
1

A Performance Model of the Parallel Ocean Program

Darren J. Kerbyson
Performance and Architecture Laboratory (PAL)

Computer and Computational Sciences Division (CCS-3)
 Los Alamos National Laboratory

Philip W. Jones
Theoretical Division (T-3)

Los Alamos National Laboratory

2

Proposed Running Head: POP Performance Model

Corresponding Author:
Philip W. Jones
Los Alamos National Laboratory
T-3, MS B216
P.O. Box 1663
Los Alamos, NM 87545-1663
Ph: 505-667-6387
Fax: 505-665-5926
pwjones@lanl.gov

Other authors:
Darren J. Kerbyson
Los Alamos National Laboratory
CCS-3, MS B256
P.O. Box 1663
Los Alamos, NM 87545-1663
Ph: 505-667-4913
Fax: 505-667-1126
djk@lanl.gov

3

SUMMARY

In this work we describe a performance model of the Parallel Ocean Program (POP). In
particular the latest version of POP (v2.0) is considered which has similarities and differences to
the earlier version (v1.4.3) as commonly used in climate simulations. The performance model
encapsulates an understanding of POP’s data decomposition, processing flow, and scaling
characteristics. The model is parameterized in many of the main input parameters to POP as well
as characteristics of a processing system such as network latency and bandwidth. The
performance model has been validated to date on a medium sized (128 processor) AlphaServer
ES40 system with the QsNet-1 interconnection network, and also on a larger scale (2,048
processor) Blue Gene/Light system. The accuracy of the performance model is high when using
two standard benchmark configurations, one of which represents a realistic configuration similar
to that used in Community Climate System Model coupled climate simulations. The performance
model is also used to explore the performance of POP after possible optimizations to the code,
and different task to processor assignment strategies, whose performance cannot be currently
measured.

4

1 Introduction

The Parallel Ocean Program (POP) is an ocean general circulation model used for ocean and

climate research. It is used in a variety of applications, including very high resolution eddy-

resolving simulations of the ocean (Maltrud and McClean, 2005; Smith et al., 2000) and as the

ocean component of coupled climate models like the Community Climate System Model

(Blackmon et al., 2001). The combination of high resolution to resolve ocean eddies and long

time scales required for climate and deep ocean circulation requires very high performance

computing. The climate and ocean communities have access to a wide variety of such high

performance computers with architectures ranging from clusters of commodity processors to

vector machines like the Cray X1 and Japanese Earth Simulator. POP has therefore been

designed to run efficiently across a wide variety of platforms and good performance across

platforms has been demonstrated (Jones et al. 2004, Dunigan et al. 2003). In the most recent

releases of POP, a flexible data decomposition scheme has been introduced to further increase

the performance portability of the model.

The importance of analyzing, optimizing, and understanding the performance of large-scale

applications such as POP increases as both systems and applications grow in size and in

complexity. The performance of a system results from an interplay between the hardware

architecture, the communication system, and the workload. Knowledge of the processor design,

memory hierarchy, inter-processor and network system, and workload mapping is necessary in

order to understand the factors that impact the achievable performance.

An important approach that provides insights into the achieved performance is that of

performance modeling. Performance models can be constructed that encapsulate the key

performance characteristics of a workload while also being parameterized in terms of the main

characteristics of a machine. Performance models can be used for instance to examine the

performance of systems without the need for extensive empirical analysis, to help identify

performance bottlenecks, and provide input for tuning the application for a particular system. In

addition, a performance model can be used to effectively replace many of the benchmarking

activities for a machine of interest by providing reliable performance predictions for large-scale

5

systems using measurements from only a small-scale system. Moreover, models can be used in

situations which are not measurable – for instance in exploring the performance of design

alternatives in future machines, or considering the impact of code changes in advance of

implementing them.

The approach that we take in constructing a performance model is application centric. It involves

understanding the processing flow in an application, the key data structures, how they use and

are mapped to the available resources, and the effects of scaling. An analytical performance

model of the application is constructed from this understanding. The aim is to keep the model of

the application as general as possible but be parameterized in terms of the application's key

characteristics. The model is based on a static analysis of the code and is parameterized in terms

of the code’s dynamic behavior - i.e. those features which are not known through a static

analysis.

We have had many successes using this performance modeling approach in the modeling of

deterministic particle transport codes on structured (Hoisie et al. 2000), unstructured meshes

(Kerbyson et al. 2003, Mathis and Kerbyson 2005), with non-deterministic particle transport

(Mathis et al. 2005), and with hydro codes (Kerbyson et al. 2001). These performance models

have been used in numerous performance studies, for example in the comparison of the Earth

Simulator to other systems (Kerbyson et al. 2005), exploring possible future architectures

(Kerbyson et al. 2002), and in the verification and performance optimization of ASCI Q at Los

Alamos (Petrini et al. 2003).

There is a spectrum of different approaches to modeling the performance of systems and

applications of which our application centric approach is only one. For example, trace data of

both the sequential and parallel activity is often used to predict performance. An initial

performance model of POP has been described using such an approach (Carrington et al. 2005).

All of these modeling approaches can be used to help understand the measured performance, and

allow certain what-if type performance questions to be analyzed across machines and

configurations.

6

In this paper we first describe the POP model itself in Section 2, particularly those aspects of the

model relevant to computational performance. In Section 3, we detail the performance model of

POP which is validated against performance measurements on two systems in Section 4. In

Section 5 we use the performance model to explore two performance scenarios which cannot be

currently measured, namely the impact of code optimizations and in considering different task

assignments to processors in a system.

2 Overview of POP

POP solves the primitive fluid equations on a sphere under the hydrostatic and Boussinesq
approximations and is based on previous models of Bryan (1969), Cox (1984), Semtner (1986)
and Chervin (1988) that use depth as the vertical coordinate. In the horizontal, POP supports any
generalized orthogonal grid, including displaced-pole (Smith and Kortas, 1995) and tripole
(Murray, 1996) grids that move the grid pole into land masses to avoid excessively small grid
spacing near the pole singularity in latitude-longitude grids. Spatial derivatives are computed
using second-order differencing on a staggered grid with velocities located at the logical
northeast corner of tracer cells. Simulations begin from an initial state and are integrated forward
in time using different methods for the baroclinic and barotropic modes. The fastest wave mode
in the ocean is an external gravity wave mode, called the barotropic mode due to its uniform
structure in the vertical. In POP, this two-dimensional barotropic mode is formulated as an
elliptic equation for the surface pressure and is solved using a preconditioned conjugate gradient
(PCG) solver (Dukowicz and Smith, 1994). The baroclinic portion explicitly integrates the three-
dimensional fluid equations using a leapfrog scheme with periodic averaging steps to damp the
leapfrog mode. Various physical parameterizations, subgrid models and other features are
available (Smith and Gent, 2002).

