
Abstract: Several methods for updating the ghost cell 
regions of large, distributed arrays are described and results 
on their relative efficiencies are presented. It was found that 
no single algorithm provided optimal performance on all 
platforms and that the most efficient update depended on 
the details of the system architecture. 
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1. Introduction 
Calculations on logically regular grids are common in many 
areas of numerical simulation and engineering. Increases in 
computer speed have led to corresponding increases in the 
accuracy and range of application of these calculations; 
however, the trend toward parallel computers has made 
realizing these gains in speed and problem size increasingly 
difficult. For large problems, efficient use of the computer 
requires communication between different processors, 
which complicates the programming model considerably. 
To simplify the creation of parallel programs, higher level 
languages and toolkits have been developed to provide tools 
that bypass the need for explicitly programming message-
passing from one processor to another. Examples are the 
POOMA environment [1], the Overture toolkit [2], and 
KeLP [3]. Typically, the higher the level of abstraction, the 
easier it is to develop code, but performance may not be 
optimal for all, or even many, situations. Lower levels of 
abstraction provide the programmer with more flexibility 
and hence better performance, but at the cost of increased 
consideration of how data is distributed across processors 
and what patterns of data access will lead to optimal 
performance. 
 

This paper describes a new methodology that integrates 
ghost cell capabilities with a library-based shared-memory 
programming model implemented in the context of 
distributed dense arrays. This hybrid approach combines the 
benefits of a shared memory programming model, high-
level abstractions, ease-of-use, implicit communication, and 
a global view of arrays, with the flexibility and performance 
of distributed array libraries that offer ghost cell 
capabilities. This work has been done using the Global 
Array toolkit [4] designed to support the use of ghost cells 
for regular grids. In addition, we will discuss the 
performance issues associated with updating the ghosts 
cells with data from other processors. The Global Array 
(GA) toolkit allows the programmer to create regular arrays 
that are distributed across processors and supplies a 

complete suite of operations to access and manipulate the 
data without the need for programming explicit 
communication calls. These interfaces can be called from 
programs written in Fortran 77, Fortran 90, C, and C++. 
The ghost cell implementation described here is aimed 
specifically at supporting calculations on distributed 
logically regular grids. Because of this focus, the Global 
Arrays have several advantages over other existing systems 
for problems defined on regular grids. The most important 
is that the update operation to fill in the ghosts cells can be 
treated as a collective operation, enabling a multitude of 
optimization techniques. The toolkit also allows ghost cell 
widths to be set to arbitrary values in each dimension, 
thereby allowing programmers to improve performance by 
combining multiple fields into one global array and using 
multiple timesteps between ghost cell updates. Other 
packages have also implemented ghost cell capabilities. 
KeLP builds up the total array from regions associated with 
each processor and communication is handled by creating a 
schedule based on region overlaps. Although this allows for 
more flexible simulation domains, the communication 
between processors is not optimal for large, regular arrays. 
Overture is also based on building up logically rectangular 
regions into complex geometries. Each region is associated 
with a single processor and the toolkit provides routines for 
automatically interpolating and communicating between 
grids in the regions where they are matched or overlap. 
Again, for large regular arrays, communication may not be 
optimal. POOMA is  a fairly high level abstraction and is 
designed primarily to support object-oriented programming. 
None of these packages currently have the availability, 
portability, language independence, and support of Global 
Arrays. 
 

In the following sections, we discuss the technical 
approach, including algorithmic and architectural issues 
influencing the selection of communication protocols, and 
present performance results for two classes of MPP systems 
– one optimized for one-sided communication and the 
second for message-passing. The first is the Cray T3E 
representing the global address space architecture with h/w 
optimization for low-latency and high bandwidth one-sided 
communication. The other is the IBM SP representing a 
cluster architecture based on the commodity SMP nodes 
and the interconnect optimized for message-passing (IBM 
in recent years has added support for one-sided 
communication through the LAPI library; however, that 
capability is implemented on top of the low level message-
passing and Pthreads). Although results are not reported 

 
 

EFFICIENT ALGORITHMS FOR GHOST CELL UPDATES ON TWO 
CLASSES OF MPP ARCHITECTURES 

 
Bruce Palmer and Jarek Nieplocha 

Pacific Northwest National Laboratory 
Richland, WA 99352 

USA 



 2

here, the ghost cell algorithms have also been tested on a 
shared memory platform (SGI) and a Linux cluster. 
Performance results for an actual application that was 
developed based on the described ghost cell interfaces are 
also given. 

