FLIGHT SUMMARY REPORT

Flight Number: 99-005-08

Calendar/Julian Date: 5 June 1999 • 156

Sensor Package: MASTER Airborne Simulator (MASTER)

Area(s) Covered: Phoenix, AZ (Site #961)

Investigator(s): Christensen, ASU

Aircraft #: 798
Department of Energy

King Air B200

Kilig Air b20

SENSOR DATA

Accession #: -----

Sensor ID #: 124

Sensor Type: MASTER

Focal Length: -----

Film Type: -----

Filtration: -----

Spectral Band: -----

f Stop: -----

Film Speed: -----

of Frames: -----

% Overlap: -----

Quality: -----

Remarks:

Airborne Science and Applications Program

The Airborne Science Branch at NASA's Dryden Flight Research Center, Edwards, California, operates two ER-2 high altitude aircraft in support of NASA earth science research. The ER-2s are used as readily deployable high altitude sensor platforms to collect remote sensing and in situ data on earth resources, celestial phenomena, atmospheric dynamics, and oceanic processes. Additionally, these aircraft are used for electronic sensor research and development and satellite investigative support.

The ER-2s are flown from various deployment sites in support of scientific research sponsored by NASA and other federal, state, university, and industry investigators. Data are collected from deployment sites in Kansas, Texas, Virginia, Florida, and Alaska. Cooperative international scientific projects have deployed the aircraft to sites in Great Britain, Australia, Chile, and Norway.

Photographic and digital imaging sensors are flown aboard the ER-2s in support of research objectives defined by the sponsoring investigators. High resolution mapping cameras and digital multispectral imaging sensors are utilized in a variety of configurations in the ER-2s' four pressurized experiment compartments. The following provides a description of the digital multispectral sensor(s) and camera(s) used for data collection during this flight.

Department of Energy Remote Sensing Laboratory

The NASA Airborne Science and Applications Program at Ames Research Center contracted with the Department of Energy Remote Sensing Laboratory (RSL) in Las Vegas, Nevada to fly the RSL Multispectral Scanner (MSS) and the NASA Thermal Infrared Multispectral Scanner (TIMS) over the desert southwest. The scanners were flown on the DOE Cessna Citation.

The Cessna Citation is a low and medium altitude, moderate speed aircraft. It can operate from 4,000 to 35,000 feet above sea level at speeds between 135 and 225 knots. There are two instrument ports in the aircraft. The RSL 1268 Multispectral Scanner was mounted over the aft port and the NASA Thermal Infrared Multispectral Scanner was mounted over the forward port.

MASTER (MODIS/ASTER Airborne Simulator)

The MASTER is similar to the MAS, with the thermal bands modified to more closely match the NASA EOS ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite instrument, which is scheduled for launch in 1998. It is intended primarily to study geologic and other Earth surface properties. Flying on

both high and low altitude aircraft, the MASTER became operational in early 1998. Its fifty spectral bands are configured as follows:

Spectral	Band center	Dandwidth	Spootrol			
Channel						
		(µm)	Range			
1	0.460	0.04	0.440-0.480			
2	0.500	0.04	0.480-0.520			
3	0.540	0.04	0.520-0.560			
4	0.580	0.04	0.560-0.600			
5	0.660	0.06	0.630-0.690			
6	0.710	0.04	0.690-0.730			
7	0.750	0.04	0.730-0.770			
8	0.800	0.04	0.780-0.820			
9	0.865	0.04	0.845-0.885			
10	0.905	0.04	0.885-0.925			
11	0.945	0.04	0.925-0.965			
12	1.625	0.05	1.600-1.650			
13	1.675	0.05	1.650-1.700			
14	1.725	0.05	1.700-1.750			
15	1.775	0.05	1.750-1.800			
16	1.825	0.05	1.800-1.850			
17	1.875	0.05	1.850-1.900			
18	1.925	0.05	1.900-1.950			
19	1.975	0.05	1.950-2.000			
20	2.075	0.05	2.050-2.100			
21	2.160	0.05	2.135-2.185			
22	2.210	0.05	2.185-2.235			
23	2.260	0.05	2.235-2.285			
24	2.3295	0.065	2.297-2.362			
25	2.3945	0.065	2.362-2.427			

Spectral		Bandwidth				
Channel		(µm)	Range			
26	3.150	0.15	3.075-3.225			
27	3.300	0.15	3.225-3.375			
28	3.3450	0.15	3.375-3.525			
29	3.600	0.15	3.525-3.675			
30	3.750	0.15	3.675-3.825			
31	3.900	0.15	3.825-3.975			
32	4.050	0.15	3.975-4.125			
33	4.200	0.15	4.125-4.275			
34	4.575	0.6	4.275-4.875			
35	4.500	0.15	4.425-4.575			
36	4.650	0.15	4.575-4.725			
37	4.800	0.15	4.725-4.875			
38	4.950	0.15	4.875-5.025			
39	5.100	0.15	5.025-5.175			
40	5.250	0.15	5.175-5.325			
41	7.900	0.4	7.70-8.10			
42	8.300	0.4	8.10-8.50			
43	8.700	0.4	8.50-8.90			
44	9.100	0.4	8.90-9.30			
45	9.700	0.4	9.50-9.90			
46	10.100	0.4	9.90-10.30			
47	10.625	0.65	10.30-10.95			
48	11.300	0.7	10.95-11.65			
49	12.050	0.5	11.80-12.30			
50	12.750	0.5	12.50-13.00			

Sensor/Aircraft Parameters:

