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THE USE OF THE METHOD OF LEAST SQUARES IN CALIBRATION

J. M. Cameron

Introduction

When more than one measurement is made on the same quantity, we are
accustomed to taking an average and we have the feeling that the resul t
is IIbetter" than any single value that might be chosen from the set.
Exactly why the average should be better needs some justification and
the fundamental step toward a general approach to the problem of
measurement was taken by Thomas Simpson in 1755. In showing the
advantage of taking an average of values arising from a number of
probability distributions, "he took the bold step of regardi.ng errors,
not as individual unrelated happenings , but as properties of the
measurement process i tse 1 f 

. .

He thus opened the way to a
mathematical theory of measurement based on the mathematical theory
of probability" (3, page 29). 

The taking of an average is a special case of the method of least
squares for which the original justification by Lengendre in 1805 did
not involve any probabi ity considerations but was advanced as a con-
venient method for the combination of observations. It was Gauss who
recognized that one could not arrive at "a IIbest" value unless the
probability distribution of the measurement errors were known. 
1798 he showed the optimality of the least squares values when the
underlying distribution is normal and in 1821 showed that the method
of lea.st squares leads to values of the parameters which have minimum
variance among all possible unbiased linear functionS"" of the observa-
tions regardless of the underlying distribution. It is this property
that gives the method of least squares its position of dominance
among methods of combination of observations.

In this paper the statistical concepts needed for the method of
least squares will be stated as a prelude to the usual modern version
of the Gauss theorem. The formation of the observational equations
and the derivation of the normal equations are illustrated for several
situations arising in calibr.ation. The role ofrestrafnts in the
solution of systems which are not of full rank is discussed. The
results are presented in a form designed to facilitate computation.

nexamp e o a non near function with smaller variance than the
average (the Ilbestil linear estimator) is given by the midrange for
the rectangular distribution. The midrange (average of the largest
and smallest observation) has variance 1/l2(N+l l(N+2)) when based
on n measurements, whereas the average has variance 1/12N. Thus if
N~3 , the midrange is to be preferred.



2. The PHysical and Statistical Model
.2!.!!!. 

Experiment

In physics, one is familiar wi th the construction and interpretation
of the physical model of an experiment. One has a substantial body of
theory on which to base such a model and one need only consider the
determination of length by interferometric measurements to remind
oneself of the various elements involved: a defined unit, the apparatus,
the procedure, the corrections for environmental factors, etc. One
realization of the experiment leads to values for the quantities ofinterest. 

Sut one realizes that a repetition of the experiment will lead to
different values--differences for which the physical model does not
provide corrections. One is thus confronted with the need for a
statistical model to account for the variations encountered in a sequence
of measurements. In bu'ilding the statistical model, one is first faced
with the issue of what is meant by a repetition of the experiment--many
readings within a few minutes orab determinations a week apart.

The objective is to describe the output of the physical process
not only in terms of the physical quantities involved but also in terms
of the random variation and systematic influences due to environmental,
procedural, or instrumental factors in the experiment.

3. Equation of Expected Values of the Observation

If one measured the same quantity again and again to obtain the
sequence

Yl' Y2" . . Yn . . 

then if the process that generates these numbers is " in control, " the
long run average or 

li.m.itJ.ng mean, 11, will exist. By " in ~ontrol" one
means that the values of y behave as random variables from a probability
distribution (for a discussion of this topic, see Eisenhart (1)). This
limiting mean, 1.1, is usually called the expected value of y designated
by the operator E( ) so that the statement becomes in symbols E(y) = 
Because y ~s regarded as a random variable one can represent it as

lJ+&
where & is the random component that follows some probability distri-
bution with a limiting mean of zero, i. e., E(&) = 

The quantity p may involve one or more parameters. Consider the
measurement of the difference in length of all distinct pairings of



four gage blocks, A, B, C, O. Denote the 6 measurements by Yl, Y2' 

. . 

. Y6.

then one may wri te

E(Yl

) =

" A-

E(Y2 ) = A-

E(Y3) = A-

E(y 4) = B-

E (y 5) =B-

E(Y6) = C-D

Other representations are usefuL

Expected Value: Etil

A - B

Matrix FormObservation

1 -
0 -

0 -
1 -

0 -
1 -0 "0

Consider a sequence of measurements of the same quantity in the
presence of a linear drift of ~ per observation. The expected values
are thus:

Observation
E(Yl

) = 

E(Y2

) = 

11 + 

E(Y3

) = 

11 + 2~

(:)

E (y 

) = 

11 + (n-l)~ (n- l )



There is an alternative representation that measures the drift fr.
the central point of the experiment so that the drift is represented
by . . . -3~. -2~, -~, O. ~, 2~, 3~ 

. . 

