
the middle Miocene volcanism instead of being contempora-
neous (Yerkes and Campbell, 1979, fig. 5, p. E28).  Schist-
bearing prevolcanic strata from north of the Malibu Coast 
Fault to the west near Point Mugu were also at least partly 
derived from the south but are overwhelmingly dominated 
by sand-size detritus of granitoid derivation, indicating 
mixed provenance.  The easternmost of these occurrences 
is in the “Lower Topanga” (Dibblee and Ehrenspeck, 1990) 
probably less than 1,400 m (4,500 feet) below the base of 
the Conejo Volcanics about 5 km (3 miles) east-southeast 
of Point Mugu.  A complex paleogeography, engendered 
by a complicated prior structural rearrangement, is clearly 
indicated by these facts and invites more precise dating and 
further analysis.

Summary

Noteworthy features of the northwest sector isopach-
facies map (fig. 4) are variable and locally large thicknesses, 
approximate east-west trends of the axes of greatest and 
least thickness, eastward thinning and coarsening toward 
a crudely north-south-trending edge of the marine facies, 
and evidence of localized derivation from the south in some 
of the younger units.  The thickness trends, like those of 
the southeast sector, imply fundamental tectonic control of 
relative rates of subsidence.  In both sectors, the 25-m.y. 

or possibly longer duration of the sedimentary record of 
that tectonic control presents an opportunity for improving 
understanding of crustal conditions preceding the abrupt 
onset of opening of the Los Angeles Basin. 

The patterns of areal extent, thickness, and empiri-
cal limits of the transgressive marine facies of Sespe and 
Vaqueros plus equivalent lower Miocene strata provide basic 
templates (figs. 3, 4) for reconstructing the paleogeology 
prior to the very different conditions that followed 17.4 Ma. 
These templates are used later in a preliminary reconstruc-
tion.  Sources of clasts, directions of sediment transport, and 
the nature of the depositional environments augment thick-
ness and facies patterns but are no substitute for them.

Ages of Latest Oligocene and Early Mio-
cene Marine Strata—Southeast and 
Northwest Sectors

The age of our Vaqueros Formation facies, including 
partly correlative strata of the Lower Topanga (Dibblee 
and Ehrenspeck, 1990) and Trancas Formations, ranges 
from latest Oligocene (about 24 Ma) to latest early Mio-
cene (about 17.5 Ma).  This general age range is based 
upon a broad base of land mammal age ranges (Lucas and 
others, 1997; Whistler and Lander, 2003), marine mollusk 
age ranges (Yerkes and Campbell, 1979; Schoellhamer and 
others, 1981), benthic foraminiferal age ranges (Nagle and 
Parker, 1971; Yerkes and Campbell, 1979; Blake, 1983), 
magnetic polarity stratigraphy in several places (Prothero 
and others, 1996, figs. 8, 9, 11; Prothero and Donohoo, 
2001, modified following suggestions of Whistler and 
Lander, 2003; Liddicoat, 2001; Ludtke and Prothero, 2003), 
several pertinent late Oligocene radiometric dates (Mason 
and Swisher, 1989; Nourse and others, 1998; McCulloh and 
others, 2001; Lander and others, 2003), and  87Sr/86Sr fossil 
carbonate dates (17.3 Ma) for the type area of the Topanga 
Formation (McCulloh and others, 2002, table 2).

Because a numeric age for the end of deposition of the 
youngest Sespe-Vaqueros Formation strata is important for 
our reconstruction and rate estimates, available pertinent 
biochronologic data were thoroughly investigated.

Correlations and age determinations that depend exclu-
sively on fossil mollusks should be used with caution.  
Vertipecten bowersi Arnold occurs in a number of places in 
the Vaqueros Formation of both sectors.  Although the upper 
limit of its stratigraphic range in California is considered by 
many to be within the provincial Saucesian benthic forami-
niferal stage (about 19.5 Ma, according to Smith, 1991, figs. 
1,12), the limiting data are weak, and it might range to the 
end of the Saucesian at about 17.5 Ma (Smith, 1991, fig. 10) 
or possibly even younger locally (Vedder, 1973).  Similarly, 
the Turritella species T. ocoyana Conrad s.l. and T. inezana 
Conrad s.l. are considered by some (for example, Merriam, 
1941; Campbell and Yerkes, 1979) to be guides to “Tem-
blor” (<19.5 Ma) and “Vaqueros” (>19.5 Ma) provinicial 
molluscan stages, respectively.  However, it has long been 

Age of Latest Oligocene and Early Miocene Marine Strata—Southeast and Northwest sectors
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known that the two species co-occur in both sectors of our 
region (Loel and Corey, 1932, p. 264) and more widely in 
California (Vedder, 1973, fig. 9; Addicott, 1977, p. 158).  
Turritella ocoyana Conrad s.l. partly overlaps T. inezana 
Conrad s.l. but may range as young as 13.6 Ma.  Turritella 
inezana may be restricted to strata older than 17.5 Ma.

The Vaqueros marine transgressive event ended 
abruptly in most if not all of the Los Angeles region 
between about 17.5 and 17.4 Ma.  The timing is fixed by 
the age of the unconformable base of younger Topanga 
volcanics (Hoots, 1931) of the easternmost Santa Monica 
Mountains (McCulloh and others, 2002, fig. 4), by early 
Hemingfordian terrestrial mammalian assemblages from the 
uppermost undifferentiated Sespe-Vaqueros Formation of 
the northwestern Santa Ana Mountains (Lucas and others, 
1997; Whistler and Lander, 2003, fig. 4), and by early late 
Hemingfordian land mammals from the Fernwood Member 
of the Topanga Canyon Formation (Yerkes and Campbell, 
1979, fig. 3; Fritsche, 1993, fig. 4; Whistler and Lander, 
2003, fig. 5).  The timing is also compatible with 87Sr/86Sr 
ages of fossil shells from the Topanga Formation (Hoots, 
1931) type section (McCulloh and others, 2002, table 2), 
with the 15.9±0.8 Ma K-Ar age of the oldest reliably dated 
overlying Conejo Volcanics (Turner and Campbell, 1979, 
p. E21, table 1) after recalculation using current decay con-
stants, and qualitatively with the conspicuous indications 
over much of the region of a substantial hiatus or erosional 
break separating Vaqueros Formation facies from overlying 
middle Miocene strata. 

 
Paleomagnetic Declinations and  
Transrotation— Northwest Sector

Paleomagnetic declination data indicate that the west-
ern Transverse Ranges Province block underwent Neogene 
clockwise transrotation of as much as 100˚ in some west-
ern parts beginning no later than 16 Ma (Hornafius, 1985; 
Morris and others, 1986; Luyendyk and Hornafius, 1987; 
Liddicoat, 1990; Luyendyk, 1990) and continues to rotate 
today (Molnar and Gipson, 1994).  The more-or-less fixed 
rotational hub is at the east end of the block, about 25 km 
east of this study’s northwest sector.  The block’s southern 
edge coincides at least roughly with the Anacapa-Malibu 
Coast-Santa Monica-Hollywood-Raymond zone of linked 
faults, possibly with some complications east of the north-
west projection of the Newport-Inglewood Fault Zone.  The 
block presumably became mostly detached from its deep 
crustal foundation, was accreted to the northwestwardly 
moving Pacific Plate, and then constrained to rift and rotate 
away from the North American Plate attachment, driven by 
Pacific Plate divergent motion through basal shear (Nichol-
son and others, 1994; Dickinson, 1996; Atwater and Stock, 
1998; Bohannon and Geist, 1998).  The central and western 
parts of the northwest sector participated substantially in the 
transrotational migrations (Kamerling and Luyendyk, 1979; 

Hornafius and others, 1986; Liddicoat, 1988, 2001).  It is 
unclear that the eastern extension of the northwest sector, 
east of longitude 118° 18’ W and closer to the rotational 
hub, participated equally.  

Paleomagnetic declination measurements and interpre-
tations provide the essential quantitative and conceptual 
foundation for the transrotation of the western Transverse 
Ranges block.  Published declination results from twelve 
sites are within (or closely on trend with) the northwest 
sector (table 1, fig. 5).  Thoroughly documented declination 
results from stratiform rocks deposited, erupted, or intruded 
more than 10 m.y. ago are available for 10 northwest sector 
sites and one Anacapa Island site that is on trend 30 km (19 
miles) farther west.  Data from a twelfth site on the south-
western tip of Point Dume are more questionable because of 
sampling limitations due to access restrictions (Liddicoat, 
1988).