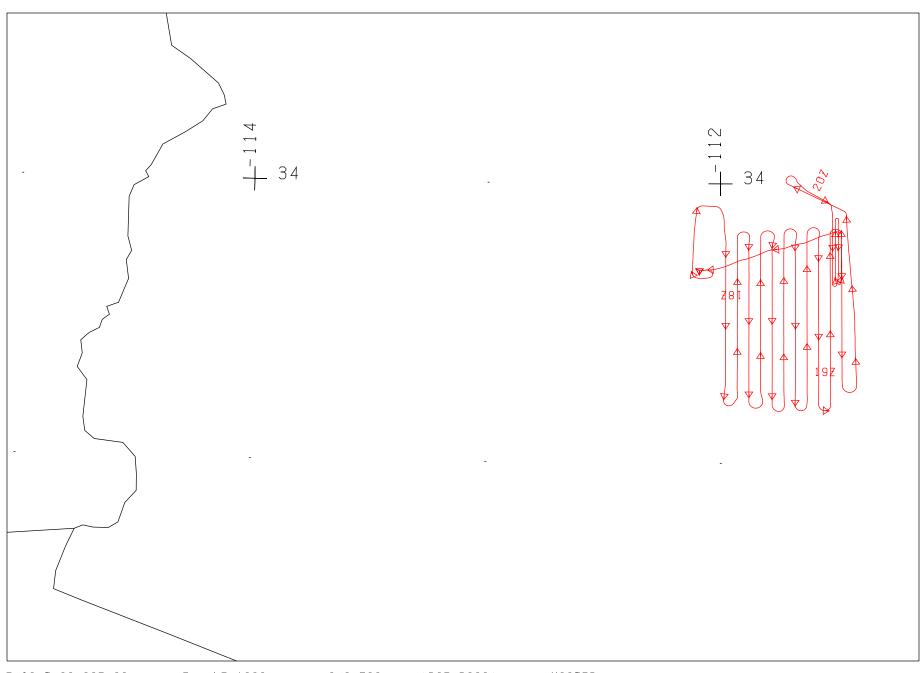
Spectral Bands: 50 (16-bit resolution) IFOV: 2.5 mrad

Swath width: 19.9 nmi (36 km) at 65,000 ft Ground Resolution: 12-50 meters (variable w/ altitude)

Total FOV: 85.92 degrees

Pixels/Scanline: 716

Scan Rate: 6.25 - 25 Hz


(See the homepage at asterweb.jpl.nasa.gov)

Information on data tape format, logical record format, and scanner calibration data may be obtained from the Aircraft Data Facility, NASA-Ames Research Center, Mail Stop 240-6, Moffett Field, California 94035-1000 (Telephone: 650-604-6252).

MODIS/ASTER AIRBORNE SIMULATOR (MASTER) FLIGHT LINE INFORMATION FOR 05-JUN-1999 NASA FLIGHT NUMBER 99-005-08

			START OF FLIGHT LINE			END OF FLIGHT LINE		FLIGHT DATA					
FILE	SITE	LINE	RUN	TIME HH:MM:SS	LAT DEG	LON DEG	TIME HH:MM:SS	LAT DEG	LON DEG	SCAN LINES	SOLAR ZEN AZIM	HEAD DEG	ALT M (GPS)
1	961	101	1	17:31:49	33.765	-111.976	17:41:04	33.291	-111.976	6889	26.5 107.4	180.03	4785
2	961	102	1	17:44:26	33.265	-111.927	17:53:56	33.741	-111.927	7074	23.9 111.1	180.02	4824
3	961	103	1	17:57:12	33.765	-111.877	18:06:10	33.292	-111.877	6676	21.5 115.3	179.93	4802
4	961	104	1	18:09:44	33.264	-111.827	18:18:50	33.741	-111.827	6776	19.1 120.5	179.99	4823
5	961	105	1	18:22:12	33.767	-111.778	18:31:01	33.290	-111.778	6577	17.0 126.6	180.00	4826
6	961	106	1	18:34:46	33.261	-111.728	18:43:33	33.742	-111.728	6541	14.9 134.6	179.97	4832
7	961	107	1	18:46:58	33.767	-111.679	18:55:34	33.288	-111.679	6405	13.3 143.9	179.95	4835
8	961	108	1	18:59:05	33.262	-111.629	19:07:42	33.743	-111.629	6419	11.9 155.7	180.02	4831
9	961	109	1	19:11:13	33.767	-111.579	19:19:42	33.291	-111.579	6319	11.2 169.1	179.98	4833
10	961	110	1	19:23:13	33.261	-111.530	19:31:45	33.743	-111.530	6357	11.0 183.9	179.99	4838
11	961	111	1	19:34:56	33.771	-111.480	19:43:26	33.292	-111.480	6342	11.5 197.6	179.98	4817
12	961	201	1	20:09:48	33.830	-111.519	20:14:23	33.685	-111.519	6859	15.3 226.2	180.00	2002
13	961	202	1	20:17:03	33.667	-111.507	20:21:29	33.816	-111.506	6610	16.5 230.8	0.10	2008
14	961	203	1	20:24:33	33.837	-111.494	20:27:08	33.757	-111.494	3874	17.6 234.3	179.73	1992
15	961	203	1	20:27:10	33.757	-111.494	20:29:33	33.686	-111.494	3577	18.0 235.7	180.12	1994
16	961	204	1	20:31:54	33.668	-111.482	20:36:29	33.814	-111.481	6883	19.0 238.5	0.15	1995

NUMBER OF FILES FOR THIS FLIGHT = 16
TOTAL NUMBER OF SCAN LINES = 100178
DATE THESE FILES WERE PROCESSED = 30-Jul-99
DATE THIS LIST WAS CREATED = 02-Aug-99
GRANULE VERSION = 9

FLIGHT 99-005-08

5 JUNE 1999

A/C 798

(DOE B200)

MASTER