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Abstract— We describe a program to demonstrate the
scientific basis of Magnetized Target Fusion (MTF). MTF is a
potentially low cost path to fusion which is intermediate in
plasma regime between magnetic (MFE) and inertial fusion
energy (IFE). MTF involves the compression of a magnetized
target plasma and PdV heating to fusion relevant conditions
inside a converging flux conserving boundary. We have chosen
to demonstrate MTF by using a field-reversed configuration
(FRC) as our magnetized target plasma and an imploding metal
liner for compression. These choices take advantage of
significant past scientific and technical accomplishments in
MFE and Defense Programs research and should yield
substantial plasma performance (nt> 1013 s-cm-3 T> 5keV) using
an available pulsed-power implosion facility at modest cost.
We have recently shown the density, temperature and lifetime of
this FRC to be within a factor of 2-3 of that required for use as a
suitable target plasma for MTF compression for a fusion
demonstration.

Index Terms—
Fusion energy, field reversed configuration, magnetized

target fusion

I. INTRODUCTION

e describe a primarily experimental program to
demonstrate the scientific basis of Magnetized Target
Fusion (MTF). MTF could be a reduced-cost path to a

more attractive fusion energy system that takes advantage of a
plasma regime between magnetic (MFE) and inertial fusion
energy (IFE). Compression of a magnetized target plasma
would yield PdV heating to fusion relevant conditions inside
a converging flux conserving boundary. We are exploring an
innovative approach for creating compact pulsed plasmas with
high b and high temperatures.

Our proposed physics demonstration of MTF requires a
field-reversed configuration (FRC) magnetized target plasma
and its translation into a region where an imploding metal
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shell can compress the plasma. A schematic is shown in
Figure 1. This strategy takes advantage of significant past
scientific and technical accomplishments in MFE and Defense
Programs research and should yield substantial plasma
performance (nt> 1013 s-cm-3 T> 5keV) using an available
pulsed-power implosion facility at very modest cost.

This FRC has high plasma density, n near 1017cm-3 before
compression and is expected to have n  >1019cm-3 after
compression. As  plasma equilibrium it has high power
density and b≈1, where b is the ratio of plasma particle
pressure to external confining magnetic field. There is a large
confining magnetic field, 5 Tesla prior to compression, and

500 Tesla after compression. The auxiliary heating power level
from the theta pinch formation is on the order of 100MW, and
approximately 1000GW during flux conserver compression.

Among alternate fusion concepts, the choice of the FRC
configuration for MTF also confers other advantages including

•  Small size which results in reduced total construction
cost. The heart of the device sits on a table top.

• Geometric simplicity because no captured magnetic coils
or center stack ohmic transformer are required.
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figure 1 MTF schematic, showing plasma formation region and liner
implosion section
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• Magnetic simplicity because no toroidal magnetic field,
or linked magnets are required.

• Heat exhaust handling includes a natural axial divertor
•  Advanced fuel potential could be realized at high b and

large ion temperature  
• In a reactor, each pulse would utilize a fresh liquid first

wall.
• A repetition rate of 0.1 Hz, so that there would be time

to clear the reactor chamber after each power pulse event.
•  Most of the initial physics research can be conducted

with existing facilities and technology.

We are not far from what is needed for a suitable target
plasma for MTF compression and a fusion energy
demonstration experiment. We show the high density and
temperature of this FRC to be within a factor of 2-3 of that
required, and found the lifetime to be within 2/3 of the design
goal. This integrated project benefits from multiple
collaborations with LANL, AFRL-Kirtland, LLNL, GA.