. .for an odd number of obser-
vations and by . . -5~, -3~, -~, ~, 3A, SA . . . for an even number
of observations. T T T T T

If, as for example with some gage blocks, the value changes approxi-
mately linearly with time; then one can represent the observation asfollows: 

Expected ValueE(y)

E(Yl =a+Bx
E(Y2) = a + Bx

Matrix Form: XB

E (y ) = a + Bx , x

(:)

The sequence of measurements for the i ntercompari son of 4 gage
blocks is as follows:

Observation Expected Value: E(li
s. - 5.. - 7~/2

Y - s. " 5~/2

X - 3~/2

s.. ~/2

s.. - ~/2

+ 3~/2

+ 5~/2

X - S.. + 7~/2

Matrix Form: XB.

1 - 0 -

0 -

S. .1 -
1 -1 -

1 - 0 -
0 - ~/2

0 -

(Note that for simplicity, ~/2 is regarded as the parameter.
For a detailed analysis of this and related experimental arrangements,
see J.. M. Cameron and G. E. Hailes (11. The notation is that used in
(1) where S. and 5.. refer to reference standards and X and Yare the
objects being cal ibrated.



If, as often occurs in the intercomparison of electrical standards,
the comparator has a left-right polarity effect. this can be represented
as an addi tive effect, a, as shown below for the 1ntercomparison of 5
standards.

Observation Expected Value: Matrix Form:

+ a

+ a

+ a

- B

+ a

Y1O + a

4. Statistical Independence

The sequence of differences from a zero measurement, Yo'

YO' Y2 YO' Y3 YO'. . "Y YO'. . .

are clearly dependent because an error in Y
o will beconmon to all.

Simi larly, the successive differences

Yl' Y3 Y2'. . " l'. . 

will be correlated in pairs because an error in Yn affects both the
(n- l )st and n-th difference.



If it is assumed 1 n both cases that each Y1 has the form 111 . 111 + E1
where E(E1) = 0, Var (E1) = and cov (E1, Ej) = 0, then the variance of
the differences for sequence A is, as one would expect,

V(Yi

) = 

and the covariance of two differences is

cov (YcYo' Yj ) =E((E )(E )) = E(E~) = 

because terms of the formE(E j)= 0

For sequence B the variance is also V(Yi-Yi- l) = and the
covariance terms are

CQV(Y Yi-l' Yj"Yj-l ) . E((~

)(~

j-1 )) = r 0 if IHI ' 
l-02 1f

l i -j I = 1

These variance-covariance relationships can be represented in matrix
form :

Sequence A: V= 2 1 1 . . . 1 Sequence B: 2 -1 0 0 . . . 0 

2 -1 0 . . . 0

0 0 0 0 . . . 2

All are familiar with the phenomenon of much closer agreement among
measurements taken immediately after each other when compared to a sequence
of values taken days or weeks apart. The simplest statistical model for
this case is that each day has . its . own l1m1tingmean, 11i . 11 +Qi, where
E(Qi) = 0, Var(Qi) = oA, COV(Qi, Qj) . O, and the successive values oneach day have the form 

Yij = 111 + Eij ~ 11 + Qi + E
where E(Eij) = 0, Var(E1j) = o~, COV(E1j, Ekl.) =0, and COV(E1j, Qk) = O.



These three examples serve to illustrate the point that the physical
conduct of the experiment is the essential lement in d1.ctating the
appropriate statistical analysis. In all three cases the correlation among
the variables vitiates the usual fonnula: standard deviation of the mean =
(l/v'n) standard deviation. (See Appendix, Section l(b).

It is in the phys i Ca 1 conduct of the experi ment that one has to bu i 1 d
in the independence of the measurements. For Sequence A one could remeasure
the zero setting each time or in Sequence B, make an independent duplicate
measurement. Ordinari ly this is too much of an expense to pay to achieve
uncorrelated variables just for a simpler analysis.