2. Technical Approach 
Currently, the decomposition of data representing a large 
array among different processors in the Global Array toolkit 
is non-overlapping. To allow easy access to boundary data 
on neighboring processors, the Global Arrays have been 
extended to include ghost cell regions on each processor. 
The extended Global Arrays now have allocated memory 
for a boundary region that can be filled in with data from 
the adjoining processors. This is illustrated schematically in 
Figure 1. The data in the Global Array can be accessed 
either locally or through the global index space. The Global 
Array toolkit also has been augmented by an update 
operation that can be used to automatically fill in the ghost 
cells with data. Several different implementations of the 
update operation were investigated during this work, and 
performances were compared on a number of different 
platforms.  
 

 
 
 
 
 
 
 
 
 

 
Figure 1.  Schematic illustration of extension of ordinary 
global array (left) to global array with ghost cells (right). 
Heavy solid lines are global array boundaries, light solid lines 
are boundaries of visible data on each processor, dotted lines 
are boundaries of ghost cell data. 

 
Ghost Cell Implementation and Operations  
The bulk of the effort in implementing Global Arrays with 
ghost cells involved the ghost cell update operation. As 
described above, the update operation fills in the ghost cells 
with the visible data residing on neighboring processors. 
Once the update operation is complete, the local data on 
each processor contains the locally held “visible” data plus 
data from the neighboring elements of the Global Array, 
which has been used to fill in the ghost cells. Thus, the local 
data on each processor looks like a chunk of the Global 
Array that is slightly bigger than the chunk of locally held 
visible data. 
 
There are multiple ways of implementing the update 
operation. The most straightforward method is for each 
processor to decide where its visible data needs to go and to 
place that data on each of the neighboring processors using 
a set of “PUT” operations. For a D-dimensional system, this 
requires 3D-1 messages. The implementation of the simple 

PUT based algorithm is illustrated schematically in Figure 
2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic of simple PUT implementation of update 
algorithm in two dimensions. Visible data from central 
processor is transferred in separate messages to neighboring 
processors. 

 
Another way of implementing the update operation is the 
shift algorithm. A variant of this algorithm used in parallel 
implementations of Lagrangian simulations was first 
described by Plimpton [5]. Recently, Ding and He [6] have 
applied a similar algorithm to regular lattices, although they 
did not investigate the efficiency of the update operation. 
The shift algorithm makes use of the fact that after part of 
the update has been performed, some information from 
neighboring processors is held locally and can be included 
in messages to other processors. This cuts down on the total 
number of messages that need to be sent from 3D-1 for the 
simple PUT algorithm to 2D messages for the shift 
algorithm, so latency costs for the shift algorithm should be 
much lower (the total message volume is the same for both 
algorithms). However, it is much more difficult to 
implement the shift algorithm so that it gives good 
performance over a broad range of platforms. 
 
Our shift algorithm is illustrated schematically for a two-
dimensional array in Figure 3. The data is updated 
sequentially for each of the D coordinate directions in a D-
dimensional Global Array. As illustrated in Figure 3, the 
first coordinate update puts data into the ghost cell patches 
immediately adjacent to the east and west sides of the 
locally held visible data block. The second coordinate 
update then takes data from both the locally held visible 
block and the ghost cells to fill in the ghost cell patches to 
the north and south of the visible data block. This has the 
effect of filling in the corner ghost cell blocks with data 
without sending any additional messages . It is important to 
note, however, that for this algorithm to work correctly, 
each processor must verify that it has received all ghost cell 
data from the previous coordinate updates before starting 
the updates along a new coordinate direction 
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Figure 3. Schematic representation of the shift algorithm. (Top) 
First update of ghost cell data in horizontal direction uses only 
visible data on local processor to fill in ghost cell data to the left 
and right. (Bottom) Second update of ghost cell data uses both 
visible and ghost cell data (obtained in previous update) to 
update ghost cell data in processor above and below local 
processor. 

 
To find the most effective way of performing the update 
operation, several different implementations were 
investigated. The first was the simple PUT algorithm, 
designated by S_P. Each processor needs to identify the 
blocks of visible data that must be sent to other processors. 
This data is then placed in the ghost boundary regions of 
neighboring processors using a sequence of PUT calls. 
Because this algorithm is sending only messages containing 
locally held visible data, no synchronization is needed 
between PUT calls and successive calls can be issued as 
soon as the previous PUT call has been initiated. Although 
the simple PUT algorithm requires more messages than the 
shift algorithm, the lack of synchronization during the 
update makes this algorithm quite effective over a range of 
platforms.  
 