II. BACKGROUND: SCIENCE AND TECHNOLOGY

A. Magnetized Target Fusion
Magnetized Target Fusion (MTF) is a subset of Magneto-

Inertial Fusion (MIF), which includes all pulsed, high-
pressure approaches to fusion involving inertial confinement
of a plasma that require magnetic field in an essential way.
For example MIF concepts include laser-heated solenoid
plasmas, cryogenic fiber Z-pinches, flow-stabilized stabilized
Z-pinches, and the composite Z-q pinch. MTF specifically
requires an imploding pusher to compress and PdV heat a
magnetized target plasma, such as a spheromak or field-
reversed-configuration (FRC), to fusion conditions. MTF
involves plasma regimes intermediate (n ~ 1019-1020 cm-3 and
T ~ 5 keV) between magnetic fusion energy (MFE) and
inertial fusion energy (IFE) and seeks to capitalize on the
advantages of this intermediate regime (described below) [1]
[2] [3]. Various flux conserving materials have been
considered for the imploding pusher, including metal liners,
gaseous or plasma pushers [4], and compressible liquid shells
[5,6].

B. Motivation: a potential low cost route to fusion
Density is one of the few adjustable free parameters in

the design of a fusion system, particularly when seeking a
lower cost development path [2]. The fusion energy
production per unit volume scales as density squared

Pfusion ≈ n2 <sv>Ef (1)

where n is the density [m-3] , <sv> is the fusion reaction
rate [m3 sec-1] , and Ef is the energy per fusion reaction. The
losses per unit volume can be characterized with a loss time tE

so that

Ploss ≈ nT / tE (2)

where T is the characteristic ion temperature. The ratio of
Pfusion / Ploss is Q, which depends only upon the temperature
and the well known Lawson product

Q ≈ ntE<sv> (Ef / T) (3)

If we assume the systems have size R and diffusive losses
c (probably anomalous) then the energy confinement time can
be defined

tE = R2 / c  (4)

Since system cost and size scale approximately with the
plasma energy Ep, we can roughly estimate the cost as

Ep ≈ nTR3 ≈ (c3/2/ n1/2 )(T 5/3 Q / <sv> Ef)
3/2 (5)

For a D-T fusion scenario, the right hand term on the right
hand side is relatively constant because T≈10keV, Q>1, <sv>
Ef is fixed. Thermal diffusivity c is important but relatively
difficult to improve. Only density remains as the variable that
we can use to influence the energy of a fusion system.
Compared with MFE research, the necessity of reducing
thermal diffusivity is relaxed because MTF operates at much
higher densities than the MFE approach. Using conventional
magnet technology and the engineering of steady state power
handling, the “conventional MFE density” typically is in the
range of 1014 cm-3. Inertial fusion scenarios are conceived as
working with pulsed systems at much higher density and no
magnetic field. On the other hand, a pulsed approach like
MTF that takes advantage of magnetic thermal insulation
could have much larger density than MFE and smaller c than
ICF.

C. FRC as a target plasma
MTF invokes the compression of a magnetized target

plasma to fusion conditions. Compact toroids such as the
spheromak and FRC have been identified as candidate target
plasmas candidates for MTF because of several potentially
favorable features: (1) closed field line topology, (2) lack of
internal material objects facilitating compression within a
liner, and (3) ability to be translated from the plasma
formation region into a liner for compression. LANL has a
long history of toroidal confinement experiments, including
the- reversed-field pinch (RFP), spheromak, and FRC. We
have chosen the FRC as the candidate that can best survive
formation, translation, and compression [7] [8], and which
also offers some unique advantages over other possible targets.

The FRC is an elongated, self-organized compact toroid
state that has toroidal plasma current and poloidal magnetic
field. In Figure 2 we indicate the FRC as a closed-field-line
torus inside a separatrix radius rs with an open-field-line sheath
outside the separatrix. FRC equilibrium balances plasma
pressure with radial magnetic field pressure and axial field-line
“tension”. For an ideal straight cylinder it has been shown [9]
[10] that volume averaged pressure inside the separatrix
P=nT=n(Te+Ti), normalized to the external magnetic field
pressure, is

<b> = 1 – xs
2/2  (6)

where

xs = rs/rc, (7)
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and rc is the coil radius, b=nT/(Bext
2/2µ0), Bext is the

external separatrix magnetic field, n is the density and T is the
temperature. The FRC has high plasma beta < b> ~ 1,
evaluated with respect to Bext. Active worldwide FRC research
has resulted in significant experimental and theoretical
progress, resulting in stable plasmas with good confinement
properties.