Statistical independence is to be desired in the sense that if
the successive measurements are highly correlated, then many measure-
ments are only slightly better than a single one. The really important
issue is that the proper statistical model be used so that the results
are valid.

5. Normal Equations For the Method of Least Squares (independent
random variab es)- 
When there are more observations than parameters, the IIbest" (1.n

the sense of minimum variance) linear unbiased estimates for the
parameters are given by the so-called least squares estimators. For
example, assume one has the problem of deriving values for A, B, C,
and 0 from the following measurements. 

Measurements Expected Value: E(yt Matrix Form: XB

1 0 0 0
1 0 

1 0

A + B 0 0

B + C

C + D

1 0

D + A 1 0 



An obvious estimator, A, is the average of the three values,

Expected Value

Y 4

(A+B)-B

(A+D)-D

so tha t, assumi ng independent measurements wi th vari ance, 

= ~Yl + Y5 .. Y2 + Ya - Y 4

Var(A ) = 

The eas t squares es ti ma tor is obta i ned by formi ng the norma 
equations (see Appendix, Section 2).

3A+ B+ + D = Yl + Y5 + Ya

A + 3B + = Y2 + Y6 + Y5

B + 3C + D = Y 
3 + Y7 + Y 

C + 3D = Y 
4 + Ya + Y 

The solution gives the following estimators for the parameters.

A = (7Y
l - 3Y2 + 2Y3 - 3y 4 + 4Y5 - Y6 - Y7 + 4Ya )/15

,.,

B = (-3Yl + 7Y2 - 3Y3 + 2Y4 + 4Y5 + 4Y6 - Y7 - Ya )/15

C = (2Yl - 3Y2 + 7Y3 - 3Y4 - Y
5 + 4Y6 + 4Y7 - Ya

)/15

D = (-3Yl + 2Y2 - 3Y3 + 7Y4 - Y5 - Y
6 + 4Y7 + 4Y

)/15

Using formu 1a (1. 11) of Append i x , gi ves

Var(a) ~ 1050 /225 ~ 210 /45 ~ 70 /15

which can be compared to the variance of A which was 2502/45. The Gauss
theorem on least squares guarantees that no other linear unbiased
estimator will have smaller vari ance.



In matrix form one has

(X1X)B = 3 1 0 1

1 3 1 0

1 3 1

1 0 1 3

~ 1; 7 -3 2-

3 7

2 -3 7

2 -

000

000

000
001

000

B ~ 

~ -

7 " 2 -3 4 -1 -1 4

7 - 4 - 1 -

2 - 7 -3 -1 4 4-

2 - 7 -1 -1 4 
When on ly di fferences among a group of objects (such as gage blocks,

vol tage cells, etc. ) are measured the normal equation will not be of
full rank so that a unique solution .will not exist. For the design
involving differences between all distinct pairings of objects the
normal equ~tions are, for the case of 4 objects discussed in Section 3

3A - B - C - D Yl + Y2 + Y3 = q

A + 3B - C - D 

~ -

Yl + Y 4 + Ys = q2

A - B + 3C - D ~ -Y2 - Y4 + Y6 ~ q3

A - B C + 3D ~ -
3 - Ys - Y6 = q4



Or i n matrix form:

X6 =

1 0 1 0

0 -1 0 -1 -

1 -1 0 0 B = 3 -1 -1 -1 S = 1 0 0 0 y
1 0 -1 0
1 0 0-1

3 -1 -

-1 -1 3-

1 0 1 0

0 - 0..1 0 
1 -1 0

1 0-

1 -1 - 0 0 - 0 - 1 -

0 0 1

which can be seen not to be of full rank because the sum of the four
equa t ions is zero.

One needs a baseline to which the differences can be referred--a
restraint to bring the system of equations up to full rank. If one of

the objects were designated as the standard, or if a number (or all)
of them were regarded as a reference group whose value was known. values
for the i terns cou 1 d be obta i ned.

If the restraint A 8: Ko is - invoked, the normal equations become
(using the methods of Appendix. Sect1on 3)

" 3A - B - C 

A + 3S - C - D

A - B + 3C - 

1 -
A - B. C + 3D

-- A

The solution is given.