The space-time patterns of paleomagnetic rotations 
in the northwest sector suggest two tendencies. First, the 
larger rotations (80˚ to 90˚) tend to occur in rock units 16 
Ma and older.  Second, rocks of approximately the same 
age in different parts of the sector record different rotations, 
suggesting a mosaic of structural blocks that have moved 
semi-independently.  This second tendency is supported 
by data showing that Saugus Formation fluviatile strata (< 
2.3 Ma) north of the Santa Susana Fault (outside our area) 
rotated clockwise about 30˚ to 34˚, whereas correlative units 
south of the fault (within our area) have not rotated (Levi 
and Yeats, 1993; 2001). Independently, McCulloh and others 
(2001, p. 19, 23) suggest that the northeastern continua-
tion of the northwest sector probably records at least 20˚ of 
clockwise rotation since 4 to 3 Ma.

Preliminary Palinspastic  
Reconstruction

Introduction and Constraints

Palinspastic reconstruction of the parts of the Los Ange-
les Basin region to the time when the youngest Vaqueros 
and Sespe strata were deposited requires back-rotation of 
our northwest sector to its 17.4 Ma position—but exactly 
to where?  The stratified Neogene rocks and their deform-
ing structures hold the answers, many of which have been 
gathered during the exploration for petroleum.  Evidence is 
well summarized but scattered (Woodford and others, 1954; 
Yerkes and others, 1965; Nagle and Parker, 1971; Yeats, 
1987; Wright, 1991; Blake, 1991; Rumelhart and Ingersoll, 
1997; McCulloh and others, 2000; McCulloh and others, 
2001; McCulloh and others, 2002).  Although structural, 
tectonic, kinematic, chronostratigraphic, and paleodeposi-
tional-paleogeographic evidence does not constitute a suf-
ficient basis for palinspastic reconstruction independently 
of the paleomagnetic data, it does impose time, sequence, 
and location constraints that are crucial for our preliminary 
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reconstruction. Therefore selected diagnostic post-20 Ma 
events are summarized in figure 6.

Submarine basaltic volcanism began the Neogene 
evolutionary phase in the easternmost Santa Monica Moun-
tains at 17.4 Ma (McCulloh and others, 2002). Volcanism 
intensified in early middle Miocene time, became more 
andesitic and partly subaerial, and spread to the western 
and northwestern and to the eastern and southeastern parts 
of the region (Shelton, 1954; Vedder and others, 1957; 
Eaton, 1958; Yerkes and Campbell, 1979; Dibblee, 1982, 
p. 102). The latest phase of volcanism apparently occurred 
in the southeast sector, concluding perhaps at 11 to 10 Ma 

(Yerkes, 1957; Yerkes, 1972; Luyendyuk and others, 1998; 
McCulloh and others, 2000; Bjorklund and others, 2002).  
Volcanism was temporally and spatially associated with 
crustal extension and widespread faulting “on northwest- 
and north-trending faults” in the southeastern Los Angeles 
Basin (Wright and others, 1973; Wright, 1991, p. 92), and 
along northeast- to nearly east-trending faults (present coor-
dinates) in the northwest sector (Yeats, 1983, fig. 3).

Rapid regional subsidence in the Los Angeles Basin fol-
lowed volcanism and led to deposition of very thick deep-
sea fan and plain deposits (Redin, 1991), mainly between 
13 and 5 Ma.  Dextral slip on northwest trends began during 

1 80.8-76.8 16±? four dikes 30 Kammerling and Luyendyk, 1979.

2 79.0 16±? four dikes 20 Kammerling and Luyendyk, 1979.

3 59.2 >10 &<15 one dike 22 Kammerling and Luyendyk, 1979.

4

59.2              
32.5                    
70.8

10.1±2               
<10.1±2                 
ca. 10?

one dike             
two dikes                 

three dikes               

8                                     
13                                     
23 Kammerling and Luyendyk, 1979.

5 64.0 16.28±0.18 ten flows 49
Kammerling and Luyendyk, 1979;                           
Luyendyk and others, 1998, table 1.

6 65.7 11.3-13.3
three dolomite 

beds 16
Hornafius and others, 1986, fig. 3, 
table A.

7 60.7 11.3-13.3
one dolomite              

bed 4
Hornafius and others, 1986, fig. 3, 
table A.

8 35.9 11.5±1.2
two dolomite 

beds 11
Hornafius and others, 1986, fig. 3, 
table A.

9 77.5 14.6±1
Zuma Volcanics 
of Point Dume unk Berry and others, 1976.

10 94 ca. 28
Sespe Fm. at 

South Mountain unk Liddicoat, 2001.

11 64 >38
Sespe Fm. of 

Simi Valley unk  Liddicoat, 2001.

12 80±9 >80

"Tuna Canyon" 
Fm; eastern end 
of central Santa 

Monica Mtns. 
(two sites) 12 Morris and others, 1986.

Map                     
Symbol     

(on fig. 5)

Number of 
measurements

SourceDeclination    
(degrees)

Age                     
(Ma) Unit(s)

Liddicoat, 1988;

Table 1.—Age, paleomagnetic declinations, basis, and published sources for well documented localities in the northwest sector 
of the greater Los Angeles basin region.     

Preliminary Palinspastic Reconstruction
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Pliocene time in the Los Angeles Basin.  A regime of north-
south transpression marked by reverse faulting became 
pronounced in Pliocene-Pleistocene time and is continuing 
(Hauksson and Jones, 1989; Hauksson and others, 1995; 
Wilde and Stock, 1997; Oskin and others, 2000; Bawden 
and others, 2001).

A preliminary palinspastic reconstruction of the Los 
Angeles Basin region (fig. 7) emerges when the Neogene 
events (fig. 6) are combined with paleomagnetic declina-
tions from sites in the northwest sector (fig. 5), and both are 
coupled with thickness and facies templates of Sespe and 
Vaqueros Formations (figs. 3, 4). 

Back-Slip of Fault Separations

Creation of a palinspastic reconstruction required undoing 
a variety of fault movements.  First, a crude restoration was 
made of the north-south and northeast-southwest shortening 
within the Los Angeles Basin and adjacent areas (Yerkes, 1972; 
Davis and others, 1989; Wright, 1991;  Pratt and others, 1998; 
Shaw and Shearer, 1999; Oskin and others, 2000; Tsutsumi and 
others, 2001).

Back-slip to correct for right oblique reverse and strike 
slip on the Whittier Fault Zone and the continuation on the 
Elsinore Fault was next imposed (McCulloh and others, 2000).  
Contemporaneous back-slip was also applied to compensate 
for left oblique strike and reverse slip on the Raymond-Holly-
wood-Santa Monica Fault Zone (Jones and others, 1990; Pratt 
and others, 1998; McCulloh and others, 2001).  Earlier left slip 
on the Benedict Canyon Fault (Hoots, 1931; Durrell, 1954) 
was assumed to join later left oblique reverse slip of the Santa 
Monica Fault Zone west of the concealed junction of these 
faults.  We combine the two slips west of the junction and call 
for right back-slip of 16 km (10 miles), plus an unmeasured 
amount of composite dip back-slip on the Malibu Coast Fault.  
Fully equivalent restorations for the Malibu Coast and Anacapa 
Faults were not feasible, even though the linkage and kinship 
of these faults to the Santa Monica-Hollywood-Raymond zone 
of reverse, oblique, and left-slip active faults is widely recog-
nized (Pratt and others, 1998, p. 480).