The FRC offers many potential advantages as an MTF
target plasma, including the promise of robust, closed flux
surfaces that maintain their topology during compression, as
has been observed [11] in compression, translation [12],
stability experiments [13], and models [14]. Formation of an
FRC using high-voltage theta-pinch technology is well
established, and the plasma characteristics of the FRC (i.e.,
stability, transport, and impurity content) in the density and
temperature range of interest are reasonably well characterized.
Early reversed-field theta pinches formed FRC’s exceeding our
target density [15] [16] [17] [18] but the diagnostic methods
and theoretical understanding were less complete in the 1960s-
70s. Other desirable features include: (1) the FRC has been
shown to exhibit resiliency during translation and
deformation; (2) because of field line tension, the FRC
undergoes axial contraction during radial compression [19]. A
cylindrical adiabatic implosion (rc contracts) obeying equation
(6) and conserving particles yields an FRC volume that scales
as rc

2.4 , i.e. more strongly than a 2D compression given by rc
2

[20]. A full 3-D compression could be achieved with shaped
liners, (3) FRC’s are formed inductively and are largely free of
impurity line radiation; (4) the open field lines outside the
separatrix act as a natural divertor that isolates plasma loss
flux from wall boundaries. The latter two attributes may
substantially reduce impurity mixing, a concern for MTF.

D. Theta pinch formation
For MTF, the FRC plasma must survive long enough to

translate into the liner volume for implosion. Fusion energy
breakeven Q=1 at expected implosion convergence factors
requires sufficient plasma pressure. The key physics governing

both lifetime and pressure is determined by magnetic flux
retention during the FRC formation process. Theta-pinch FRC
formation [8] uses an initial bias magnetic field (0.3-0.5 Tesla
for FRX-L) that is frozen in during pre ionization (PI), and
then radially shocked by another reversed main bank field that
is much larger (3-5 Tesla in FRX-L). The radial jump in
magnetic field induces a plasma toroidal image current. Field
line reconnection at the ends then forms closed flux surfaces.
Formation (2-3 ms) and translation (vA ~ 10 cm/ms) into the
liner region can be accomplished [12] in a few ms, a time short
compared to the expected FRC lifetime (20-25 ms). 2-D MHD
MOQUI simulations [14] suggest that FRC compression
could be underway 5 ms after implosion.

Our theta pinch formation method takes advantage of a
large (Eq≈ 1 kV/cm) azimuthal electric field which increases
the radial EqxBz implosion velocity and consequently the
Green-Newton [21] [11] [22] magnetic field. This field
corresponds to equal Alfvén and ExB drift speeds at the edge

vA = Eq/B GN (8)

so that

BGN=Eq
1/2(µ0nm)1/4 (9)

In practical units BGN=1.88 Eq(kV/cm)1/2 (Aip0(mTorr))1/4

where Ai is the ion mass in proton units, and for FRX-L
operation at p0 ≈ 40-80 mT, BGN ≈ 0.5-0.7 Tesla. A high BGN

is desirable because BGN limits the maximum trapped flux and
hence the maximum plasma pressure in a theta pinch formed
FRC. Increasing magnetic lift-off field BLO that is trapped
(when the main field reverses and the FRC “lifts off” the wall)
relative to BGN can also increment resistive flux dissipation
heating over the usual radial shock heating. The desired initial
temperature (Ti≈Te≈250 eV) and trapped flux correspond to a
bias field Bbias = 0.3-0.7 T. There is experimental evidence
[23] [24] that a pressure bearing sheath forms which slows the
flux loss during formation from convective to diffusive.
Simple estimates of the magnetic lift-off field that is trapped
(when the main field reverses and the FRC “lifts off” the wall)
may be unduly pessimistic for large values of Bbias/BGN > 0.5
where we operate FRX-L. On the other hand, our collisional
FRC (ion mean free path li ~ 1-2 cm compared to separatrix
radius rs ~ 2 cm) may have worse flux retention properties
during formation than those observed at lower density.