A = K

B = K+( - 2Yl +Y 4+YS )/4

C :: K+(- 2Y2 +Y6 )/4

D = K+(- 2Y3 -Y6 )/4

). = 0

+ ). = q1

= q2

3 -1 -1 -

3 -1 - (~ 1

(:~Y

= q3

= q4

1 - 3 -1 0

1 -1 -

= K 1 0 

l;I

'! :: ~ ~ :

1 0 
- 1 0 K

0 - 0 -1 0 

44440
0 - 0 -1 -



l ~ j 

: - ~ -~ ~ - ~ 

1 -2 -1 -1 0 1 4
-1 -1 - 0 -1 -1 4

The variances of the values are V(A) = .0. V(B) = V(C) = V(D) = /2.

If the restraint A + B + C + D = Kl is invoked, the normal equations
become

: -: ~: ~: : (:) " ::y

1 - 3 -

3A - 8 - C - D + 1 ~ ql

-A + 3B - C - D +A 
= q2

A - B + 3C - D +A = 

A - B - C + 3D + A = q4

A + B + C = K

1 -1 -

1 0

and the solution is given by

A ~ (Yl +Y2+Y3 l )/4
B = (- +Y4+Y5 l )/4
C ~ +Y6 )/4

D = +K )/45 6 
A = 0

m . 

ft 

~: -: ~: ~: :

1 - 3 - 1 4

1 -1 - 3 4

4 4 4 4 

=10-
0 0 4 4 

0 -4 0 -4 0 
0 -4 0 -4 -

- ; : : ~ ~ : : (:

0 -1 0 -1 0 1 0
0 0 -1 0 -1 -

(:J

The variances of the values are yeA) = V(B) = V(C) = V(D) = /16.



Although it is a simple matter to change the reference point for
the parameters (i.e.. change the restraint) after one solution has been
found, the corresponding change of variances for the parameter values
should not be ignored. These variances are given by the diagonal terms
of the inverse of the matrix of normal equation, the inverse being
indicated by double brackets in these examples. The difference in
variance for a in the last example, arises from the fact that in the
first case one is concerned only with the difference betwe.en A (the
standard) and B, whereas in the second case it is the difference between
B and the average of the others that is involved.

For completeness, the matrices of normal equations and their
inverses for the examples of Section 3 are shown below.

Linear Dr1 

== 

1 0 X. 
n(n- l )/2

n(n- l )/2 

n(n- l )(2n-1)/6 

(n- 1 )

(X' X)-l

:: 

(n-l)( 2n-l) 

-n(n- l )/2

:n(n-l ) ~2 J

y a linear function of x

1. x

1 x

txl
LX rxj

(X'xr1 = nLx I(LX ~:: :L

1 x



Gage block des i 

x = 1 - 0 0-

0 0 1

0 0 1 -1 -

1 -1 0-

1 0 -
1 0 
1 0 -
0 - 1 0 

r::x : 

~ -:: -

168

~xo

4 -

0 0 168 0
1 0 

7 0 168

7 0 168

21 0 168

91 0 168

168 168 168 0

Intercomparison of 5 standards (Sum of all used as restraint)

x :: 1 -1 0 
1 -1 0 

. 0 1 -1 0 
0 0 1 -

1 0 
1 0 

1 0 -1 0 
0 -1 0 

1 0 -

0 -

~:x : 

J = .

: ~ ~: ~: : 

1 -1 4 -1 -1 0 
1 -1 -1 4 -1 0 
1 -1 -1 -1 4 

0 0 0 10 0

1 0 



J . '* 4. J -1 - 1 0 
BI O. -1 4 -1 -1 -1 0 

1 -1 4 -1 -1 0 
1 -1 -1 4 -1 0 
1 -1 - 1 -1 4 
0 0 0 5/2 0

6. Standard Deviation

By substituting the computed values for the parameters into the
equations of expected values for the observation, one has a ptedicted
value to compare to the actual observa t ion. The di fference, d, between
the observed and predicted value is called the 

dev..i.a:tion and is used

to determine an estimate, s, of the standard deviation, 
a, of the

proces s fidr
s = +ni

where n is the number of measurements , k is the number of parameters and
m is the number of res tra i nts .

Ordinarily one ha~ available a sequence of values of the standard
deviation say sl, s2' s3' 

. . 

. , s based on vl' v2' v3' 

. . 

. , vn degrees

of freedom. One forms the estimate of by combining these in quadrature

a =
2 + 

l sl v 2 + . + v
l + v2 + . . 

