
Abstract: Several methods for updating the ghost cell
regions of large, distributed arrays are described and results
on their relative efficiencies are presented. It was found that
no single algorithm provided optimal performance on all
platforms and that the most efficient update depended on
the details of the system architecture.

Keywords
ghost cells, distributed arrays, update algorithms

1. Introduction
Calculations on logically regular grids are common in many
areas of numerical simulation and engineering. Increases in
computer speed have led to corresponding increases in the
accuracy and range of application of these calculations;
however, the trend toward parallel computers has made
realizing these gains in speed and problem size increasingly
difficult. For large problems, efficient use of the computer
requires communication between different processors,
which complicates the programming model considerably.
To simplify the creation of parallel programs, higher level
languages and toolkits have been developed to provide tools
that bypass the need for explicitly programming message-
passing from one processor to another. Examples are the
POOMA environment [1], the Overture toolkit [2], and
KeLP [3]. Typically, the higher the level of abstraction, the
easier it is to develop code, but performance may not be
optimal for all, or even many, situations. Lower levels of
abstraction provide the programmer with more flexibility
and hence better performance, but at the cost of increased
consideration of how data is distributed across processors
and what patterns of data access will lead to optimal
performance.

This paper describes a new methodology that integrates
ghost cell capabilities with a library-based shared-memory
programming model implemented in the context of
distributed dense arrays. This hybrid approach combines the
benefits of a shared memory programming model, high-
level abstractions, ease-of-use, implicit communication, and
a global view of arrays, with the flexibility and performance
of distributed array libraries that offer ghost cell
capabilities. This work has been done using the Global
Array toolkit [4] designed to support the use of ghost cells
for regular grids. In addition, we will discuss the
performance issues associated with updating the ghosts
cells with data from other processors. The Global Array
(GA) toolkit allows the programmer to create regular arrays
that are distributed across processors and supplies a

complete suite of operations to access and manipulate the
data without the need for programming explicit
communication calls. These interfaces can be called from
programs written in Fortran 77, Fortran 90, C, and C++.
The ghost cell implementation described here is aimed
specifically at supporting calculations on distributed
logically regular grids. Because of this focus, the Global
Arrays have several advantages over other existing systems
for problems defined on regular grids. The most important
is that the update operation to fill in the ghosts cells can be
treated as a collective operation, enabling a multitude of
optimization techniques. The toolkit also allows ghost cell
widths to be set to arbitrary values in each dimension,
thereby allowing programmers to improve performance by
combining multiple fields into one global array and using
multiple timesteps between ghost cell updates. Other
packages have also implemented ghost cell capabilities.
KeLP builds up the total array from regions associated with
each processor and communication is handled by creating a
schedule based on region overlaps. Although this allows for
more flexible simulation domains, the communication
between processors is not optimal for large, regular arrays.
Overture is also based on building up logically rectangular
regions into complex geometries. Each region is associated
with a single processor and the toolkit provides routines for
automatically interpolating and communicating between
grids in the regions where they are matched or overlap.
Again, for large regular arrays, communication may not be
optimal. POOMA is a fairly high level abstraction and is
designed primarily to support object-oriented programming.
None of these packages currently have the availability,
portability, language independence, and support of Global
Arrays.

In the following sections, we discuss the technical
approach, including algorithmic and architectural issues
influencing the selection of communication protocols, and
present performance results for two classes of MPP systems
– one optimized for one-sided communication and the
second for message-passing. The first is the Cray T3E
representing the global address space architecture with h/w
optimization for low-latency and high bandwidth one-sided
communication. The other is the IBM SP representing a
cluster architecture based on the commodity SMP nodes
and the interconnect optimized for message-passing (IBM
in recent years has added support for one-sided
communication through the LAPI library; however, that
capability is implemented on top of the low level message-
passing and Pthreads). Although results are not reported

EFFICIENT ALGORITHMS FOR GHOST CELL UPDATES ON TWO
CLASSES OF MPP ARCHITECTURES

Bruce Palmer and Jarek Nieplocha

Pacific Northwest National Laboratory
Richland, WA 99352

USA

 2

here, the ghost cell algorithms have also been tested on a
shared memory platform (SGI) and a Linux cluster.
Performance results for an actual application that was
developed based on the described ghost cell interfaces are
also given.