Post-late Pliocene right slip on the Newport-Inglewood 
Fault Zone is at least 1.2 km at some places (Wright, 1991, p. 
66).  Older strike slip, possibly before 5 Ma, may be substantial 
(Hazenbush and Allen, 1958).  Middle Miocene dip slip on an 
originally northeast-dipping normal “Wardlow” fault branch 

Figure 5.—Map of paleomagnetic declinations for rocks erupted or intruded before 10 Ma in the northwest sector compiled from published sources 
(numbered as in table 1), with major faults and selected geographic features. NIZ—Newport-Inglewood Fault Zone.
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Figure 7.—Preliminary palinspastic reconstruction of the greater Los Angeles Basin region based on the 
paleodepositional templates for the northwest and southeast sectors (figs. 3, 4), paleomagnetic declinations
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(fig. 5, table 1), and the deformations summarized on figure 6.  MP—Monterey Park Fault; see figure 1 for other                    
fault-name abbreviations.
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of the Newport-Inglewood Fault Zone may exceed 0.5 km 
(Harris, 1958).  Our preliminary reconstruction for the New-
port-Inglewood Fault Zone removes 2 to 3 km of right slip.

The Las Cienegas Fault, which probably originated as 
a southwest-dipping normal fault in middle Miocene time, 
was reactivated as a northeast- to north-dipping reverse fault 
beginning roughly at 5 Ma (Schneider and others, 1996).  
This fault, known mainly through petroleum drill holes but 
mapped geophysically to the east of the Las Cienegas oil 
field as the “Huntington Park fault” (McMurdie and others, 
1973), shows a minimum reverse separation of about 2 to 3 
km and contributes to the northeast-southwest transpressive 
shortening previously mentioned.  The amount of normal 
dip-slip separation that may have occurred during middle 
Miocene is highly uncertain and not addressed here.   
Evidence of middle Miocene extension along the Whittier 
Fault trend is indirect and summarized elsewhere (McCulloh 
and others, 2000), as is more concrete evidence for early 
normal faulting on the Verdugo Fault (McCulloh and others, 
2001).  Back-slip to account for these weakly documented 
early extensions also has not been included in the prelimi-
nary reconstruction and probably has minimal impact on the 
restoration.

Restoration of Rotation

Incorporation of rotational evidence into our reconstruc-
tion is a challenge.  Although an assumed constant clock-
wise rotation rate of “5.79 deg./m.y.” has been suggested 
for the western Santa Ynez Range northwest of our region 
(Luyendyk, 1991, fig. 7), there is no reason to suppose that 
the entire northwest sector fits that model.  In fact, a very 
different approach (Dickinson, 1996, table 2) leads to the 
appealing result that the region is segmented with different 
segments having undergone different amounts of rotation 
(but at the constant rate of “5.8˚ ± 0.1˚ /m.y.”) that ceased at 
different times.  An even more complicated history is con-
ceivable, in which a mosaic of fault blocks in the northwest 
sector rotated semi-independently instead of the “56˚” or 
“77˚” averages for the pertinent “domains” of Dickinson 
(1996, fig. 9).  

Recognizing that published data allow for a range of 
possible interpretations, the following three assumptions are 
adopted for our reconstruction:  (1) The entire body of north-
west sector rocks older than17.4 Ma rotated 80˚ clockwise, 
the maximum supported by most data, at a constant rate 
from start to the present.  All Trancas Formation and Zuma 
Volcanics between the Anacapa and Malibu Coast Faults also 
rotated 80˚.  (2) The area of all Sespe Formation or older 
Cenozoic outcrops east to about Cahuenga Pass (longitude 
118° 18’ W) near the east end of the Santa Monica Moun-
tains rotated clockwise only 40˚ since about 13 Ma.   (3) The 
area at the easternmost end of the range may have rotated 
about 20˚ clockwise, but only since about 4 Ma.  

While other assumptions may prove correct, those out-
lined above seem to best fit available data.  The preliminary 

reconstruction shown in figure 7 embodies the above rota-
tion assumptions, together with the restorations of fault off-
sets previously discussed and summarized (fig. 6).  

Discussion

Most noteworthy in our preliminary reconstruction is 
the degree to which the templates of the Sespe-Vaqueros 
Formations fail to join, despite strong but possibly rela-
tively superficial similarities.  Very substantial gaps remain 
between the two partly erosional Sespe-Vaqueros basin 
margins and the separated (or separate?) marine-nonmarine 
facies limits, despite the substantial angular and transla-
tional restoration.  Equally impressive, although strong 
similarities are evident in the isopach patterns for the two 
sectors, attempts to unify them spatially fail.  Foremost 
in the failure is the fact that a projection of the combined 
Sespe-Vaqueros thickness in the northwest sector is 600-900 
m (2,000-3,000 ft) along the Malibu Coast Fault.  Presum-
ably this projected thickness must approach zero between 
the Anacapa and Malibu Coast Faults, where blocks of 
San Onofre Breccia (Woodford and Bailey, 1928) and finer 
Catalina Schist detritus were eroded during deposition of 
the Trancas Formation and parts of the “Lower Topanga” or 
“Topanga Canyon Formation” (Campbell and others, 1996).  
The Sespe-Vaqueros Formations of the southeast sector also 
thin toward the western edge of drill hole control to a mini-
mum of less than 150 m (500 ft).  Secondarily, after back-
rotation, the nearly east-west isopach trends of the northwest 
sector fail to parallel the similar (north-south) isopach trend 
of the southeast sector.  An unobserved additional back-rota-
tion of the northwestern sector of 20˚-25˚, or commensurate 
rotations of both sectors to total about 100˚, is needed to 
fully align isopach trends.  Because we view these thickness 
trends as products of long-term tectonic control of alternat-
ing belts of subsidence and relative uplift before 17.4 Ma, 
their remaining divergence after back-rotation suggests that 
information may be missing and that our reconstruction 
therefore is deficient.

The absence of compellingly trustworthy magnetic dec-
lination data in the southeast sector also adds uncertainty 
to our restoration.  Some results suggest counterclockwise 
rotation of 26º to 36º for Cretaceous and latest Paleocene 
strata of the northern Santa Ana Mountains (Morris and 
others, 1986, table 1).  However, other results suggest “69º 
± 15º” clockwise rotation for latest Paleocene in the same 
area (Prothero and Lopez, 2001) and no rotation for Sespe 
Formation in the same general area (Prothero and Donohoo, 
2001).   More and better data are needed.

The Newport-Inglewood Fault Zone is the northeastern 
limit of all known Catalina Schist in the region.  Recon-
structions calling for a Catalina Schist floor beneath the Los 
Angeles Basin northeast of the Newport-Inglewood fault zone 
are hypothetical (Crouch and Suppe, 1993; Bohannon and 
Geist, 1998) and model-dependent.  Similarly, the present-day 
Malibu Coast Fault is also believed to be the northern limit of 
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Catalina Schist (Yerkes and Campbell, 1979).  The back-rota-
tion of 80˚ used in our trial reconstruction still leaves an angle 
of about 60˚ between the restored outcrop course of the Santa 
Monica-Malibu Coast Fault and the present overall course of 
the Newport-Inglewood Fault Zone (fig. 7), assuming that no 
other horizontally substantial translations or other cryptic fac-
tors intervened.  Evidence for greater back-rotation to explain 
this apparent misfit is lacking.  

Our preliminary reconstruction is similar to one pro-
posed for 16 Ma by Hornafius and others (1986, fig. 9), 
even though respective underlying assumptions about fault 
offsets differ substantially.  It is also similar to palinspastic 
reconstructions to 14 to 13 Ma of Luyendyk (1990, fig. 5a; 
1991, fig. 5) and, in some ways, to a more complex and 
comprehensive reconstruction to 19 Ma by Sorlien and 
others (1999, fig. 13B).  Critical differences from our recon-
struction are evident in the restoration described by Crouch 
and Suppe (1993, fig. 4 and p. 1421), not the least of which 
are “110˚” of clockwise rotation of the northwest block 
and “30 km” of left slip on the Malibu Coast-Raymond 
Fault Zone.  However, the “110˚” of rotation of Crouch 
and Suppe (1993), while not based on pertinent observa-
tions and greater than our allowed 80˚, would lessen spatial 
discrepancies between the facies and thickness trends of 
our restored templates of the Sespe-Vaqueros Formations. 
The discordance between our restored trend of the Santa 
Monica-Malibu Coast Fault Zone and the trend of the New-
port-Inglewood Fault Zone would also be reduced.  Lastly, 
separate but possibly also critical differences are seen 
between our reconstruction and that of Bohannon and Geist 
(1998, fig. 14) which elaborates a central hypothesis of the 
Crouch and Suppe (1993) model.