All the remaining implementations of the update operation 
are variations of the shift algorithm. As discussed above, 
the shift algorithm requires some kind of synchronization 
during the updates in each of the coordinate directions to 
guarantee that 1) data needed from other processors has 
arrived and 2) no data is being overwritten before it is used. 
However, making an explicit synchronization call between 
each coordinate update can result in significant 
communication overhead. To avoid this, the first 
implementation of the shift algorithm, M_P, attempted to 

eliminate global synchronization during the update by using 
message-passing. Message-passing enforces 
synchronization between sender and receiver and 
guarantees that no update along a coordinate direction 
occurs too early.  
 
The second implementation of the shift algorithm, P_Flag, 
represented an effort to get around problems found for the 
message-passing algorithm on some platforms. Because the 
architecture of the Cray T3E was optimized for one-sided 
communication rather than message-passing, the M_P 
algorithm gave substantially poorer performance than S_P 
on the Cray T3E. A new algorithm using a modified PUT 
operation to perform each update, designated P_Flag, was 
designed to get around this problem. The standard PUT 
operation has no way of signaling the remo te processor that 
the data has arrived. The modified PUT attempts to fix this 
by augmenting the message to include one additional 
pointer to a location on the remote processor and an extra 
integer. The extra integer is a flag that is used to tell the 
remote processor about data arrival. After completing PUTs 
in both the positive and negative directions, each processor 
then checks the flags corresponding to these two PUTs to 
see if the data coming from its neighboring processors has 
arrived. If not, the processor waits until the data shows up 
before starting the updates in the next coordinate direction.  
 
The M_P and P_Flag algorithms have not given any 
consideration to actual configuration of the processors. 
However, most new parallel machines contain several 
processors per node. Within a node, processors can 
communicate optimally using shared memory (direct access 
to data); between nodes processors communicate using 
network protocols. To improve performance on these 
architectures, a hybrid shift algorithm, M_P/P_Flag, was 
created that attempts to optimize communication based on 
whether the target processor is on the same node or not. If 
the processor is on the same node, data is sent using the 
modified PUT operation with flag described above. If it is 
on a different node, message-passing is used. 
 
As described above, none of these implementations has 
synchronization at the beginning or end of the update 
algorithm. Algorithm M_P does not need any additional 
synchronization because the send-receive paradigm 
guarantees that both the source and recipient of the data 
have completed other operations before the update can 
proceed. Using P_Flag and M_P/P_Flag without 
synchronization at the beginning of the update is a little 
riskier and it is possible that ghost cell data may be 
overwritten on a remote processor before that processor has 
had a chance to use it. Algorithm S_P is susceptible to 
writing over data before it is used and there is no guarantee 
for this algorithm that a processor has all of its ghost cell 
data updated before proceeding with the next set of 
operations. Explicit synchronization calls may not be 
necessary if the application itself enforces synchronization 
between updates, but S_P will, in general, require some 
kind of synchronization to guarantee that the ghost cell data 
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is available when needed. It is therefore important when 
assessing the relative merits of the different update 
implementations to consider the effect of synchronizations 
prior to and after the update because they can add 
significantly to the time required to fill in the ghost cell 
data.  

3. Performance Evaluation 
Two different evaluations of the ghost update operation 
were performed. The first was a timing study of the update 
operation on large integer arrays across two different 
platforms, the second was a parallel implementation of a 
two-dimensional lattice Boltzmann simulation. The two 
platforms used in the first study were an IBM SP 
(configured with 16 processors per node) and the Cray T3E. 
The benchmark code was designed so that the amount of 
data on each processor remained constant as the number of 
processors was increased. Calculations were performed in 
both two and three dimensions on arrays filled with 
arbitrary integers. 
 