E. Fundamental FRC physics
Although this research is focused on achieving MTF using

an FRC, it also offers a strong plasma science component.
The FRC configuration is unique among magnetic
configurations. Among its unique properties are

1. high plasma b~1
2. no or very little toroidal field
3. dominant cross-field diamagnetic current and flows
4. vanishing rotational transform, magnetic shear,

helicity
5. stability that defies MHD predictions.

Consequently, the FRC is a valuable platform for exploring
fundamental plasma physics which gives rise to these
properties. One example is to understand the effect of strong
flows on plasma equilibria and stability. Another is to explore

Figure 2. FRC schematic of cylinder geometry including poloidal
magnetic fields, toroidal  current, theta pinch coil, cusp/mirror coils,
closed and open magnetic surfaces.



10/14/03 TPS0200_intrator03f.doc TPS0200 Special Issue on Plenary/Invited Talks from ICOPS 2003 - Feb '04 4

the validity of generalized relaxation principles which may
govern FRC formation and equilibria, such as minimum
dissipation theory [25] [26] [27]. Some of these fundamental
plasma physics questions reach beyond MHD single fluid
models and may be related to geophysical and astrophysical
phenomena.

F. Liner implosion technical issues
The broad utility of high-energy liners in Defense Programs

and High Energy Density Programs has led to significant
investment in liner physics studies and technology
advancement that will be useful for MTF. A flux conserving
shell (liner) will be used to implode the MTF target. The
interactions of the liner with the plasma interior involve
physics and engineering questions that also need to be
investigated in the final stages of this project, which
culminate in an integrated liner-on-plasma experiment [28]
[29] [30] [1] [2].

III. TECHNICAL PROGRESS OVERVIEW

During the last four years we have made major progress in
creating a high density Field Reversed Configuration (FRC)
target for MTF. We also successfully imploded two aluminum
liners onto vacuum at Air Force Research Laboratory -
Kirtland, demonstrating parameters appropriate for our
proposed liner on plasma experiment [29] [30] [28].

The first three years of the past four year project were
consumed by the design, construction, testing and integration
of a high voltage, high current, pulsed-power experiment. By
year 2 we had assembled the essential FRC apparatus,
including a low-inductance transmission line header that
coupled the cable connections from the main capacitor bank to
the single turn theta coil. Shakedown activities included
finding a feasible compromise between good grounding,
inductive connections, charging and firing  configurations.
We characterized the pre-ionization process, and worked on
suppression of electrical noise. Initially we had no position
control of the FRC that formed, and the apparent quick “loss”
of the plasma indicated by mid-plane diagnostics was a
symptom of the FRC squirting out axially. The addition of
cusp/mirror coils to each end of the theta coil along with
capacitor banks and control systems aided magnetic
reconnection during the FRC formation and kept the FRC
centered underneath the theta coil. These resulting FRC
equilibria had long lifetime, allowing growth of the classic
n=2 rotational instability which finally terminates the FRC.

We have formed high density FRC’s that are within
factors of 2-3 of the desired target parameters [8], and have
fielded an array of diagnostics to measure many important
characteristics. At the time of the peak current for the main
bank, the formation parameters are quite acceptable, but they
deteriorate as the FRC main bank rings later in the shot. The
decompression of the FRC is due to crowbar switch
modulation of the theta coil magnetic field, which results in
large flux losses, and particle and stored energy losses as the
FRC expands beyond the length of the theta coil. Typical
current  waveforms for cusp coils, theta coil current in figure
3a and a time expanded view of the bias, PI and main bank
with ringing crowbar modulation in figure 3b. The crowbar
modulation is being improved during the summer of 2003.

Typical formation (and equilibrium) parameters are density
> 7x1016 cm-3 (3x1016 cm-3), temperature T=Te+Ti > 400eV

(200 eV), excluded flux >3 mWb (1 mWb), and internal flux
≈0.4 mWb (0.2 mWb); as will be shown later. Improved
operation requires an increase in the trapped FRC equilibrium
flux. The path to this end depends mostly on incremental
improvements in the pulsed power systems to increase the
bias and PI fields, increases of gas pre-fill pressure,
exploration of pre-pre ionization schemes, and optimizing the
timing sequence.