Uncertainties and Future Challenges
Our work highlights several substantial uncertainties 

that stand in the way of reliably restoring the Los Angeles 
Basin region to its prerift configuration. We believe the 
following complexities and uncertainties impose possibly 
significant implications for any palinspastic reconstruction, 
including ours.

Limits of Paleomagnetic Declination Data

Presently available declination data for the central and 
western Santa Monica Mountains are immensely valuable 
but are largely restricted to volcanic rocks that probably are 
not older than 15.9 ± 0.8 Ma (Turner and Campbell, 1979, 
table 1 and p. E21, with recalculation using current decay 
constants).  Do redbeds of the substantially older underlying 
Sespe Formation in the same area show the same or differ-
ent rotations? 

No paleomagnetic declination data are published for 
rocks of the easternmost Santa Monica Mountains.  Because 
the Topanga volcanics (Hoots, 1931) of that area have been 

shown to be 17.4 Ma (McCulloh and others, 2002), substan-
tially older than the base of the Conejo Volcanics farther 
west, knowledge of postvolcanism rotation there would be 
exceptionally useful.

Deformed nonmarine Saugus Formation strata that are 
2.3 Ma and younger in the northernmost part of the north-
west sector have undergone no rotation (Levi and Yeats, 
1993).  Knowledge of the full areal extent of the unrotated 
rock mass and how far back in time that condition extends 
would help reconstruction efforts. Outcrops that are old 
enough and lithologically suitable for paleomagnetic deter-
minations are limited. The Pacoima Hills (Oakeshott, 1958; 
Dibblee, 1991) in the northern San Fernando Valley, where 
nonmarine redbeds of Hemingfordian age Topanga Forma-
tion are overlain by middle Miocene Topanga volcanics, 
might offer possibilities.

Early Extensional Tectonism Along the Malibu 
Coast-Santa Monica Fault Zone

The Malibu Coast Fault Zone dips 30˚ to 70˚ to the 
north and records Pliocene and younger north-over-south 
thrusting where it is best known (Campbell and others, 
1996; Seeber and Sorlien, 2000).  Just west of 118º 30’ W 
longitude at the coastline, the linked Santa Monica Fault 
Zone consists of two north-dipping breaks, a younger north-
ern reverse fault, and an older southern reverse fault that 
appears to have been active only between 5 Ma and about 
1.5 Ma (Pratt and others, 1998).  Another 10 km eastward, 
the Santa Monica Fault and its splays dip north and show 
Pliocene to Quaternary reverse slip, but probable “early 
to late Miocene normal” slip (Tsutsumi and others, 2001).  
Added to this complex record is evidence for 13 to 14 km of 
left strike-slip separation for the Raymond-Hollywood Fault 
segment probably since 5 Ma (McCulloh and others, 2001, 
p. 18) and another 2.4 km of left slip from the Benedict 
Canyon Fault (that joins west of longitude 118º 30’ W), thus 
totaling about 16 km of left slip feeding onto the Malibu 
Coast Fault.  This contrasts with fairly compelling evi-
dence of only about 12 km of left separation west of Point 
Dume, based on glaucophane-bearing breccia at Lechuza 
Point south of the fault and glaucophane-bearing sandstone 
just east of the mouth of Sycamore Canyon north of the 
westward extension of the fault.  Possibly some left slip is 
on the Anacapa Fault.  Alternatively, interactions between 
northwest-striking right-slip faults and west-striking left-slip 
zones might explain the 4 km difference.

In the central Santa Monica Mountains, the thick 
section of Cretaceous marine, Paleocene nonmarine and 
marine, and Eocene marine strata (Colburn, 1973; Carey 
and Colburn, 1978; Yerkes and Campbell, 1979; Colburn 
and others, 1981; Colburn, 1996; Campbell and others, 
1996), plus thousands of feet of nonmarine Sespe Forma-
tion strata, is present only north of the Malibu Coast Fault.  
South of the fault, Trancas Formation beds might be as 



18 Mid-Tertiary Isopach and Lithofacies Maps for the Los Angeles Region, California

young as slightly less than 19 Ma and most likely rest on 
Catalina Schist.  Back slip of the 12 or 16 km of left-lateral 
strike movement on the Malibu Coast Fault does not alter 
these relationships.  We judge from these and related facts 
that early movements on the Malibu Coast Fault probably 
occurred between 19 and 17.4 Ma and were extensional, 
with the north block (present coordinates) downthrown 
by more than 2 to 3 km.  Presumably the Zuma and Tuna 
Canyon detachment faults (Campbell and others, 1996) are 
lesser but analogous structures within this extremely thick 
sedimentary section.  Whether the early extensional slip 
included the Hollywood Fault Zone to the east is difficult to 
determine.  Such slip is possible to likely because the oldest 
volcanic rocks in the region (17.4 Ma) probably occur only 
north of the fault zone (McCulloh and others, 2002), or 
west-northwest of it after our restoration.

Central Trough of the Los Angeles Basin 

The metasedimentary, metavolcanic, and metaplutonic 
rocks reached by drilling in the northwestern part of the 
Los Angeles Basin are important constraints on the mecha-
nisms of basin opening and therefore on palinspastic recon-
structions.  Most of these rocks are extensively described 
(Schoellhamer and Woodford, 1951; Yerkes and others, 
1965, fig. 5 and p. A21-A24; Yeats, 1973; Sorenson, 1985; 
McCulloh and others, 2001, fig. 2, table 4).  Their distribution 
limits the area of poorly known and unknown basin floor to 
the northwestern region of the central trough between the Las 
Cienegas Fault on the north and the Newport-Inglewood Fault 
Zone to the southwest.  The exact nature of basement rocks 
and the deep overlying sedimentary units in this area of the 
Los Angeles Basin is poorly documented.  Multiple model-
dependent hypotheses have been advanced, either directly 
through a range of assumptions or interpretations, or indi-
rectly through unstated inferences (McCulloh, 1960; Yerkes 
and others, 1965, figs. 5-7 and p. A24-A28; Crowell, 1974, 
especially p. 201-202; Crowell, 1987; Mayer, 1991; Redin, 
1991, fig. 4; Crouch and Suppe, 1993, p. 1419-1421 and fig. 
4; Langenheim and Jachens, 1996; Shaw and Suppe, 1996; 
Bohannon and Geist, 1998, fig. 14; Kaban and Mooney, 2001, 
fig. 11; Bjorklund and others, 2002).  

The presence of at least partly submarine middle 
Miocene volcanic rocks around the perimeter of the cen-
tral trough encourages us to believe that trough evolution 
involved localized volcanic upwelling in the early subsid-
ence stages (Crowell, 1987, p. 225; McCulloh and others, 
2002).  This suggests localized extension in a restricted zone 
of rifting, possibly along breaks striking about N10º W, 
like those compiled from volcanic dike outcrops in the San 
Joaquin Hills by Yeats (1974, fig. 1).   In the absence of more 
concrete and unequivocal evidence, these uncertainties will 
continue to permit a range of model-dependent constructs.  
However, the filled young central trough of the Los Angeles 
Basin south of the Las Cienegas Fault and west of the south-
east sector most likely is a passive by-product of some form 

of extensional transrotation.  Is it one of the “triangular or 
transrotational basins [that] open at the join between rotat-
ing and nonrotating crust in the deforming zone” (Luyendyk, 
1991, p. 1533)?