Timings for the IBM-SP in two dimensions are shown in 
Figure 4. For two dimensions, the simple PUT algorithm is 
about 4 times faster than any of the shift algorithms (the 
shift algorithms all behaved roughly the same). Note that 
for this particular test, good scaling behavior is exhibited by 
a constant time for the update operation as the number of 
processors is increased, and all the algorithms behave well 
in this regard. For three dimensions, the message-passing 
(M_P) and hybrid algorithm (M_P/P_Flag) were roughly 
comparable and faster than the other two algorithms by a 
factor of two. 
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Figure 4.  Update timings for two-dimensional test case on the 
IBM SP 
 
The picture changes significantly if the probable cost of 
synchronization is added to these updates. The timings for 
the two dimensional system, including a synchronization 
call between updates, are shown in Figure 5.  It is 
immediately apparent that all algorithms except M_P have 
significant synchronization costs for larger numbers of 

processors (even more so when one considers that M_P can 
probably be safely used in most cases without any 
additional synchronization whatsoever). These results 
suggest that the M_P implementation is more effective on 
the IBM SP for most cases (the only exceptions seems to be 
the single node case with 16 processors). The results in 
three dimensions (not shown) indicate that M_P is more 
efficient for all numbers of processors.  
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Figure 5. Timings for the update operation with embedded 
synchronization for the two-dimensional test case on the IBM 
SP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Comparison of update timings for two-
dimensional test case on a Cray T3E. 
 
The Cray T3E turns out to be much simpler to evaluate. 
Due to the h/w barrier support, the synchronizations are 
very fast in all cases compared to the time required for the 
update. For this platform, the cost of synchronization can be 
disregarded and only the times required for the update 
operations themselves need to be considered.  The timings 
for the ghost cell update operations in two dimensions are 
shown in Figure 6. The update algorithms are all very well 
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behaved on the Cray and that there is only a minor amount 
of variation in the times with increasing number of 
processors. Furthermore, the P_Flag algorithm is the fastest 
algorithm in two dimensions and for all numbers of 
processors. Similar results are obtained in three dimensions. 
For the Cray T3E, the modified PUT algorithm P_Flag 
appears to be the optimal solution for all problems. 
 

4. Application Experience 
Finally, the Global Arrays with ghost cells were used to 
implement a two-dimensional lattice Boltzmann simulation 
of flow in a lid-driven square cavity [7,8]. The lattice 
Boltzmann method is an explicit technique for simulating 
fluid flow. It is therefore local and each node only needs 
information from nearest and next -nearest neighbor nodes 
in order to perform an update. Both the nearest and next -
nearest neighbors can be accessed using a ghost cell region 
that is one node wide. This algorithm fits neatly into the 
Global Array with ghost cells model. Each node update is 
followed by a ghost cell update that communicates new 
values of the node across processor boundaries. The global 
address space of the Global Arrays makes it easy to set up 
the problem and apply boundary conditions by allowing 
straightforward conversion between local and global 
indices. 
  
The lid-driven cavity is a square region completely filled 
with fluid that has “stick” boundary conditions on three 
sides of the cavity and a constant velocity parallel to the 
surface on the fourth side. On the IBM SP, the message-
passing algorithm M_P was used for the ghost cell updates. 
Timings are shown in Figure 6 for a simulation on a 1024 x 
1024 lattice over 5000 steps at a Reynolds number of about 
850. The plot of total computation time shows reas onably 
linear behavior over the entire range of processors, although 
it begins to flatten out noticeably at the end. The update 
time shows a very large drop in going from 8 to 16 
processors and then flattens out substantially, but it remains 
a relatively small fraction of the update time for all number 
of processors. Note that for this test the problem size is 
fixed and the amount of data per processor decreases as the 
number of processors is increased, so the decrease in update 
times is expected. A velocity magnitude plot of the system 
after a longer simulation of 100,000 steps is also shown in 
Figure 7. 
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Figure 7. (Top) Timings for a 5000 step lattice 
Boltzmann simulation on 1024 x 1024 grid. Both the total 
time for the lattice Boltzmann calculation and the time 
required to update the ghost cells are shown. (Bottom) 
Velocity magnitude after 100,000 steps. The top surface 
is moving at constant velocity to the right. 

 

5. Conclusions  
Several algorithms for updating ghost cell regions were 
presented and analyzed. It was found that the optimal 
algorithm depends on the characteristics of the particular 
computer system being employed and, to a lesser extent, the 
size and dimensionality of the problem. Several of the 
update algorithms require synchronization either before or 
after the update and these synchronizations can 
significantly affect the overall performance of the update 
operation. The current implementation of the ghost cell 
update operation in the Global Array toolkit allows the user 
to control the synchronization semantics embedded in the 
update operation. Incorporation of the ghost cell routines 
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into a lattice Boltzmann code indicates that the ghost cells 
perform quite well in an actual application. 
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