POP can be run in either serial or parallel mode and can use thread-based (OpenMP) parallelism,
message-passing (MPI) or a hybrid of the two. A flexible data decomposition scheme (described
in Section 2.2 below) is used to decompose the horizontal grid; the vertical grid remains local.
Halo regions or ghost cells are used to minimize communications by keeping local copies of
nearest neighbor information for cells on the edges of a domain. The explicit three-dimensional
baroclinic solver is the most computationally intensive and, with a halo depth of two, can be
integrated with only a single ghost cell update of most prognostic fields. The preconditioned
conjugate gradient solver for the barotropic mode consists of a two-dimensional nine-point

7

stencil operator followed by global reductions necessary for the PCG iteration. The barotropic
solver is therefore dominated by many small messages and relatively few floating point
operations (flops).

2.1 Model configuration

For a given simulation, POP is configured using a combination of compile-time parameters and

run-time inputs. Due to the difficulty of generating realistic bottom topography that also satisfies

numerical constraints, a particular grid and bottom topography are used for many simulations. A

few common configurations are made available for benchmarking purposes. The first is a test

configuration that uses an internally generated grid and idealized topography. This configuration

requires no input files beyond a simple configuration file and is ideally suited for initial

benchmarking without needing to deal with I/O portability issues. A second configuration, called

the x1 (by one), is a one-degree (100km) resolution grid with realistic topography and the grid

pole displaced into Greenland. It is configured as closely as possible to the way POP is used for

long climate simulations. A third configuration, called the x0.1, is a very high resolution 1/10

degree (10km) grid configured as closely as possible to eddy-resolving simulations. In this work,

we will only consider the first two configurations as the third requires very large computing

resources

A wide variety of run-time inputs govern the choice of physical parameterizations and numerical

methods. Here, we will only be concerned with a few main compile-time and run-time inputs

that directly affect the computational performance of the model. These parameters primarily

relate to the data decomposition as shown in Fig. 1 and Fig. 2. This is described below.

2.2 Data decomposition

Beginning with version 2.0 of POP, a flexible data decomposition scheme is used. For the
horizontal grids supported in the model, the domain is logically-rectangular with a few special
cases. The horizontal grid is therefore decomposed into two-dimensional blocks using a
Cartesian decomposition. The block size is chosen by the user based on the particular machine
architecture; blocks can be small for machines with small caches, but can be made large for

8

vector processors. The size of a block is defined by the input parameters block_size_x and

block_size_y. Thus the number of cells per block is block_size_x ¥ block_size_y ¥ km,

where km is the depth, and the number of blocks is: nx_global/block_size_x ¥

ny_global/block_size_y assuming that block sizes are both factors of the global horizontal

dimensions nx_global and ny_global respectively (note that this latter factorization assumption

is not required; POP will internally pad the domain when the block sizes are not factors of the

horizontal dimensions.)

The arrangement of a block is shown in Fig. 1. Block(i,j) is shown along with it’s four

neighboring blocks, two in each dimension. The view is shown for the two horizontal dimensions

and the third dimension (depth) extends into the page. Each block has a halo of ghost cells,
permitting tasks to proceed independently with minimal communication and synchronization.
The halo increases the size of a block to (block_size_x + nghost¥2) ¥ (block_size_y +

nghost¥2) ¥ km, and also increases boundary surfaces between blocks.

Once the domain is decomposed into blocks, blocks with only land points are eliminated and the
remaining blocks are distributed across processors. Multiple blocks may be assigned to each
node, permitting both load balancing and hybrid parallelism with message passing between
nodes and threading over multiple blocks within a processor. The distribution of blocks can be
based on a static load balancing or can be a simple Cartesian distribution that simplifies
communications. Different distributions can be chosen for the baroclinic and barotropic modes to
permit an optimal distribution for the computationally-intensive baroclinic solver and the
communication-intensive barotropic solver. Example block distributions are shown in Fig 2. Fig.
2a) shows an example global domain of 40 x 20 cells which are decomposed into blocks of size
either 20 x 10 (Fig. 2b), or 5 x 5 (Fig. 2c). Blocks that contain only land are eliminated. A rake
algorithm (Fonlupt et al. 1998) is used first in the X dimension, followed by the Y dimension to
load-balance the blocks across the processors (Fig. 2d). Note that when one block is assigned to
each processor, for example in Fig. 2b), the distribution is the same as used in the previous
version of POP (v1.4.3), and no load-balancing is performed.

9

3 POP Performance Model

Our approach to modeling the performance of applications is to measure the single processor

performance and to combine this with a model of the required parallel activities. The single

processor performance can be either measured, for available systems, or provided as output from

an architecture simulator in the case of a future system. There are two main parallel activities in

POP:

Boundary exchanges – A stencil operator is used in the finite differencing in both the baroclinic

and barotropic calculations. Boundaries in the horizontal dimensions need to be

transferred between logical neighboring processors.

Global reductions – The PCG solver used in the barotropic calculation requires 2-3 global

summations to be performed per solver iteration.

The communication and computation stages of POP are centered on a simulation step. A step can

represent a varying amount of actual simulation time. Each involves a single call to both the

baroclinic and barotropic calculations as well as a number of other operations. Note that the

baroclinic and barotropic calculations constitute most of the run-time. We concern ourselves

with modeling the performance of the run-time of POP – this can be subsequently used to

determine the processing rate (simulation days per hour for example). One simplification we take

in this work is to use the Cartesian distribution in which one block is assigned to each processor.