Junction of the Inglewood and Santa Monica 
Fault Zones 

Multiple subsurface complexities along the entire 
onshore trace of the Newport-Inglewood Fault Zone are 
not nearly as complicated as those near and at its northwest 
junction with the Santa Monica Fault Zone (Yeats, 1973, 
fig. 2; Lang and Dressen, 1975; Jacobson and Lindblom, 
1987; Wright, 1991, fig. 14; Schneider and others, 1996, 
fig. 8; Tsutsumi and others, 2001, fig. 2).  A key uncertainty 
is whether the late right slip of 1.2 km on the Newport-
Inglewood Fault Zone at Inglewood oil field (Wright, 1991, 
p. 66) breaks and offsets splays of the Santa Monica Fault 
along what is called the “West Beverly Hills lineament” 
(Tsutsumi and others, 2001) or finds its way instead onto 
the northeast-dipping Rancho fault breaks (of Lang and 
Dreesen, 1975, fig. 3) along the southwest margin of and 
beneath the Cheviot Hills oil field (Wright, 1991, fig. 14).  
Although other uncertainties in this northwestern corner of 
the Los Angeles Basin importantly influence our reconstruc-
tion, probably none is more consequential than these.  The 
cross section through the “Inglewood fault?” north of the 
Cheviot Hills oil field of Tsutsumi and others (2001, fig. 
4, section G-G’) suggests that post-7.5 Ma right slip prob-
ably was absorbed by the “Rancho fault” (as suggested by 
Lang and Dreesen, 1975).  If so, that right slip probably 
effectively cancels some left slip on the Santa Monica Fault 
Zone west of the Sawtelle oil field, where the Rancho and 
Santa Monica Fault Zones presumably merge (Wright, 1991, 
fig. 14).  Separately, possible pre-7.5 Ma right slip on a 
throughgoing extension of the Inglewood Fault along the 
“West Beverly Hills lineament” could have evaded detec-
tion and might explain the presence (slightly farther east) of 
the singular subsurface occurrence of “Sespe” (Yerkes and 
others, 1965, fig. 5, p. A23) or “Paleocene” redbeds (Yeats, 
1973, p. 135; Tsutsumi and others, 2001, fig. 4E) overlain 
by volcanics and resting on “granite” in the Morgan Brown 
“Oil District U-6” No. 1 (appendix 1).   

Conclusion
This study was motivated by the need for a synoptic 

picture of the regional geology of coastal southern California 
prior to transrotation of the western Transverse Ranges and 
the concomitant opening of the Neogene Los Angeles Basin.  
Outcrop and exploration drill hole information were used to 
compile a regional map of the areal extent, thickness varia-
tions, and lithofacies of Eocene-lower Miocene Sespe and 
Vaqueros Formations plus their equivalents.  Two separate 
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sectors of the region emerged, each having distinctive thick-
ness patterns and both exclusively nonmarine and partially 
marine facies depositional patterns.  Taken together, the 
interfingering clastic formations extend over more than 2,000 
km2 in area and occupy more than 3,900 km3 in volume. 

Exploring how these two now-separate sectors may have 
been related before transrotation required that we assemble 
and use trustworthy published paleomagnetic declination data 
to retro-deform the region.  This palinspastic reconstruction, 
a primary product of this study, also required coordinated use 
of information about movements on major fault zones.

The preliminary palinspastic reconstruction of figure 7 
will surely be modified and replaced.  However, it is a step 
beyond prior reconstructions covering the same region and 
brings critical unanswered questions into focus.  Understand-
ing the time of emergence of Catalina Schist along the coast 
south of the Malibu Coast Fault is crucial. More precise 
dating of San Onofre Breccia along the Malibu Coast would 
provide new indirect limits on the mechanism responsible 
for exposing Catalina Schist to subaerial erosion prior to 
and accompanying the 17.4 Ma onset of rifting that initiated 
opening of the Los Angeles Basin.   Improved understanding 
of the interactions between the Malibu Coast-Santa Monica 
Fault and the Newport-Inglewood Fault Zone would provide 
insights about the evolution of the central trough as well as 
the transrotational opening of the entire Los Angeles Basin.  
New or additional internally consistent paleomagnetic decli-
nation data from Cretaceous or Paleogene and younger strata 
in both the northwest and southeast sectors are needed to 
improve the preliminary model presented here.  Lastly, the 
Sespe and Vaqueros templates themselves (figs. 3, 4) should 
help to refine and test future palinspastic reconstructions of 
the Los Angeles Basin region. 
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Petroleum exploration drill holes that provide control on the total thickness of Vaqueros and Sespe Formations (differentiated and undifferentiated) or equivalents

APPENDIX 1

Map     
symbol

Original operator,         
lease name & well number

Section              
Township, Range        

(S. B. B. & M.) 1

Latitude (N.)     
Longitude (W.)    

(degrees)

Elevation    

m (ft.) 2
Total depth   

m (ft.)
Drill depths of stratigraphic 

boundaries, feet.
Sources of information and  

comments

1
Continental Oil Co.            
Anaheim No. 4-1

Sec. 5               
T.4 S., R.10 W.

33.8497        
117.9474

43        
(142)      
[kb]

3,255       
(10,679)

Sespe 8,680 to 9,220; overlain by 
Topanga Fm.; rests on Eocene. West and Redin (1991a).

2
Draucker, C. D.                
Draucker No. 1

Sec. 28              
T.3 S., R.7 W.

33.8847       
117.6160

179       
(586)      
[kb]

1,481       
(4,858)

Sespe 2,625 to 2,985; overlain by 
Puente Fm.; rests on Santiago Fm.

Gaede (1969); McCulloh and 
others (2000).

3
Gill and Associates            
Forster No. 1

Sec. 13              
T.8 S., R.8 W.

33.4767        
117.6697

67        
(220)      

[?]
1,996       

(6,550)

Vaqueros and Sespe 4,000 to 5,050; 
overlain by Topanga Fm.; rests on 
Santiago Fm. Vedder (1975).

4
Gill and Associates             
Krum No. 1

Sec. 7               
T.8 S., R.7 W.

33.4848        
117.6440

187       
(612)      
[kb]

2,169       
(7,117)

Vaqueros and Sespe 2,670 to 3,760; 
overlain by Topanga (?); rests on 
Santiago Fm. Vedder (1975).

5
Godfrey, A. L., Drill Co.       
Botiller No. 1

Sec. 29              
T.3 S., R.7 W.

33.8750        
117.6343

175       
(574)      
[rt]

1,455       
(4,775)

Sespe 0 to 1,840; top eroded; rests       
on Santiago Fm. 

Schoellhamer and others (1981, 
Plate 2).

6
Great Amer. Petrol. Co.        
Gapco No. B-1

Sec. 18              
T.2 S., R.8 W.

33.9968        
117.7522

268       
(880)      

[?]
958        

(3,142)
Sespe 2,600 to 3,142; may have 
reached granitic rock.

Durham and Yerkes (1964, Table 
4).

7
Humble Oil Co.                  
O'Neill No. B-1

Sec. 25              
T.6 S., R.8 W.

33.6180        
117.6720

161       
(529)      
[kb]

1,581       
(5,187)

Vaqueros and Sespe 2,000? to               
3,470; overlain by Topanga (?);               
rests on Santiago Fm. Vedder (1975).

8
Marcell, Douglas              
Puente Hills No. 1

Sec. 31              
T.2 S., R.8 W.

33.9525        
117.7503

434       
(1,425)    

[?]
958        

(3,142)
Sespe 5,158 to 5,800; overlain by 
Topanga; rests on Eocene (?).

Durham and Yerkes (1964, Table 
4).

9
Morton and Sons               
El Toro No. 14-1

Sec. 14              
T.6 S., R.8 W.

33.6561        
117.6841

180       
(591)      

[?]
1,990       

(6,528)
Vaqueros and Sespe 1,150± to               
2,100±; overlain by Topanga (?) Vedder (1975).

10
Morton and Sons               
Irvine No. 55-1

Block 55             
Irvine Ranch          

Survey
33.6193        

117.8759

58        
(190)      

[?]
2,873       

(9,427)
Sespe 6,530 to 8,550±; overlain by 
Topanga and San Onofre Breccia Vedder (1975).

Petroleum exploration drill holes that provide control on the total thickness of Vaqueros and Sespe Formations (differentiated and 
undifferentiated) or equivalents.

APPENDIX 1

Southeast sector, figure 3
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11
Patton Oil Co.                 
Three Corners No. 1

Sec. 21              
T.2 S., R.8 W.

33.9838        
117.7314

216       
(710)      

[?]
960        

(3,151)
Sespe 2,430 to 3,000±; overlain by 
Topanga; rests on granite.

Durham and Yerkes (1964, Table 
4).

12
Pomona Oil Co.                 
No. 1

Sec.19              
T.2 S., R.8 W.

33.9841        
117.7632

335       
(1,100)    

[?]
1,576       

(5,169)
Sespe 4,140 to 5,169; overlain by 
Topanga; rests on granite?