Even though high density FRC’s were discovered 35 years
ago, much has been forgotten about how to specifically
operate in this regime. To prepare for translation and fast liner
compressional heating, we require guidance from our suite of
diagnostics to increase the FRC density (to ~ 1017 cm-3),
temperature (to Te≈Ti≈300 eV) and energy confinement time
(to > 10 ms). The key to all of these goals relies on increasing
the magnetic flux that is trapped during formation.

A. Pre-Ionization and formation
We benchmarked the Pre-ionization (PI) startup plasma

using only the bias and PI banks, when the main bank system
was still under construction. The initial ringing theta pinch
behavior has good azimuthal symmetry until late times. As
seen in Figure 3, our chosen q-PI technique rings the theta (q)-
pinch coil at high frequency, induces a large azimuthal Eq field
which breaks down the gas. The inductively coupled q-PI
method is very clean (Zeff≈1 historically) compared to a Z-
pinch axial current discharge PI approach with internal
electrodes. It provides a high (≈100%) level of ionization, and
is more likely to work at our high fill pressure (40-80 mTorr).

Figure 4 shows a series of images for a bias and PI shot 87,
captured with an Imacon 750 fast framing camera on film, at a

Figure 3 waveforms of cusp/mirror, pre-ionization, bias, and main
bank currents. Cusp coils fire on the slowest time scales.
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fill pressure of 43 mTorr (D2), The zero crossings of the
magnetic field due to the PI cancellation of the bias field are
estimated to occur at t=2.6, 3.7, 6.2, 6.8 msec. The light
emission profile can be seen to breathe radially as the
confining magnetic field changes. At t=8.8 msec, a flute like
instability can be seen.

B. Density measurements
In Figure 5 we show one typical shot with many FRC

characteristics that can be inferred from the magnetics and
density measurements. the left hand column displays line
density and density derived from the multi chord
interferometer. The central (solid line) and off axis (dotted
line) chords show the n=2 rotational instability at t=16 µsec
that triggers the demise of many FRC’s, consistent with an
oval shape spinning about the z axis. For this shot, peak
formation density exceeds 4x1016 cm-3 and equilibrium density
is 2x1016 cm-3. There exist other shots with larger density but
lower temperature, ie similar plasma pressure. The separatrix
shape is estimated by fitting an ellipsoidal shape to rs data at
four axial locations. Particle inventory follows from this
volume times the density measured by the interferometer.

C. Improvements in cusp formation
The encouraging data typified by Figure 5 followed

installation of cusp/mirror coils at either end of the theta coil.
A cusp configuration is created with respect to the initial bias
field that evolves to a mirror 2-3 microsec later with respect to
the reversed main bank field. X-point field nulls enable
consistent magnetic reconnection and good FRC formation.
The mirror centers the FRC under the theta coil instead of
“squirting” it out axially. Next year the translation experiment
will take advantage of asymmetric mirrors to allow the FRC
to exit one end and translate axially to a liner experimental
region.

1) Flux trapping
The theta pinch approach tends to trap less than half [10] of

the initial bias field. The disadvantage follows from the
contradictory requirements between high peak current (i.e.
large capacitance) necessary to cancel out the bias field (i.e.
create zero crossings for bias), and a fast ringing frequency
(i.e. small capacitance). [31] [32] [33] [21] [34]. Visible light

diagnostics were used initially to optimize the timing and
magnetic field settings.

We had thought that our single main bank module would
be marginal to attain these parameters, but our FRC pressure
seems to be more constrained by how much bias flux is
trapped than the main bank compression field. This FRC is
slightly over compressed and has small normalized radius xs<
0.3 because the trapped flux is low. Peak formation excluded
flux is F exc≈3 mWb and during decompressed equilibrium
Fexc≈1.5 mWb. The internal flux estimated from the relation
[11]