This also has an advantage in that the performance model can also be directly applied to the

earlier version of POP (v1.4.3). Modeling the full flexibility of block distributions introduces a

broad parameter space in terms of block size, distribution of blocks and total workload. For

example, smaller block sizes result in more land point elimination, resulting in a reduction in the

total workload. The model may be extended to include the case of multiple blocks per processor

but will require additional information specific to a particular problem configuration (including

the actual number of blocks per processor, and details on the communicating processor-pairs

used for the boundary exchanges). Despite the difficulties in modeling multiple blocks and

flexible distribution schemes, the current model and the results below can provide some insight

into performance using multiple blocks per processor; this will be discussed briefly in Section

4.1.

10

The run-time of POP, when considering only the baroclinic and barotropic calculations, can be

described as:

() ()GTGTGT barotropicbaroclinicPOP ,,),,(,, NPNPNP += (1)

where P = [Px, Py] is the number of processors in the two horizontal dimensions, N = [Nx, Ny, Nz]

is used to denote the size of the global domain in the horizontal dimensions and depth

respectively, and G is the number of ghost cells.

The run-time of the baroclinic is given by:

()),,(.,,),,(___ GTNGTGT exboundclinicboundcompbaroclinicbaroclinic NPNPNP += (2)

and the run-time of the barotropic is given by:

() ()PNPNPNP redglobalsumsglobalexboundtropicboundcompbarotropicbarotropic TNGTNGTGT _____ .),,(.,,),,(++= (3)

Both the baroclinic and barotropic times are separated into a sequential computation time,

Tbaroclinic_comp() and Tbarotropic_comp(), and a communication time which in the case of the barotropic

includes both the boundary exchange time, Tbound_ex(), and the global reduction time, Tglobal_red().

The number of each of these operations is defined as Nbound_clinic and Nbound_tropic for the boundary

exchanges, and Nglobal_sums for the global reductions. The computation and communication

performances are described separately below.

3.1 Computation time

POP is commonly used in a strong-scaling processing mode in which parallelism is used to solve

the same problem size in a reduced amount of time. In this case, the number of cells per

processor decreases with increasing processor count. The time taken to process a cell is

dependent on the parts of the memory hierarchy used and can vary. For instance a smaller

problem per processor may utilize the memory cache to a greater extent than a larger problem.

11

The baroclinic compute time is modeled as

() ()),,(_).,,(_,, __ GsizeBlockTGsizeBlockGT cellbarocliniccompbaroclinic NPNPNP = (4)

and similarly the barotropic compute time is modeled as

() ()),,(_).,,(_,, __ GsizeBlockTGsizeBlockGT cellcbaroctropicompcbaroctropi NPNPNP = (5)

where the time per cell is given by Tbaroclinic_cell(), and Tbarotropic_cell(). The size of a block,

Block_size(P,N,G), assuming one block per processor is given by

˜̃
¯

ˆ
ÁÁ
Ë

Ê +
˜̃
¯

ˆ
ÁÁ
Ë

Ê +
=

Y

Y

x

x
z P

GN

P

GN
NGsizeBlock

.2
.

.2
.),,(_ NP (6)

For blocks that contain a mixture of land and ocean points, computations are normally performed

on land points as performing extra computations is frequently less expensive than a conditional

computation. Block_size is therefore a reasonable measure of the work performed in each block.

Both the baroclinc and barotropic time per cell, Tbaroclinic_cell(), and Tbarotropic_cell(), need to be

measured for a range of block sizes. Examples of these measurements are provided in Section 4

for two processing systems.

3.2 Parallel Activities

A boundary exchange is performed in two steps: one for the East-West (horizontal X dimension),

and one for the North-South (horizontal Y dimension) exchange. Each exchange is done by two

calls to MPI_Isend and two calls to MPI_Irecv followed by an MPI_Waitall. This is done to

overlap any on-processor copies that may exist when multiple blocks are assigned to a processor;

MPI is not used to perform such local copies. Note that the boundaries in either or both

horizontal dimensions maybe defined as cyclic or closed. When using cyclic boundaries, the

boundary on the lowest side of the global domain logically neighbors the highest side of the

global domain.

12

From an execution of POP the number of boundary exchanges was found to be

()()Zclinicbound NnstepsN ¥¥-= 21_
, and

˜̃
¯

ˆ
ÁÁ
Ë

Ê
˜
¯

ˆ
Á
Ë

Ê
+¥+¥=

ncheck
scansAvnstepsN tropicbound

1
1(_4_

(7)

for the baroclinic and barotropic calculations respectively. nsteps is the number of simulation

steps. Av_scans is the average number of the PCG solver iterations per step, and ncheck is a

further POP input which defines the number of iterations between a check for convergence of the

PCG solver. Convergence of the PCG solver is specified by solv_convrg, the convergence

criteria to be achieved, and solv_max_iters – the maximum number of iterations done if the

convergence criteria is not met.

The time to perform a single boundary exchange is modeled as

() ()()yyxycommxyxxcommexbound CPPGNTCPPGNTGT ,.,1.8,.,..8),,(_ ++=NP

(8)

where the boundary surfaces transferred in the X and Y dimensions are (Nx.G) and (Ny.(G+1))

eight-byte words respectively, and Cx, Cy represent the message contention for the X and Y

boundary exchanges respectively. The message contention results from the assignment of the

tasks onto a particular system network topology and impacts the bandwidth term of Tcomm. It is

discussed in Section 3.3. Tcomm(S,P,C) is the time taken to perform a bi-directional

communication of size S bytes on a system of size P processors with a contention factor of C –

the actual formulation of this is describe below.

The number of global summations in the barotropic calculation, each of a single word, was found

to be

˜
¯

ˆ
Á
Ë

Ê
+¥+¥=

ncheck
scansAvnstepsN sumglobal

1
2(_1_

(9)

13

The number of the parallel boundary exchanges and global summations, in equations 7 and 9, are

valid for the inputs used in this work. The cost of performing a global summation can be

modeled in a number of ways depending on its implementation. Here we consider it to be either

measured for each processor count in a system, or is modeled as log2(P) stages in a binary tree

reduction operation which is multiplied by 2 (since the operation is effectively a reduction

followed by a broadcast).

A piece-wise linear model for the communication time is assumed which uses the latency, Lc,

and bandwidth, Bc, of the communication network in the system. The effective communication

latency and bandwidth vary depending on the size of a message and also the number of

processors used (for instance when dealing with intra-node or inter-node communications for an

SMP based machine).