Durham and Yerkes (1964, Table 
4).

13
Rubicon Oil Co.                 
Wilcox No. 1

Sec. 6               
T.4 S., R.8 W.

33.8563        
117.7623

137       
(450)      
[df]

1,928       
(6,325)

Sespe 4,330 to 5,780; overlain by 
Topanga; rests on Santiago Fm.

Schoellhamer and others ( 1981, 
p. D74).

14

Santa Fe Minerals Co. (or 
Casex Co.)            
Government No. 165-1

Sec. 17              
T.3 S., R.7 W.

33.9072        
117.6356

152       
(498)      
[kb]

1,826       
(5,991)

Sespe (?) 2,620 to 2,950; overlain       
by Topanga (?) or lower Mohnian (?); 
rests on Eocene.

USGS, California Division of Oil, 
Gas and Geothermal files; 
operator data.

15
Shell Oil Co.                      
Irvine One No. 44-166

Sec. 11              
T.7 S., R.9 W.

33.5743        
117.7939

269       
(884)      
[df]

2,995       
(9,826)

Vaqueros 395 to 3,075; Sespe 3,075     
to 5,700±; Topanga above Vaqueros; 
Santiago Fm. below Sespe. Vedder (1975).

16
Shell Oil Co.                     
Puente Corehole No. 4

Sec. 18              
T.2 S., R.8 W.

33.9930        
117.7541

269       
(884)      
[gr]

930        
(3,052)

Sespe 2,300 to 2,934; overlain by 
Topanga; rests on granite.

Durham and Yerkes (1964, Table 
4).

17
Shell Oil Co.                     
Irvine Corehole No. 8

Block 102            
Irvine Ranch           

Survey
33.6769        

117.7918

34        
(110)      

[?]
1,437       

(4,715)

Vaqueros 470 to 1,700; Sespe 1,700      
to 2,550; overlain by alluvium; rests on 
Santiago Fm. Vedder (1975).

18
Shoreline Oil Co.              
Pinkerton No. 1

Sec. 5               
T.5 S., R.9 W.

33.7668        
117.8402  

50        
(165)      
[df]

1,105       
(3,625)

"Vaqueros and Sespe 1,816± to 
2,500±"; overlain by U. Pliocene;              
rests on Eocene.

Schoellhamer and others (1981, 
p. D76).

19
Standard Oil Co. of Calif.      
Murphy Coyote No. 373

Sec. 18              
T.3 S., R.10 W.

33.9078        
117.9738

116       
(380)      
[df]

3,994       
(13,104)

Sespe 9,535 to 10,690; overlain by 
Topanga; rests on Eocene.

California Division of Oil, Gas and 
Geothermal Resources (1975, p. 
32); T. L. Wright, oral 
communication (1994); USGS 
files.

20
Stella, E. F., Trustee          
Kraemer-Backs No. 2

Sec. 33              
T.2 S., R.8 W.

33.9555        
117.7298

291       
(955)      

[?]
1,594       

(5,231)
Sespe 3,835 to 4,400; overlain by 
Topanga; rests on Eocene.

Durham and Yerkes (1964, Table 
4), McCulloh and others (2000).

21

The Texas Co.                 
Buena Park Community        
No. A-13-1

Sec. 8               
T.4 S., R.10 W.

33.8431        
117.9527

41        
(133)      
[kb]

2,736       
(8,977)

Sespe 8,080 to 8,450; overlain by 
Topanga; rests on Eocene. West and Redin (1991a).

22

The Texas Co.                 
O'Neill Estate (NCT-1)         
No. 1

Sec. 22              
T.8 S., R.7 W.

33.4637        
117.5909

120       
(394)      
[kb]

2,147       
(7,044)

Sespe 1,020 to 2,520; overlain by         
San Onofre Breccia; rests on Eocene. Goodban (1958).

23
Tidewater Assoc. Oil Co.      
Abacherli No. 1

Sec. 12              
T.3 S., R.8 W.

33.9203        
117.6730

354       
(1,160)    

[df]
1,517       

(4,977)
Sespe 3,820 to 4,210; overlain by 
Topanga; rests on Eocene.

Durham and Yerkes (1964, Table 
4); Castro (1975).

A
ppendix
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22

The Texas Co.                 
O'Neill Estate (NCT-1)            
No. 1

Sec. 22                            
T.8 S., R.7 W.

33.4637            
117.5909

120             
(394)       
[kb]

2,147            
(7,044)

Sespe 1,020 to 2,520; overlain by         
San Onofre Breccia; rests on Eocene. Goodban (1958).

23
Tidewater Assoc. Oil Co.              
Abacherli No. 1

Sec. 12                            
T.3 S., R.8 W.

33.9203            
117.6730

354            
(1,160)       

[df]
1,517             

(4,977)
Sespe 3,820 to 4,210; overlain by 
Topanga; rests on Eocene.

Durham and Yerkes (1964, Table 
4); Castro (1975).

24
Atlantic Oil Co.                 
Nettleship No. 1

Sec. 30                               
T.1 N., R.16 W.

34.1339           
118.5918

335       
(1,100)           

[kb]
1,096                  

(3,595) 2,700-3,350;  rests on Eocene.
Dibblee (1982, p. 128); USGS 
files.

25
Havenstrite Oil Co            
Tapo No. 1

Sec. 13                              
T.3 N., R.18 W.

34.3461             
118.7131

591            
(1,938)            

[kb]
2,559              

(8,394) Las Llajas Fm. Seedorf (1983, Fig. 10b).

26
Occidental Petrol. Corp.     
USL No. 83X-2

Sec. 2                          
T.3 N., R.19 W.

34.3735              
118.8333

423            
(1,388)      

[kb]
2,591           

(8,500)

Eroded Vaqueros at surface rests 
unconformably on Sespe; Sespe 
transition to marine Eocene Las Llajas 
Fm. at about 6,500. Huftile (1988, fig. 6).

27
Standard Oil Co. of Calif.                  
Austin No. 1

Sec. 11                              
T.1 S., R.17 W.

34.1019             
118.6344

384?             
(1,260?)         

[?]
763               

(2,503)
Sespe from erosional surface to             
1,250; rests on "Martinez shale". Soper (1938, p. 178).

28
The Superior Oil Co.          
Broome Ranch No. 1

Sec. 13                             
T.1 S., R.21 W.

34.0853            
119.0384

13              
(44)       
[kb]

1,156              
(3,792)

Vaqueros equivalent at surface; Sespe 
Fm. rests on Paleogene at 3,030. Link and Dibblee (1987. p. 29).

29
Union Oil Co. of California            
Torrey No. 92

Sec. 5                               
T.3 N., R.18 W.

34.3733             
118.7845

572           
(1,877)       

[rt]
4,569               

(14,989)

By correlation with other nearby wells, 
Vaqueros thickness is 1,000± and Sespe 
thickness is 6,745; Sespe 3,650 to 
10,285±; Torrey fault at 3,650; Llajas 
Fm. beneath Sespe.

Yeats (1987, Fig. 9.4-B, p. 144); 
Hall and others (1975).

30
Western Gulf Oil Co.                 
Hunter No. 3

Sec. 6                                
T.3 N., R.18 W.

34.3735                           
118.8088

545             
(1,789)        

[kb]
2,900         

(9,514)

Eroded Vaqueros at surface rests 
unconformably on Sespe; Sespe 
transition to marine Eocene Las Llajas 
Fm. at about 8,550. Huftile (1988, fig. 5).

31
Western Gulf Oil Co.                 
Salisbury No. 2

Sec. 19                            
T.1 S., R.19 W.

34.0673            
118.9133

472            
(1,550)       

[kb]
1,781               

(5,843)

"Lower Topanga Fm." (=Vaqueros) at 
surface; rests on Sespe at 2,760; Sespe 
underlain by Eocene at                 
5,280. Dibblee and Ehrenspeck (1990).

32
Morgan-Brown                  
U-6 No. 1

Sec. 20                             
T.1 S., R.14 W.

34.0734           
118.3761

51             
(167)          
[kb]

3,094                   
(10,152)

"Sespe" 9,415 to 10,152; overlain        
by Topanga volcanic rock; rests on 
"granite".