. + v

with degrees of freedom N = LV. In assigning a standard deviation to

the parameters or inear combinations of them, the value & is used rather

than the value of s from a single experiment.

The variance of the sums of two parameter values is given by adding
the corresponding diagonal terms (variances) in the inverse of the
matrix of normal equations and the appropriate off diagonal terms
(covariances) and multiplying by For the case of the intercomparis.

of 5 standards given at the end of Section 



d. (A+B) = IO' + O'~ + 20'
ks 

1t4+4+2 

( -

1)J = 

For the variance of the difference, the covariance terms enter negatively
so tha t for the same example

(A- S) = + a~- 2Q'
AB = 

1(4+4-2(- 1)) = 

For other linear combinations, formula 1. 10-M of the Appendix would be
. used.

For tQe linear function example, the predicted value of y for

o is Yo= a + 8xo which has a variance of 

(1 X ll Clzl
2 = (C

ll + x~C22 + 2x

12 C22j X
where the terms C

l1' C12' C22 are the .elements of eX X)-l given inSection 5 for the .case of y as a 1 inear function of x.

7. Correlated Measurements
In the previous section it was assumed that the observations were

uncorrelated, l.e., that V(Yi) = COV(Yi, Yj) = 0 or in matrix form
V = Var(y) = a I where I is the identity matrix. Section 4 of the
Appendix discusses the general case where one knows the ma.trix, V, of
variances and covariances for the observations.

Quite often a transformation of variables can be achieved to obtain
variables that are uncorrelated. .A simple example is provided by the
case of cummu ati ve errors, i. e., in the case where

Yl :: 1.11 + &
Y2 = 1.12 + &

Y3 = 1.13 + &

+ &

+ E:
2 + E:

The variance covariance matrix of the y s assuming E(E:i) = 0, 
Var(&) = 

cov(&;E:j) :: 0 is given by



v . 1..

3..
If one transforms to variables xi where

l = Yl

2 = y 2 - Y 

3 . Y3 - Y2

8: 1.11 + &

= P
2 - 1.11 + &

8: lJ
3 - 1.12 + &

n . Y n - Y n- l . lJn .. lJ l + &

The expected values and variances become

E(X) . P

n -
1.1

In matrix form X . Ty where T 

veX)" =

0 -

' 0



Var(Ty) =

and if one computes Var(T y) = TVP, one gets

1 0 O

1 0

0 -

1 2 2

1 23

1 -1 0

0 1

2 = (1 2 I
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APPENDIX: FORMULAS FROM STATISTICS

1. Background and Notation

(a) Expected Va 1 ue

The expected value, 1-1, of a random variable, y, will be written

E(y) = 

The mean 11 may represent a linear function of some basic
parameters Bl, 82' . . . Bk with known coefficientsxl, x2, . . .,

E(y) = 1-1 = xlBl + x B2 + . . . + x

The expected value of n observed values Ylt Y2'
then be wri tten

" Yn can

E(Y
ll B l k

E(Y = x
21 B

+ x

(1.1)

E(Y ) = x
1 + x 2 + . . 

. + x 

This may be written in matrix notation .

E(Yl
12 

E(Y
22 

(1.1-

E(y ) n 1 x . x

or as E(y)

where the vectors Y and and the matrix, X, are easily
identified.



(b) Vari ance Covariance

The variance, a~, of a random variable, Yi' is defined as

a~ = E((Yi - Pi ) = E(Yi ) - 2lJiE(Y1 ) + pi = E(yi) - pi (1.

and the covariance aU of the variables Yi and Y
j by

1j = E((Yi - lJ )(Yj - lJ )l = E(Yi ) - P1lJ

The variance of cy where c is some constant is

Var (cy) = E((cy - ClJ)2

) . 

The variance ofa sum of two variables

(1.3)

(1.4)

Var(Yl + Y2 :: EUYl + Y2 - (1.1
1 + 1.1

))2 ) = EtHYl - 1.11 ) + (Y2 - "lJ2 )P)

= E(Y1 - ~)2 + E(Y2 - lJ2)2 + 2E((Yl - lJl )(Y2 - lJ2

= 0; + 02 + 

which we may wri te as

of + o~ +20
12 

. (1 1) (::2 + 

:~ 

(1 1) (::2 :~2 J 

(:J

For independent random variables a
ij = 0 and

Var(Ey i ) = I01

5 )

(1.