() ()
()PSB

SCPSLCPST
c

ccomm ,

1
..,,, += (10)

The communication model utilizes the bandwidth and latencies of the communication network

observed in a single direction when performing bi-directional communications, as is the case in

POP for the boundary exchanges. They are obtained from a ping-pong type communication

micro-benchmark which is independent of the application and in which the round-tip time when

performing bi-directional communications is measured while varying the message size (typically

increasing the message size in powers of 2). This should not be confused with the peak uni-

directional communication performance of the network or peak measured bandwidths from a

performance evaluation exercise.

3.3 Task Assignment

The arrangement of blocks across the processors in a system can significantly impact the

performance of the boundary exchanges. When assuming a single block assigned to each

processor, the logical arrangement of blocks is two-dimensional in a Px and Py array. However,

the processors within a system may not be physically arranged in a two-dimensional array

topology. We illustrate the assignment of tasks to two types of systems with different inter-

14

connection network topologies. The first is a cluster of SMP (Symmetric Multi-Processor) nodes

interconnected with a fat-tree network, and the second is a three-dimensional torus network.

These networks correspond to two types of high performance systems, including the ASCI Q

machine at Los Alamos, and the Blue Gene/Light system recently introduced by IBM; the

performance of both are analyzed further in Section 4. A three-dimensional torus network is also

being used in the new Cray XT3 system, and the Raytheon TORO system.

An example fat-tree network is that implemented in the Quadrics QsNet-1 network (Petrini et al.

2002). This has been used in many AlphaServer systems in which the QsNet implements a

quaternary fat-tree with each leaf of the tree connecting a 4-way SMP. Each processor within the

SMP shares a single channel for communicating to other nodes in the system. In such cases when

a boundary exchange is performed, contention for the communication channel will occur due to

multiple boundaries being exchanged between processors on different nodes. This can be seen

more clearly in the example shown in Fig. 3. The four processors in the central node will

communicate boundaries to the four processors in each of the nodes to the North and to the

South, and to only one processor in each of the nodes to the East and the West. When performing

the North and South boundary exchanges a total of 8 messages will contend for a single

communication channel, and when communicating East and West boundary exchanges only two

messages will contend. The fat-tree offers a high degree of locality independence – the location

of the neighboring nodes in the fat-tree is not important because the message communication

performance is mostly insensitive to location. Note that different assignments of processes to

processors may have different contention characteristics.

Conversely, the assignment ordering is important when a three-dimensional torus network is

considered. For example, the best assignment of a logical two dimensional array into a three-

dimensional torus will be where each X-Y plane of processors represents a rectangular sub-array

of the original array. An example of this is shown in Fig. 4a). Alternate planes of the torus would

be indexed in increasing and decreasing X coordinates, and increasing and decreasing Y

coordinates. The indexing is shown on the outer row and columns of numbers in Fig. 4. This

assignment results in no contention for any X-dimension boundary exchanges, and a small

degree of contention for Y-dimension boundary exchanges (at the edges of the X-Y processor

15

planes). Communications in the Z dimension of the torus are those that cross the dotted X-Y

plane boundaries in Fig. 4a).

An alternate, simpler, three-dimensional torus assignment is one where processors are indexed in

X, Y, Z ordering, and the first row of tasks in the logical two-dimensional array are just assigned

to the first processors in the first X-Y plane, and so on as shown in Fig. 4b). We consider this is

being simplier since the application process rank matches directly the processor ID in the C, Y, Z

ordering. Here, contention occurs on most Y-dimension boundary exchanges. It can be seen that

the exact layout of the communications can become quite complex, especially when adaptive

routing in the network is used.

Note that the different assignment schemes, such as the optimum and simpler schemes above, are

not under application control. They typically result from a system operation in which process

ID’s can be mapped to physical processors using a mapping function. In Blue Gene/L the notion

of ‘floor-plans’ is used to describe this mapping function.

A summary of the communication contention for boundary exchanges is listed in Table 1 for

processor counts up to 1,024 for a fat-tree with four-way SMP nodes, and a three-dimensional

torus network. Two cases are shown for the torus, that using an optimum assignment, and that

using the simpler X-Y-Z order assignment.

In the case of the fat-tree, the message contention does not increase when using 64 or more

processors. In the case of the torus, the contention in the Y-dimension continues to increase in

both cases. Note that the dimension of the torus is assumed to be 8 x 16 x 16. Only closed

boundaries are considered in the contention factors in Table 1, a similar analysis for cyclic

boundaries can be done.

3.4 Application Input Parameters

The performance model input parameters are based on the observations made using the test, and

x1 inputs. The parameters representing the problem set-up that currently drive the performance

model are listed in Table 2. Also listed are the values used for the test and x1 inputs. Note that

16

POP is typically used in a strong-scaling mode – that is that the overall spatial domain size, as

defined in the input, remains constant no matter how many processors are used to solve it. This

results in smaller sub-grid sizes (blocks) mapped onto a processor with increasing processor

count. POP may also be used in a weak-scaling mode in which the overall problem size scales

with the number of processors but this is not typical. The system input parameters, and their

values, are discussed in Section 4.1.

4 Performance Model Validation

Before a performance model can be used, its prediction accuracy needs to be verified against

observed performance on existing systems. In the validation presented here, two systems were

used for measuring the performance of POP. The first is an AlphaServer Cluster containing 128

processors which is similar in architecture to the ASCI Q machine at Los Alamos. The second is

a small version of the Blue Gene/Light system being built by IBM containing 2,048 nodes.

The AlphaServer cluster contained 32 four-way ES40 SMP nodes. Each processor was an Alpha

EV68 with 8MB L2 cache running at 833MHz. The Alpha can issue two floating-point

operations per cycle. The nodes are interconnected using the Quadrics QSnet-1 fat-tree network

which has a large-message bandwidth of approximately 200MB/s, and a small message latency

of 6µs in this system. Details of the Quadrics network are described by (Petrini et al. 2002).