California Division of Oil, Gas and 
Geothermal Resources files; 
Wright (1991, Fig. 18); Yeats 
(1973, p. 135); West and Redin 
(1991b).

2   Depth datum:  kb, rt, df, gr = kelly bushing, rotary table, derrick floor, ground level, respectively.

1   San Bernardino Base and Meridian

Northwest sector, figure 4

Palinspastic reconstruction, figure 7
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22

The Texas Co.                 
O'Neill Estate (NCT-1)            
No. 1

Sec. 22                            
T.8 S., R.7 W.

33.4637            
117.5909

120             
(394)       
[kb]

2,147            
(7,044)

Sespe 1,020 to 2,520; overlain by         
San Onofre Breccia; rests on Eocene. Goodban (1958).

23
Tidewater Assoc. Oil Co.              
Abacherli No. 1

Sec. 12                            
T.3 S., R.8 W.

33.9203            
117.6730

354            
(1,160)       

[df]
1,517             

(4,977)
Sespe 3,820 to 4,210; overlain by 
Topanga; rests on Eocene.

Durham and Yerkes (1964, Table 
4); Castro (1975).

24
Atlantic Oil Co.                 
Nettleship No. 1

Sec. 30                               
T.1 N., R.16 W.

34.1339           
118.5918

335       
(1,100)           

[kb]
1,096                  

(3,595) 2,700-3,350;  rests on Eocene.
Dibblee (1982, p. 128); USGS 
files.

25
Havenstrite Oil Co            
Tapo No. 1

Sec. 13                              
T.3 N., R.18 W.

34.3461             
118.7131

591            
(1,938)            

[kb]
2,559              

(8,394) Las Llajas Fm. Seedorf (1983, Fig. 10b).

26
Occidental Petrol. Corp.     
USL No. 83X-2

Sec. 2                          
T.3 N., R.19 W.

34.3735              
118.8333

423            
(1,388)      

[kb]
2,591           

(8,500)

Eroded Vaqueros at surface rests 
unconformably on Sespe; Sespe 
transition to marine Eocene Las Llajas 
Fm. at about 6,500. Huftile (1988, fig. 6).

27
Standard Oil Co. of Calif.                  
Austin No. 1

Sec. 11                              
T.1 S., R.17 W.

34.1019             
118.6344

384?             
(1,260?)         

[?]
763               

(2,503)
Sespe from erosional surface to             
1,250; rests on "Martinez shale". Soper (1938, p. 178).

28
The Superior Oil Co.          
Broome Ranch No. 1

Sec. 13                             
T.1 S., R.21 W.

34.0853            
119.0384

13              
(44)       
[kb]

1,156              
(3,792)

Vaqueros equivalent at surface; Sespe 
Fm. rests on Paleogene at 3,030. Link and Dibblee (1987. p. 29).

29
Union Oil Co. of California            
Torrey No. 92

Sec. 5                               
T.3 N., R.18 W.

34.3733             
118.7845

572           
(1,877)       

[rt]
4,569               

(14,989)

By correlation with other nearby wells, 
Vaqueros thickness is 1,000± and Sespe 
thickness is 6,745; Sespe 3,650 to 
10,285±; Torrey fault at 3,650; Llajas 
Fm. beneath Sespe.

Yeats (1987, Fig. 9.4-B, p. 144); 
Hall and others (1975).

30
Western Gulf Oil Co.                 
Hunter No. 3

Sec. 6                                
T.3 N., R.18 W.

34.3735                           
118.8088

545             
(1,789)        

[kb]
2,900         

(9,514)

Eroded Vaqueros at surface rests 
unconformably on Sespe; Sespe 
transition to marine Eocene Las Llajas 
Fm. at about 8,550. Huftile (1988, fig. 5).

31
Western Gulf Oil Co.                 
Salisbury No. 2

Sec. 19                            
T.1 S., R.19 W.

34.0673            
118.9133

472            
(1,550)       

[kb]
1,781               

(5,843)

"Lower Topanga Fm." (=Vaqueros) at 
surface; rests on Sespe at 2,760; Sespe 
underlain by Eocene at                 
5,280. Dibblee and Ehrenspeck (1990).

32
Morgan-Brown                  
U-6 No. 1

Sec. 20                             
T.1 S., R.14 W.

34.0734           
118.3761

51             
(167)          
[kb]

3,094                   
(10,152)

"Sespe" 9,415 to 10,152; overlain        
by Topanga volcanic rock; rests on 
"granite".

California Division of Oil, Gas and 
Geothermal Resources files; 
Wright (1991, Fig. 18); Yeats 
(1973, p. 135); West and Redin 
(1991b).

2   Depth datum:  kb, rt, df, gr = kelly bushing, rotary table, derrick floor, ground level, respectively.

1   San Bernardino Base and Meridian

Northwest sector, figure 4

Palinspastic reconstruction, figure 7
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Petroleum exploration drill holes deep enough to indicate the presence of Vaqueros and/or Sespe Formations (differentiated and  undifferentiated) but failing to provide 
thickness control       

Map     
symbol

Original operator,         
lease name & well number

Section              
Township, Range        

(S. B. B. & M.) 1

Latitude (N.)     
Longitude (W.)    

(degrees)

Elevation    

m (ft.) 2

Total depth   
(T.D.)       
m (ft.)

Drill depths of stratigraphic 
boundaries, feet.

Sources of information and 
comments

33
Bartholomae Oil Corp.         
Stern No. 12

Sec. 22              
T.3 S., R.10 W

33.8981        
117.9117

(310)      
[kb]

2,897       
(9,506)

Sespe 8,846 to T.D.; overlain by 
Topanga.

Yerkes (1972, table 6, p. C48); 
West and Redin (1991b).

34
Aeco Corp.                         
Nohl-Bixby No. 1

Sec. 12              
T.4 S., R.9 W.

33.8426        
117.7670

(526)      
[kb]

930        
(3,050)

Sespe 2,640 to T.D.; overlain                
by Topanga.

Schoellhamer and others (1981, 
p. D72).

35
Amerada                            
Anaheim Comm. No. 48

Sec. 8               
T.4 S., R.10 W.

33.8333        
117.9502

(132)      
[kb]

2,727       
(8,946)

Sespe 8,860 to T.D.; overlain                
by Topanga. West and Redin (1991a).

36
Carrey, A. A.                       
Bixby-Nohl No. 1

Sec. 9               
T.4 S., R.9 W.

33.8360        
117.8280

(337)      
[kb]

1,145       
(3,758)

Sespe 3,100 to T.D.; overlain                 
by Topanga.

Schoellhamer and others (1981, 
p. D72).  No marine fossils.

37
Chevron USA Inc.                
Murphy-Whittier No. 304

Sec. 26              
T.2 S., R.11 W.

33.9741        
117.9988

(846)      
[df]

4,332       
(14,213)

Sespe 13,885 (true vertical depth to 
T.D.); overlain by Topanga. USGS files.  Directed hole.

38
Continental Oil Co.               
Turnbull Community No. 3

Sec. 13              
T.2 S., R.11 W.

33.9982        
117.9793

(576)      
[rt]

1,709       
(5,608) "Sespe?" 5,500 to T.D. 

Daviess and Woodford (1949).   
Whittier Heights fault from 
"5,167- 5,500".  Petrography 
suggests that cores from this 
interval predate Relizian volcanics 
but contain clasts of 27.5 Ma 
dacite (McCulloh and others, 
2001).

39
McKee Oil Co.                      
Kokx Community No. 8-1

Sec. 16              
T.4 S., R.9 W.

33.8235        
117.8300

(290)      
[df]

1,221       
(4,005)

Vaqueros and Sespe Formation, 
undifferentiated 3,595 to T.D.

This report; Schoellhamer and 
others (1981, p. D74).

40
Morton and Sons.                
Irvine No. 56-1

Sec. 24              
T.6 S., R.10 W.  

(projected)
33.6375        

117.8717
(215)      

[?]
2,064       

(6,770)

Vaqueros 5,250± to 6,450±;                 
Sespe 6,450± to T.D.; Vaqueros overlain 
by Topanga. Vedder (1975).

41
Orange Comm. Oil Assoc.  
Forker No. 1

Sec. 29              
T.4 S., R.9 W.