Fint≈ "rc
2Bext (xs/2

1/2)3+e (13)

is approximately 0.4mWb at formation and 0.15 mWb
during equilibrium. Here Bext is the measured axial magnetic
field used for the excluded flux data, e is a profile dependent
parameter that falls between 0 (high flux sharp boundary limit)
and 1 (low flux sharp boundary limit). We have chosen
e≈0.25 consistent with past FRC experiments at LANL [11].
The lift off flux FLO is taken to be the value of estimated
internal flux at the lift-off time. The lift off time tLO is
assumed to be the moment when the density from the
interferometer starts to increase, eg in figure 5 density trace at
t≈ 10 microsec.. The equilibrium internal flux is a smaller
(15%) than expected fraction (30%) of the lift off flux,
compared with a scaling estimate

f int/fLO ≈ 0.85 rwall(m) P0 
1/2(mTorr) (14)

 which favors large radius experiments instead of FRX-L.
The modulation of Bext from the crowbar switch can also be
seen at the bottom of column 2 in figure 5. The apparent
modulation of the estimated internal flux (phi-int, bottom of
right hand column) indicates that this estimate is suspect. It is
physically reasonable to suppose that flux is lost, but not that
it could be regained during the shot, as figure 5 would have us
believe. Problems with the separatrix radius data lead to this
and a similar apparent but suspect oscillatory behavior in
temperature at time t≈15 microsec. Flux loss may occur when
the length (2x half length, top of right hand column) of the
FRC separatrix exceeds the coil length (36 cm), thus
eliminating the cylindrical flux conserving radial boundary
that confines the equilibrium. If the closed flux surfaces bulge
out the end of the theta coil and touch the quartz tube vessel,
large particle losses would ensue. It is hard to estimate a flux
confinement time tf or conclude whether it is consistent with
tN.

D. Confinement of particles
Using the average <b> condition and pressure balance

yields for figure 5 an average temperature <Te+Ti> ≈ 300 eV
for formation and ≈ 200 eV for the equilibrium period. The
apparent modulation in temperature after t=15.5µsec is
probably not real, but follows because we divide the calculated
beta by the modulated density during the n=2 rotational
mode. The particle e-folding confinement time tN ≈ 10 msec
can be estimated from the time history of particle inventory
(right hand column), inferred from interferometer density
multiplied by an assumed ellipsoidal separatrix volume

Figure 4 Framing camera images of end-on visible emission, taken at
1 usec intervals, showing initial annular plasma breakdown, followed by
radial breathing of the ringing theta pinch (PI+ Bias) phase. Notice the
high order flute structure developing late in time.
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constrained by measured rs data at different axial locations.
The particle inventory estimate shows an average monotonic
decrease after formation, in spite of the large crowbar
modulated variations in Bex. which is a physically reasonable
behavior. This gives confidence about our physical
assumptions (elliptic shape, rs measurement, density=line
density/2rs) built into this estimate.

E. Equilibrium characteristics
Separatrix radius for 4 axial locations is inferred from

excluded flux data. The excluded flux array together with the
multi-chord interferometer provide essential information on
FRC formation and equilibrium. The separatrix radius rs can
be inferred from axial magnetic flux loop data and a local
magnetic field value Bext in the region between the separatrix
and the interior theta coil wall radius rc. Using radial and axial
pressure balance, equation (6) for volume-averaged beta
<b>=1-xs

2/2 [9] [10] and interferometer density, we can back
out the total temperature T = Te+Ti The plasma particle energy
is estimated from the product of the figure 5 particle inventory
and average energy per particle (temperature).

F. Radial profiles of density
Multi-chord interferometer data can be inverted to estimate the
density profiles. Figure 6 shows crude radial profiles, one each
microsecond from formation through equilibrium and
decompression. The estimated major and separatrix radii
(rs=(2)1/2 R) from the excluded flux array are also indicated on
the plots. During the equilibrium phase, the density profiles
tend to be hollow at r≈0 and flat near r≈R as expected.
Eventually, the new Thomson scattering diagnostic will

provide an independent measurement of the electron

temperature at six axial spatial points on each shot. This point
data will be compared the results inferred from the excluded
flux data bulk temperature derived from pressure balance,
excluded flux, and line density. We also will soon cluster
more interferometer chords in the central and edge regions of
the FRC, including the resistivity at the field null and
separatrix [35-37].