Each Blue Gene/Light node consisted of a dual core embedded PowerPC 440 processor with a

shared 4MB L3 cache running at 700MHz. Each core can issue four floating-point operations per

cycle. Nodes are interconnected in a three-dimensional torus topology. Each communication

channel in the network has a nearest-neighbor small message latency of 3.5µs and a large

message bandwidth of 175MB/s. The testing below used only one of the processor cores per

node (known as co-processor mode). Note that when using both processor cores, an increase in

performance between a factor of 1.1 and 1.9 has been observed on other applications (Davis et

al. 2004, and Almasi et al. 2004), but will depend on the impact of increased communication cost

and the ratio of communication to computation in a particular configuration.

17

4.1 System Input Parameters

The single processor performance is an input to the POP performance model. The runtime of

both the barotropic and baroclinic routines were measured while varying the size of the spatial

domain. The time spent in the barotropic and baroclinic routines were recorded when using one

processor per node, and in the case of the AlphaServer, when using all four processors in the

node. Both cases are required for the model as contention for resources can occur when using all

processors within a node which can significantly degrade the achieved performance. This

contention is usually a result of having to share resources within the node and includes

congestion on the memory buses.

Measured performance on both the AlphaServer and Blue Gene/Light machines is shown in

Figure 5a) for the baroclinic, and in Figure 5b) for the barotropic. This is shown for the test input

while varying the input spatial domain size. The baroclinic performance is shown in terms of

time taken per cell per step. The barotropic performance is shown in terms of the time taken per

cell per step per PCG iteration. All measurements are shown in terms of the processing time per

processor. Note: the performance when using the x1 input has the same characteristic but was

found to take a factor of 2.25 longer.

It can be noted that the time per cell increases when using all four processors in an AlphaServer

node (mainly due to memory contention). The distinct regions in the curve are due to the

memory hierarchy of the Alpha microprocessor. This can be seen clearly in the case of the

baroclinic. A small problem size can fit into the L2 cache (left hand side of each curve), a large

problem predominantly uses main memory (right hand side), and part cache and part main

memory utilization occurs in between. This result can be used to estimate the optimal block size

for this microprocessor and can restrict the block size range to explore when assigning multiple

blocks per node in the full flexible decomposition strategy. Block size effects on land point

elimination will be harder to model, though smaller blocks are always better for land point

elimination. In addition, the block size is only part of the performance and modeling the full

performance in the non-Cartesian case will also require an updated estimate of communication

costs, given that some boundary exchanges will be local and others may occur between blocks

that are no longer on neighbor processors in a load-balanced distribution. Such extensions to the

18

performance model will be examined in future work. The same cache effect occurs in the

barotropic case. The memory footprint used by barotropic is much less than that used by

baroclinic. The transition from cache to main memory occurs at a far higher number of cells per

processor (almost a factor of 100 higher).

As depicted in Figure 5, the single processor/single node performance can be modeled as a piece-

wise linear curve. This is an approximation and can lead to an error in the input to the

performance model. A summary of the system inputs to the performance model is given in Table

3. The piece-wise linear formulation of the communication model, in terms of Lc and Bc can be

clearly seen for different ranges of the message size in Table 3. These are based on the

measurements of bi-directional ping-pong microbenchmark as discussed earlier. Note that the

time taken to perform a global reduction, Tglobal_red(), was measured for each processor count on

Blue Gene/L and was assumed to be 2*log(p) times the uni-directional message latency on the

AlphaServer.

Note that for each system that s modeled values for each of the system input parameters, as listed

in Table 3, are required. For an existing system the computation costs can be obtained from

executing POP using a range of global grid sizes on a single node, and the communication values

obtained via micro-benchmarks. In the case of a future system, these values may be available

from a simulator or be stated as the expected performance on such a system.

4.2 Measured and Predicted Performance

The measured and predicted performance of POP for the AlphaServer cluster using the test input

is shown in Fig. 6a) and using the x1 input is shown in Fig. 6b). Note that markers indicate a

measurement and a curve indicates model predictions. The time spent in baroclinic and

barotropic is shown separately, and the total is simply the summation of the baroclinic and

barotropic times. In a production simulation, there is some additional work outside of baroclinic

and barotropic, including some I/O for forcing input and diagnostic ouput. These are generally a

very small fraction (< 10%), so modeling only the baroclinic and barotropic portions of the code

captures the bulk of the work and is the most predictable and reproducible measure. The

19

measured and predicted performance of POP on the Blue Gene/L system is shown in Fig. 7 using

the test input. No measurements have yet been made on the x1 input. The prediction accuracy is

high in all cases.

It can be seen in Fig. 6 and Fig. 7 that the baroclinic dominates the run-time at low processor

counts but scales well with increasing processor count. However, the barotropic performance

scales up to approximately 512 processors on both the AlphaSever cluster, and the Blue Gene/L

system and becomes the dominate component in the run-time. This is a consequence of the

number of global summations required while the amount of work per cell performed is low. The

scaling for both of these machines is actually reasonably good due to the good performance of

both of the networks for collective operations.

Similarities can be seen in Figure 6 when using the x1 input. Prediction accuracy is again very

high. In this case the barotropic is expected to scale (i.e. execution time decreases) to

approximately 1,024 processors. A summary of the model prediction errors is given in Table 4.

The maximum error across all the tests was 14 %, and a typical error is in the range 3-5%. Note

that the errors result from an under-prediction in almost all cases. This is expected as the

performance of POP includes the main characteristics of what the application is doing. It does

not include external events, such as operating system kernel activities or daemons, which may

negatively impact on the achieved performance. Such external events have been shown to have a

significant impact on application performance on large-scale systems (Petrini et al. 2003). A

single operating daemon occurring on a single node can delay the progress of the whole

application if it occurs just prior to a global synchronization such as an allreduce in the

barotropic phase of POP. This effect increases with system size. Systems such as the

AlphaServer have a copy of almost the full operating system running on each node which can

significantly impact performance. In contrast the Blue Gene/Light system has only a micro-

kernel operating system which does not have many functions and no Daemons – this does not

impact application performance significantly even at large processor counts.