EXAMPLE:

Var(aY + bY2 + CYj) = EU(aYl - alJ ) + (bY2 - blJ ) + (CY
3 .. ClJ

)) 2

= a + b2
2 + + 2aba + 2aca + 2bco12 13 

which may be written as

(a b C) al a
12 0

12 02 a

13 a23 

(1. 7)

(1.7-



(c) Linear Function of Random Variables

A linear function

L= a lYl + a~2 

+ . . 

. + a

has expected value

E(L) = a E(Yl ) + a E(Y2

) + . . 

. + a E(Y (1.9)

or in matrix notation

E(L) = (al a

.. .

EIY
J I

E (y 2

E (Y n

(1. 9-

The variance is given, by analogy with (1. 7) by

Vel) = (a
l a2 . . 

. a aj a

' . 

. a

21 

. . 

(1.10-

n2 

. . 

which reduces to the usual formula

V(Ea
iYi ) = Eaiaf (1.11)

if a.. = O.

. For two linear functions L
l and L2 the covariance term is

given by

Ei(a (Yl J,l

) + . . . . 

. + a ))(b (Yl

) + . . . 

. + b J,l ))J

= a E(Yl 111
)2 + a E(Y2 )2 + . . 

. + a E(Y J,l

+ (a
2 + a l )E(Y 1 )(Y ) + (a

3 + a l )E(Yl -11
1 )(Y3

+ (a )E(Y2 )(Y

) + . . 



This reduces to the usual formulas:

If a . 0 then Cov (L
l t L

8: Ia
12)

If 0; . 0 then Cov (L
l t L

) = 0

For the case of L l = alYl + azY2 + a3Y3 and L2 . blYl + b~2 + b3Y3t the
covariance can be written:

l a2 a
) b o) + b

12 + b 13 = (al a2 a
oj 12 0

02 + b
12 + b

0~ + b
13 + b

12 02 0

13 023 

(1.12-

giving the general formula for the variance and covariance of two linear
functions

l:: :: 

: : 

: :: J :~ 2 :~ 2 : 

: : :::

l b

2 b

ln 2n . . 
. O n b

or in general for p such function, i.e. t for a pxn matrix A

Var(AY) = AVA 

(d) 9uadrat1c Forms in Random Variables

We have from (1.

E(y

) = 

(1.13-

(1. 14-

(1.15)

We wish to extend this to include the case of a more general
quadratic expression in the y s, consider for example

E (CaYl + bY2 ) = Ea Yl + Eb2Y2 + 2abE(Y1Y2

- a 2 + a 2 + b2 2 + b2 2 + 2abp p + 2aba"'1 2. "' 1 2 



which may be displayed as a matrix product " as follows:
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This example illustrates the general formula:

E((a
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where A = 

. . a ln 02n . 

Efy AyJ = 11 A11 + a

l a2 . . 
and V = of 012 . 
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(1. 16-

The last term can be replaced by the trace of AV so that we have

E(YI AY) = IJ A11 + Trace(AV) C1. t7-
For an excellent treatment of these statistical topics one should

consul t Zelen ~).



Let the n observations y 
l' Y 2'. . . 'Yn have expected va J ues

E(Yl ) = x
1 + x 2 . . 

. x

E(Y ) = x 61 + x 2 . . . x

(2.

E(Y ) = x
1 + x 2 . . 

. x

and be statistically independent with common variance, These two
conditions can be expressed in matrix form as follows:

E(y) = E Yl = X8

n 1 x
(2.

v(y) = 

. . 

. 0

. 0

The Gauss theorem states that the minimum variance unbiased linear
estimator of any linear function, L, of the parameters, 8

1 8 . . 8
say

L = a
1 + a 2 + . . 

. a

is given by substituting the values of 6
i which minimiz~



Q = L;(Yi - (x 1 + . . +,x
))2 (2.

considered as a function of the 8

;. 

These values, 8 1' 8

. . 

. Bk are
the solutions to the k equations, called the nolUnal. ~quax).ot'L6.

2 " + l:X
2 + . . + LX k = LxnYi

.... ....

1 + LX 2 +

. +

k = rx i~i

(2.

. . .... 