Figure 5 An analysis of one shot showing many quantities that can be inferred from excluded flux and interferometer (0 – on axis, 1 – 2cm off axis)
data. For the internal flux plot (phi int) indices 1, 2 represent flux loops that straddle the midplane axially and 0,3 loops are closer to the ends of the theta
coil.

Figure 6 polynomial fits to multichord interferometer density data.
Squares indicate chord locations.
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G. Configuration lifetimes
Several campaigns have been undertaken to explore the

experimental knobs available to us. Surveys of fill pressure
have been carried for 20 mTorr <P0 <300 mTorr. The PI bank
voltage has been pushed to 55 kV. The bias field has been
increased to ≈ 0.3 Tesla.  From a database of 35 shots, for
“typical” operation, FRC lifetimes are shown in the histogram

of Figure 7, and are mostly in the range of ~10 msec, but

extend towards 20 msec in a few cases. For these shots, we
varied fill pressure from 30-60mTorr, as well as the trigger
timing for pre-ionization and crowbar relative to the main
bank trigger. We expect this to improve as fields/fluxes are
increased.

H. Survey of typical operating regimes
 Trigger timing is also important. As the pulsed power

systems become more robust, we can operate closer to the
voltage limits.  Typical number of shots per week is on the
order of 30, with approximately 30% being main bank shots.
We have brought the experiment to the point where the pulsed
power systems generally work and we can take 5-10 main
bank shots on a good day. We would like to increase both the
initial bias and PI field by approximately 50%, and trap
considerably more flux in the FRC. The main bank operating
voltage is at the low end of its capability, and can be
increased without a problem.

Incremental pulsed power improvements along with
exploration of the operating parameters in Nov 2002 –April
2003 have resulted in ≈ 500 shots with ≈ 200 main bank shots
and > 60 good “typical” shots. The average shot parameters
are summarized in Table I. The columns indicate from left to
right, parameters for design goal, peak and equilibrium
FRC’s. The measured parameters have been used to estimate
the internal flux.

IV. CONCLUSION

We have given an overview of the goals and status of the

Table I Summary of typical shot parameters for FRX-L data as of May
2003, for peak and equilbrium values. Design goal parameters are listed in
the left hand column.

FRX-L experiment, as of spring 2003. This experiment
represents a start on the road towards one realization of the
Magnetized Target Fusion concept. MTF could be a relatively
inexpensive and short term approach to an alternate fusion
energy concept. Significant progress towards a target plasma
has been achieved, with FRC parameters within a factor of 2-3
of the design goals. An outline of the technical achievements
required to get to this experiment to its present state was
briefly presented. A synopsis of typical recent data for the past
year is shown. One shot was shown in detail and many
plasma parameters are extracted from the dataset.
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Parameter
design
spec

present
FRXL

present
FRXL

Peak equil
coil electric field:

(kV/cm) 1 0.85 0.85

coil radius (cm) 5.0 6.2 6.2

separatrix radius (cm) 2.5 2.2 2.5

coil length (cm) 36 36.0 36.0

separatrix length (cm) 35 25.0 35.0

B external (T) 5.4 2.5 2.0

B_bias (kG) 5 3 3

B_GN (kG) 6.6 5.6 5.6

Po gas fill (mTorr) 80 40 40

peak density (1017 cm-3) 1.2 0.6 0.3-0.4

Te + Ti (keV) 0.6 0.3 0.2

plasma energy (kJ) 5.0 0.6 0.4

tN (ms) 28.0 - 12.0

particle inventory (1019) 5.0 1.0 1.0

Fbias (mWb) 4 2.8 2.8

FLO (mWb) 4 2 2

Fint internal flux (mWb) 1.0 0.3-1.0 0.2-0.3
Ion skin depth c/wpi

(cm) 0.1 0.13 0.18

S* 25 16 12

s 2.9 0.5-1.6 0.5-1.6

E 7 6.0 5.0

S*/E 3.5 2.4 2.1

Figure 7 histogram summarizing 35 shots and the typical FRC
lifetimes. For these shots, we varied fill pressure from 30-60mTorr, as
well as the trigger timing for pre-ionization and crowbar relative to the
main bank trigger.
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