20

5 Use of the Performance Model

Once the model has been validated, as detailed in Section 4, it may be used in a range of

performance studies such as examining of the performance of possible future systems, or

quantifying the impact on performance of changes to the application code. This is one of the

main benefits of developing a performance model – to easily explore performance situations

which cannot easily be measured. In this section we consider two performance questions of

interest:

i) What will be the improvement in performance if the number of global summations was

reduced to one per PCG iteration instead of the current two (e.g. Dongarra and Eijkhout,

2003; D’Azevedo, Eijkhout and Romine 1993) as is currently being introduced into POP

by Bryan (private communication).

ii) What will be the improvement in performance if tasks are optimally assigned to

processors in the BlueGene/L three-dimensional torus rather than the using the default X-

Y-Z indexing?

The first question is answered though a slight modification to the model – namely replacing the

two global summations per PCG iteration in Equation 9 to just one. The second question is

answered by changing the message contention parameters, Cx and Cy, from the default X-Y-Z

indexing values to the optimum values as listed in Table 1.

An analysis of both of these questions was undertaken. The performance improvement that may

result from a change in the number of global summations is shown in Fig. 8a) for the

AlphaServer system, and in Fig. 8b) for the Blue Gene/L system. The expected performance

improvement increases with processor count. It reaches almost 30% on the barotopic time on the

test input, and 20% on the x1 input on a 2,048 processor AlphaServer. On the Blue Gene/L

system a performance improvement of 34% is expected on a processor count of 2,048. Note that

the overall performance improvement is less than the improvement in just the barotropic time

since the performance of the baroclinic remains unchanged.

21

The performance improvement that may arise from using an optimum assignment on an 8x16x16

Blue Gene/L system in shown in Fig. 9. Here the performance improvement mirrors the

differences in the values of Cx and Cy as listed in Table 1 for the two assignment methods. When

using 2,048 processors, the expected performance improvement of POP using the test input is

11%.

These two studies provide an insight into the possible performance improvements that can arise

from both an optimization of the application code, as well as an optimization of the task

assignment across a processing system. These performance studies can be readily undertaken by

altering either the inputs to the performance model, or altering slightly the model formulation.

6 Conclusions

We have constructed a detailed performance model of POP which is very accurate across input

and problem sizes. The model is parameterized in terms of the main inputs that are specified in

the input of the actual application, and also in terms of the performance characteristics of the

communication network as well as the assignment of tasks to processing nodes in the system.

Two inputs to POP have been used to examine the effectiveness of the model: the test input

which is used for benchmarking purposes, and the degree 1 resolution model which is used in

production runs in coupled climate simulations. Accuracy of the performance model is very good

and matched closely measured performance on a 128 processor AlphaServer, and a 2,048 node

Blue Gene/Light system for both of the main two routines of baroclinic and barotropic. Typical

errors were found to be in the range 3-5% across a range of tests.

Once validated, the model can be used to explore a multitude of performance scenarios prior to

the code being executed on the target system. Two such performance studies were undertaken in

this work. The first was to consider the performance improvement that may arise if the number

of global summations was halved from two to one per PCG iteration in the barotropic, and the

second was to consider the difference in performance when using two alternative task

assignment methods in the three-dimensional torus of Blue Gene/L.

22

We envisage using the performance model of POP here to compare performance across a range

of systems for which the performance has not been measured. It will also find use in the

development of new systems, to examine performance in advance of implementation, such as the

systems being proposed and developed in the DARPA HPCS program. We also plan to use an

extended performance model to examine optimal block size and block distributions for the POP

2.0 decomposition scheme.

Acknowledgements

This work was performed in part under the US Department of Energy Office of Science Climate
Change Prediction Program and Scientific Discovery through Advanced Computing (SciDAC)
program, in part under the US Department of Energy Office of Science contract, and in part
under the DARPA HPCS contract. LANL is operated by the University of California for DOE

under contract W-7405-ENG-36. We would also like to thank Bob Walkup and Jose Moirera for

the access to the Blue Gene/Light system and for their expert support. This paper has been

authored by a contractor of the U.S. Government under the above contract. Accordingly, the U.S.

Government retains a nonexclusive, royalty-free license to publish or reproduce the published

form of this contribution, or allow others to do so, for U.S. Government purposes.

REFERENCES

Almasi, G. et al. 2004. Unlocking the Performance of the BlueGene/L Supercomputer. in proc.
IEEE/ACM Supercomputing, Pittsburgh, PA.

Blackmon, M., et al. 2001. The Community Climate System Model. Bull. Am. Meteorol. Soc.
82:2357–76.

Bryan K. 1969. A numerical method for the study of the circulation of the world ocean. J.
Comput. Phys. 4:347.

Carrington, L., Snavelly, A., and Wolter, N. 2005. A Performance Prediction Framework for
Scientific Applications. To appear in Future Generation Computer Systems, special issue on
Large-Scale System Performance Modeling and Analysis, Elsevier.

23

Chervin, R.M. and A.J. Semtner 1988. An ocean modeling system for supercomputer
architectures of the 1990s. In Proc. of the NATO Advanced Research Workshop on Climate-
Ocean Interaction, edited by M. Schlesinger. Kluwer: Dordrecht.

Cox, M.D. 1984. A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group
Technical Rept. No. 1, GFDL/NOAA: Princeton.

D’Azevedo, E.F., V.L. Eijkhout and C.H. Romine 1993. Conjugate gradient algorithms with
reduced synchronization overhead on distributed memory multiprocessors. Computer Science
Tech. Rep. CS-93-185, Univ. of Tennessee: Knoxville.

Dongarra, J. and V. Eijkhout 2003. Finite-choice algorithm optimization in conjugate gradients.
Computer Science Tech. Rep. UT-CS-03-502, Univ. of Tennessee: Knoxville.

Dukowicz, J.K. and R.D. Smith 1994. Implicit free-surface method for the Bryan-Cox-Semtner
ocean model. J. Geophys. Res. 99:7991–8014.

Dunnigan, T.H., Fahey, M.R., White, J.B., and Worley, P.H. 2003. Early Evaluation of the Cray
X1. in proc. IEEE/ACM Supercomputing, Phoenix, AZ.

Hoisie, A., Lubeck, O., and Wasserman, H.J. 2000. Performance and Scalability Analysis of
Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applications. Int. J. of
High Performance Computing Applications, Sage Science Press, 14(4):330-346.