33.8001        
117.8424

(226)      
[df]

1,392       
(4,568)

Vaqueros and Sespe,                              
undifferentiated 3,600 to T.D.?

Schoellhamer and others (1981; 
P. D75).  Questionable data.

42
Red Star Oil Co.                   
Ward Associates No. 1

Sec. 29              
T.5 S., R.9 W.  
(projected)

33.7156        
117.8430

(76)       
[kb]

1,598       
(5,243)

Vaqueros and Sespe Formation, 
undifferentiated 4,464 to T.D.;                
overlain by Topanga.

Schoellhamer and others (1981, 
p. D75).

Southeast sector, figure 3
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43
Richfield Oil Corp.                
Edwards No. 1

Sec. 15              
T.3 S., R.10 W.

33.9054        
117.9195       

(322)      
[kb]

2,923       
(9,591)

Sespe 9,546 to T.D.; overlain                 
by "Topanga (?)". Yerkes (1972, table 6, p. C46).

44
Shell Oil Co.                        
Harbeson No. 1

Sec. 9               
T.4 S., R.10 W.

33.8367        
117.9353

(141)      
[df]

2,624       
(8,608)

"Vaqueros" (?) 8,255 to T.D.;                 
overlain by Topanga.

Yeats and Beall (1991, fig. 2G 
and appendix); USGS file data 
from operator.

45

Shell Oil Co.                        
Irvine Four No. 51-130        
original hole (OH) & redrill 
(RD)

Sec. 5               
T.7 S., R.9 W.

33.5959        
117.8485

(381)      
[gr]

1,960       
(6,431) OH   

2,756       
(9,043) RD   

Original hole:  Sespe 5,950± to T.D; 
overlain by Topanga.  Redrill:  Sespe 
7,100 to 7,630; underlain by Santiago 
Formation(?); intrusive diabase above.  Vedder (1975).  Directed hole.

46
Shell Oil Co.                        
Moulton No. 88-4

Sec. 4               
T.7 S., R.8 W.

33.5856        
117.7118

(248)      
[df]

1,209       
(3,967)

Vaqueros 1,920± to 2,670±;                 
Sespe 2,670± to T.D. Vedder (1975).

47
Standard Oil Co. of Calif.      
Emery No. 87

Sec. 13              
T.3 S., R.11 W.

33.9047        
117.9807

(196)      
[df]

3,359       
(11,020)

Sespe 10,075 to T.D.; overlain              
by volcanic rocks. Yerkes (1972, table 6, p. C53).

48
Standard Oil Co. of Calif.      
Emery No. 92

Sec. 13              
T.3 S., R.11 W.

33.9034        
117.9768

(433)      
[df]

3,672       
(12,048)

Sespe 10,800 to T.D.; faulted                
against Topanga at 10,800. Yerkes (1972, table 6, p. C53).

49
Standard Oil Co. of Calif.      
Kellogg No. 1

Sec. 20              
T.4 S., R.10 W.

33.8158        
117.9546

(112)      
[df]

3,118       
(10,229)

Vaqueros interbedded with Sespe            
9,930 to T.D.

West and Redin (1991a); 
inspection of conventional core.  
Directed hole.

50
Standard Oil Co. of Calif.      
Pacific Community No. 1

Sec. 26              
T.3 S., R.11 W.

33.8754        
118.0053

(80)       
[df]

3,551       
(11,651) Sespe 11,375 to T.D. Yerkes (1972, table 6, p. C54).

51
Standard Oil Co. of Calif.      
Woodward Comm. No. K-1

Sec. 11              
T.3 S., R.11 W.

33.9223        
118.0011

(245)      
[df]

3,714       
(12,184) Sespe 11,965 to T.D. Yerkes (1972, table 6, p. C49).

52
The Texas Co.                     
Ragan (NCT-1) No. 1

Sec. 15              
T.4 S., R.9 W.

33.8186        
117.8047

(392)      
[kb]

1,734       
(5,690)

"Vaqueros and Sespe Formations, 
undifferentiated, 3,605-4,650±"; 
overlain by Topanga; faulted (?).

Schoellhamer and others (1981, 
p. D79).

53
The Texas Co.                     
Ruff No. 1

Sec. 1               
T.3 S., R.10 W.

33.8505        
117.8712

(204)      
[kb]

2,590       
(8,497)

Sespe 8,057 to T.D.; overlain by 
Topanga.

Schoellhamer and others (1981, 
p. D80).

54
Union Oil Co. of California     
Chapman No. 29

Sec. 29              
T.3 S., R.9 W.

33.8776        
117.8449

(293)      
[kb]

3,199       
(10,496)

"Vaqueros and Sespe Formations, 
undifferentiated, 9,128-T.D.";                 
overlain by Topanga.

Durham and Yerkes (1964; table 
4, p. B53).

55
Union Oil Co. of California     
Olive Community No. 4-1

Sec. 8               
T.4 S., R.9 W.

33.8324        
117.8510

(209)      
[df]

1,291       
(4,236)

Vaqueros interbedded with Sespe            
4,160 to T.D.; "Norwalk fault" at 
4,160±.

Schoellhamer and others (1981, 
p. D81).

56
Union Oil Co. of California     
O'Neill No. 1

Sec. 30              
T.7 S., R.7 W.

33.5358        
117.6432

(372)      
[?]

1,378       
(4,520)

Vaqueros-Sespe 2,950± to T.D.; overlain 
by Topanga. Vedder (1975).

57
Western Gulf Oil Co.            
Diamond Bar No. 1

Sec. 28              
T.2 S., R.9 W.

33.9698        
117.8311

(1,102)    
[?]

2,081       
(6,828)

Sespe 5,700± to T.D.; overlain              
by Topanga.

Durham and Yerkes (1964, table 
4, p. B55).
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APPENDIX 2—Continued

APPENDIX 3

Map               
symbol

Lease name & well 
number

Section                          
Township, Range             

(S. B. B. & M.)1

Latitude (N.)           
Longitude (W.)      

(degrees)

Elevation        

m (ft) 2
Total depth      

m (ft)
Drill depths of stratigraphic 

boundaries, feet
Sources of information and            

comments

59
Shell Oil Co.                             
Schonfeld No. 1

Sec. 30                          
T.2 N., R.16 W.

34.2286                
118.6040

283              
(928)        
[df]

1,573               
(5,162)

"Topanga Fm." rests on Eocene at about 
2,000.

Seedorf (1983, Fig. 6); also see 
Shields (1978, Fig. 2) and 
California Division of Oil and Gas 
files for alternative 
interpretations.

60

Union Oil Co. of California                 
Union-Signal-Texam U-19 
No. 1

Sec. 35                          
T.1 S., R.14 W.

34.0424                
118.3097

62                 
(203)        
[gr]

1,678               
(5,506)

"Albite and oligoclase-epidote 
amphibolites" (Sorensen, 1985,                 
p. 999) overlain unconformably by 
Mohnian of Modelo Fm.

Yeats (1973, p. 134)                          
Schneider and others (1996, Fig. 
5).

1   San Bernardino Base and Meridian
2  Depth datum:  df, gr  =  derrick floor, ground level, respectively.

Northwest sector, figure 4

Palinspastic reconstruction, figure 7

Petroleum exploration drill holes that provide critical insights about the regional extent and history of Vaqueros and/or Sespe strata without encountering either formation

57
Western Gulf Oil Co.            
Diamond Bar No. 1

Sec. 28              
T.2 S., R.9 W.

33.9698        
117.8311

(1,102)    
[?]

2,081       
(6,828)

Sespe 5,700± to T.D.; overlain              
by Topanga.

Durham and Yerkes (1964, table 
4, p. B55).

58

Bell, J. A., Operator             
Tapo No. 71X orig. hole 
and deepening

Sec. 14              
T.3 N., R.18 W.

34.3504        
118.7288

(2,139)    
[kb]

2,252       
(7,389)

Sespe, 3,255 to TD; overlain 
unconformably by Calabasas Fm. 
(Luisian).

California Division of Oil, Gas and 
Geothermal Resources files; 
operator well summaries.

1  San Bernardino Base and Meridian
2    Depth datum:  kb, rt, df, gr = kelly bushing, rotary table, derrick floor, ground level, respectively.

Northwest sector, figure 4
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