2 "
i k n 8 1 + Lx i k i 2 2 + . . + Lx i k

or in matrix form

= Lx ikYi

(XI X)8 = Xl (2.

The solution to these equations can be written as

6= (X' Xfl ( 2 . 4-

because X was assumed to be of rank k. The matrix (X' X)-l is the
,uWeIUI.e. 06 the rna..tlLix. 06 noJtmal equaUot'L6 and plays an important role
in least squares analysis. Let its elements be denoted by Cij so that

(X' X)- l = c
ll c

. . clk (2.
21 c

. . c

kl c

. . 

. c

The standard deviation, a, is estimated from the deviations d
where

i = Yi - (X 1 + x 2 + . . 
+ X (2.



by the quanti ty, s,

s = 
td2
noo

and is said to hav.e n- deglLee..6 00 .6ILeedom.

(2.

,..

The standard deviation of the values for the coefficients B are
given by

,..

) = alc (2.

,..

and for .a linear function L = a
l + a 2 . . 

. a
k is (see equation(1. 10-M))
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3. The Gauss Theorem on Least Squares (Independent, Equal Variance,
W'fth Res tra i nts )

If the parameters, ;, are required to satisfy the m linear equations

Wl = b 1 + b 2 . . 
. b = K (3. 1)

m = b 1 + b 2 . . 
. b

k = K

or in ma tri x form

B = K (3.

then using the method of Lagrangian multipliers, it turns out that the
minimum va.riance unbiased linear estimators are given by minimizing

F = Q + 2A
l (Wl - K

) +2A
2 - K

) + . . + 2A
m - K

(3.

considered as a function of the S' s and A's. (2Ai is chosen rather
than just Ai so that in setting aF/aBi = 0, a common factor of 2 can be
dhided out.

Thi s leads to the normal equations

LxjS
l + . . + rx k + b l + . 

. + b
m = tx

1 +

. . + 

rxkBk + b
l k l + . . 

. + b
m = Ex (3.

1 + . 
. + S = K

1 + . 
. + S = K



or in matrix form

:j 

(:1 

= (:o (3.

and the solution is given by

(:j . t::x ~-l

(:OY (3.

If XI X was already of full rank, thenB must be of rank m for the
inverse to exist. If XI X is of rank (k-m) and BI consists of m rows,
then the indicated inverse will exist if B is orthogonal to XIX, i.e.
that (XI X)B = O and B is of rank m. Also if B is a combination of
such an orthogonal set of restraints, denoted by H, and the vectors of

X, then the inverse exists if the mxm matrix BI H is of rank m, i.e.,
the determinant IB' HI 'I O. 
EXAMPLE If the differences A- B-C, C-D, D- A are measured, then

measurements Yl, Y2, Y3t Y4' Y5 (assumed independent wi th equa 
vari ance) can be represented as 

E(y) A-B

B-C

2 -1 0 0-
2 -1 0 

0 -1 2 -1 0
0 0 -1 2-
1 0 0 -

rank of X 
I X i s 4

The res tra i nt A+B+C+D+E = 11 1 1 1 1 J H' A



is orthogonal to XI X because W(XI X) = (1 1 1 1 1) (XI X) = (00 0 0 0).
If the given restraint were A + B = Ko' then BI = (1 1 0 0 0) and IBI HI =
2 ~ 0 so that the restraint is suffic1ent to produce a solution.

The standard deviation estimate is changed from that given in
formu 1 a ( 2. 7) to become

rd2
s = 

k+m
degrees of freedom = (n-k+m) (3.

where m is the number of restraints.

Formulas (2. 8) and (2. 9) still apply for the standard deviation of the
parameter valu.es and of linear combinations of them.



4. The Gauss Theorem on Least Squares (General Case~

If the observed values Y1 Y2 

. . 

. Yn have variances 
0; and

covariances 0
1j so that

Var (y)
12 

. . o

12 2 0
. V (4.

n 0

and the parameters are subject to the m restraints

1 + . . 
. + b

l k k . K
(4.

1 + . . 
. + b

k . 

or in matrix form

B. K (4.

Then t~e least squares estimators for 8 are given by

. (:1- (::v

x :l' t:

where as befor. ),1 . (Al A~ 

. . 

. Am) is a vector of Lagrangian multi-
pl iers entering into them1nimization process.

For a discussion of this general case, the reader is referred to the
Goldman-Zelen article (4).