Fonlupt, C., P. Marquet and J.-L. Dekeyser 1998. Data-parallel load balancing strategies. Parallel
Computing, 24:1665-1684

Jones, P.W., P.H. Worley, Y. Yoshida, J.B. White III, and J. Levesque 2004. Practical
performance portability in the Parallel Ocean Program (POP). Concurrency and Computation:
Practice and Experience, in press.

Kerbyson D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M. 2001.
Predictive Performance and Scalability Modeling of a Large-Scale Application. In proc. of
IEEE/ACM Supercomputing, Denver, Co.

Kerbyson, D.J, Hoisie, A and Wasserman, H.J. 2002. Exploring Advanced Architectures using
Performance Prediction. In Innovative Architecture for Future Generation High-Performance
Processors and Systems, IEEE Computer Society Press, pp. 27-37.

Kerbyson, D.J, Hoisie, A and Pautz, S. 2003. Performance Modeling of Deterministic Transport
Computations. In Performance Analysis and Grid Computing, V. Getov, M. Gerndt, A. Hoisie,
A. Malony, and B. Miller (eds), Kluwer, pp. 21-39.

Kerbyson, D.J., Hoisie, A., and Wasserman, H.J. 2005. A Performance Comparison between the
Earth Simulator and other Terascale Systems on a Characteristic ASCI Workload. To appear in
Concurrency and Computation: Practice and Experience.

24

Mathis, M.M., and Kerbyson, D.J. 2005. Performance Modeling of Unstructured Mesh Particle
Transport Computations. To appear in Int. J. of Supercomputing.

Mathis, M.M., Kerbyson, D.J., and Hoisie, A. 2005. A Performance Model of non-Deterministic
Particle Transport on Large-Scale Systems. To appear in Future Generation Computer Systems,
special issue on Large-Scale System Performance Modeling and Analysis, Elsevier.

Maltrud, M.E. and J.L. McClean 2005. An eddy-resolving global 1/10 degree ocean simulation,
Ocean Modelling 8:31-54.

Murray, R.J. 1996. Explicit generation of orthogonal grids for ocean models. J. Comp. Phys.
126:251.

Petrini, F., Feng, W.C., Hoisie, A., Coll, S., and Frachtenberg, E. 2002. The Quadrics network:
High-performance clustering technology. IEEE Micro, 22(1):46–57.

Petrini, F., Kerbyson, D.J., and Pakin, S 2003. The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. in proc.
IEEE/ACM Supercomputing, Phoenix. Awarded best paper.

Semtner Jr., A.J. 1986. Finite-difference formulation of a world ocean model. In Advanced
Physical Oceanographic Numerical Modeling, edited by J.J. O’Brien Reidel: Dordrecht.

Smith, R.D. and P. Gent 2002. Reference manual for the Parallel Ocean Program (POP).
Los Alamos Unclassified Report LA-UR-02-2484.

Smith, R.D. and S. Kortas 1995 Curvilinear coordinates for global ocean models. Los Alamos
Unclassified Report LA-UR-95-1146.

Smith, R.D., M.E. Maltrud, F.O. Bryan and M.W. Hecht 2000. Numerical simulation of the
North Atlantic ocean at 1/10 degree. J. Phys. Oceanogr. 30:1532–61.

25

List of Table captions

Table 1. Contention factors for a fat-tree interconnect with 4-way SMPs, and a three-dimensional
torus interconnect.

Table 2.Application input parameters to the POP performance model.

Table 3.System input parameters to the POP performance model.

Table 4. Summary of the POP model prediction errors across all validation tests.

26

Fat-tree 3-D Torus (8x16x16)

Processor Count 4-way SMP Optimum Simple

P Px Py Cx Cy Cx Cy Cx Cy

2 2 1 1 0 1 1 1 1

4 2 2 2 2 1 1 1 2

8 4 2 2 4 1 1 1 2

16 4 4 2 8 1 1 1 2

32 8 4 2 8 1 1 1 1

64 8 8 2 8 1 1 1 1

128 16 8 2 8 1 1 1 2

256 16 16 2 8 1 1 1 2

512 32 16 2 8 1 2 1 4

1024 32 32 2 8 1 2 1 4

2048 64 32 2 8 1 4 1 8

4096 64 64 2 8 1 4 1 8

Table 1

27

Parameter test x1 Description

Nx (nx_global) 192 320 Overall spatial domain size in X

Ny (ny_global) 128 384 Overall spatial domain size in Y

Nz (km) 20 40 Number of layers (depth) in the spatial grid

G (nghost) 2 2 Number of ghost cells

nsteps 20 50 Number of simulation steps

solv_ncheck 10 10 Number of PCG iterations between convergence checks

Av_nscans 69 179 Average number of PCG iterations per step

Table 2.

28

Parameter AlphaServer Blue Gene/L Description

P 1..4096 1..4096 processor count

Pnode 4 1 processors per node

Tbaroclinic_cell(E) P < 4 (µs)

()
Ô
Ó

Ô
Ì

Ï

>

<<-

<=

KE

KEKELn

KE

2503.11

250113.220.3

110.5

P >= 4 (µs)

()
Ô
Ó

Ô
Ì

Ï

>

<<-

<=

KE

KEKELn

KE

2500.21

250118.281.4

111.8

(µs)

1.96+0.2Ln(E)

baroclinic computation time
(per cell)

Tbarotropic_cell(E) P < 4 (ns)

Ó
Ì
Ï

>-

<=

MEELn

ME

12.4)(5.3

15.5

P >= 4 (ns)

Ó
Ì
Ï

>-

<=

MEELn

ME

15.9)(3.7

15.6

15 ns

barotropic computation time
(per cell per PCG iteration)

Lc(S,P) P <= 4 (µs)

Ô
Ó

Ô
Ì

Ï

>=

<<

<=

5122.27

512320.15

320.15

S

S

S

P > 4 (µs)

Ô
Ó

Ô
Ì

Ï

>=

<<

<=

5125.14

512647.9

640.11

S

S

S

(µs)

Ô
Ó

Ô
Ì

Ï

>=

<<

<=

51246.7

5123291.3

3215.4

S

S

S

MPI latency

Bc(S,P) P <= 4 (ns)

Ô
Ó

Ô
Ì

Ï

>=

<<

<=

5123.3

512326.25

320

S

S

S

P > 4 (ns)

Ô
Ó

Ô
Ì

Ï

>=

<<

<=

5127.12

512643.27

640

S

S

S

(ns)

Ô
Ó

Ô
Ì

Ï

>=

<<

<=

5125.6

512321.12

323.6

S

S

S

MPI time per byte

Table 3.

29

30

AlphaServer (test) AlphaServer (x1) Blue Gene/L (test)

max. avg. max. avg. max. avg.

baroclinic 13.3 % 3.9 % 4.6 % 2.0 % 10.7 % 5.4 %

barotropic 7.5 % 3.7 % 12.7 % 4.3 % 14.0 % 4.3 %

total 11.2 % 3.4 % 4.7 % 2.0 % 10.1 % 4.0 %

Table 4.

31

List of Figure captions:

Figure 1. A block in the two-dimensional data decomposition of POP.

Figure 2. Example data decomposition scheme in POP showing (a) original global domain, (b)

Cartesian assignment for a block size of 10 x 20, (c) decomposition using 5 x 5 blocks, and (d)

distribution of 5 x 5 blocks to four processors.

Figure 3. Boundary exchanges required between processors on a four-way SMP node.

Figure 4. Assignment of an 8 x 8 two-dimensional array of tasks to a 4 x 4 x 4 three-dimensional

torus of processors. (a) Optimum assignment in which each X-Y plane contains a rectangular

sub-array of the total task array. (b) Non-optimum assignment using a default X-Y-Z processor

indexing.

Figure 5. POP processing time on one and four processors of the AlphaServer, and one processor

of Blue Gene/L as a function of the problem size per processor. (a) time per cell in baroclinic,

and (b) time per cell per PCG iteration in barotropic.

Figure 6. Measured and predicted runtime of POP on the AlphaServer cluster. (a) using the test

input, and (b) using the x1 input..

Figure 7. Measured and predicted runtime of POP on the Blue Gene/L system using the test

input.

32

Figure 8. Expected performance improvements on the barotropic and total runtime resulting from

a reduced number of global summations per PCG iteration. (a) AlphaServer for both test and x1

inputs, and (b) Blue Gene/L for the test input.

Figure 9. Expected performance improvements on the baroclinic, barotropic and total runtime on

Blue Gene/L resulting from using an optimum three-dimensional torus assignment for the test

input.

33

block_size_x
bl

oc
k_

si
ze

_y

nghost

ng
ho

st

block(i,j) block(i+1,j)block(i-1,j)

block(i,j-1)

block(i,j+1)

Figure 1.

34

ny
_g

lo
ba

l

nx_global
landocean

(a)

1

2 3

4

Processor 0 Processor 1

Processor 2 Processor 3

block_size_x

bl
oc

k_
si

ze
_y

(b)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

block_size_x

bl
oc

k_
si

ze
_y

(c)

1 2 3 4 7 8

9 10

11

12

15

16

17 18 23 24

25 26 31 32

Processor 0 Processor 1

Processor 2 Processor 3

(d)

Figure 2.

35

PE
i, j

i, j+1

PE
i+1, j

PE
i+2, j

PE
i+3, j

i+1,j+1 i+2,j+1 i+3,j+1

i, j-1 i+1,j-1 i+2,j-1 i+3,j-1

i-1
, j

i+
4,

 j

Node

Figure 3.

36

24 25 26 27

16 17 18 19

8 9 10 11

0 1 2 3

28 29 30 31

20 21 22 23

12 13 14 15

4 5 6 7

56 57 58 59

48 49 50 51

40 41 42 43

32 33 34 35

60 61 62 63

52 53 54 55

44 45 46 47

36 37 38 39

0 1 2 3 3 2 1 0

0

1

2

3

0

1

2

3

3

2

1

0

0 1 2 3 3 2 1 0

3

2

1

0

Z = 0 Z = 1

Z = 3Z = 2

X X

XX

Y Y

YY

13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

60 61 62 63

56 57 58 59

52 53 54 55

48 49 50 51

0 1 2 3 0 1 2 3

0

1

2

3

0

1

2

3

0

1

2

3

0 1 2 3 0 1 2 3

0

1

2

3

Z = 0 Z = 1

Z = 3Z = 2

44 45 46 47

40 41 42 43

36 37 38 39

32 33 34 35

28 29 30 31

24 25 26 27

20 21 22 23

16 17 18 19

12

X X

XX

Y Y

YY

Figure 4.

37

0

5

10

15

20

25

30

1E+3 1E+4 1E+5 1E+6 1E+7

Number of cells (per processor)

T
im

e
p

er
 c

el
l (

µ
s)

Alpha, 4PE (meas)
Alpha, 4PE (model)
Alpha, 1PE (meas)
Alpha, 1PE (model)
BG/L (meas)
BG/L (model)

0

5

10

15

20

25

30

1E+3 1E+4 1E+5 1E+6 1E+7

Number of cells (per processor)

T
im

e
p

er
 c

el
l p

er
 P

C
G

 it
er

at
io

n
 (

n
s)

Alpha, 4PE (meas)
Alpha, 4PE (model)
Alpha, 1PE (meas)
Alpha, 1PE (model)
BG/L (meas)
BG/L (model)

Figure 5

38

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 102 204

Processor count

T
im

e
 (

s
)

total (meas)
total (model)
baroclinic (meas)
baroclinic (model)
barotropic (meas)
barotropic (model)

1024 2048

1

10

100

1000

10000

1 4 16 64 25 10 40

Processor count

T
im

e
 (

s
)

total (meas)
total (model)
baroclinic (meas)
baroclinic (model)
barotropic (meas)
barotropic (model)

256 1024 4096

Figure 6.

39

0.1

1

10

100

1 2 4 8 16 32 64 128 256 512 10242048

Processor count

T
im

e
(s

)
total (meas)
total (model)
baroclinic (meas)
baroclinic (model)
barotropic (meas)
barotropic (model)

Figure 7.

40

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 128 256 512 10242048

Processor count

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
(%

)
barotropic (test)

barotropic (x1)

overall (test)
overall (x1)

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 128 256 512 10242048

Processor count

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
(%

)

barotropic (test)

overall (test)

Figure 8.

41

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 128 256 512 10242048

Processor count

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
(%

)
barotropic (test)

baroclinic (test)

overall (test)

Figure 9.