2. Technical Approach
Currently, the decomposition of data representing a large
array among different processors in the Global Array toolkit
is non-overlapping. To allow easy access to boundary data
on neighboring processors, the Global Arrays have been
extended to include ghost cell regions on each processor.
The extended Global Arrays now have allocated memory
for a boundary region that can be filled in with data from
the adjoining processors. This is illustrated schematically in
Figure 1. The data in the Global Array can be accessed
either locally or through the global index space. The Global
Array toolkit also has been augmented by an update
operation that can be used to automatically fill in the ghost
cells with data. Several different implementations of the
update operation were investigated during this work, and
performances were compared on a number of different
platforms.

Figure 1. Schematic illustration of extension of ordinary
global array (left) to global array with ghost cells (right).
Heavy solid lines are global array boundaries, light solid lines
are boundaries of visible data on each processor, dotted lines
are boundaries of ghost cell data.

Ghost Cell Implementation and Operations
The bulk of the effort in implementing Global Arrays with
ghost cells involved the ghost cell update operation. As
described above, the update operation fills in the ghost cells
with the visible data residing on neighboring processors.
Once the update operation is complete, the local data on
each processor contains the locally held “visible” data plus
data from the neighboring elements of the Global Array,
which has been used to fill in the ghost cells. Thus, the local
data on each processor looks like a chunk of the Global
Array that is slightly bigger than the chunk of locally held
visible data.

There are multiple ways of implementing the update
operation. The most straightforward method is for each
processor to decide where its visible data needs to go and to
place that data on each of the neighboring processors using
a set of “PUT” operations. For a D-dimensional system, this
requires 3D-1 messages. The implementation of the simple

PUT based algorithm is illustrated schematically in Figure
2.

Figure 2. Schematic of simple PUT implementation of update
algorithm in two dimensions. Visible data from central
processor is transferred in separate messages to neighboring
processors.

Another way of implementing the update operation is the
shift algorithm. A variant of this algorithm used in parallel
implementations of Lagrangian simulations was first
described by Plimpton [5]. Recently, Ding and He [6] have
applied a similar algorithm to regular lattices, although they
did not investigate the efficiency of the update operation.
The shift algorithm makes use of the fact that after part of
the update has been performed, some information from
neighboring processors is held locally and can be included
in messages to other processors. This cuts down on the total
number of messages that need to be sent from 3D-1 for the
simple PUT algorithm to 2D messages for the shift
algorithm, so latency costs for the shift algorithm should be
much lower (the total message volume is the same for both
algorithms). However, it is much more difficult to
implement the shift algorithm so that it gives good
performance over a broad range of platforms.

Our shift algorithm is illustrated schematically for a two-
dimensional array in Figure 3. The data is updated
sequentially for each of the D coordinate directions in a D-
dimensional Global Array. As illustrated in Figure 3, the
first coordinate update puts data into the ghost cell patches
immediately adjacent to the east and west sides of the
locally held visible data block. The second coordinate
update then takes data from both the locally held visible
block and the ghost cells to fill in the ghost cell patches to
the north and south of the visible data block. This has the
effect of filling in the corner ghost cell blocks with data
without sending any additional messages . It is important to
note, however, that for this algorithm to work correctly,
each processor must verify that it has received all ghost cell
data from the previous coordinate updates before starting
the updates along a new coordinate direction

 3

Figure 3. Schematic representation of the shift algorithm. (Top)
First update of ghost cell data in horizontal direction uses only
visible data on local processor to fill in ghost cell data to the left
and right. (Bottom) Second update of ghost cell data uses both
visible and ghost cell data (obtained in previous update) to
update ghost cell data in processor above and below local
processor.

To find the most effective way of performing the update
operation, several different implementations were
investigated. The first was the simple PUT algorithm,
designated by S_P. Each processor needs to identify the
blocks of visible data that must be sent to other processors.
This data is then placed in the ghost boundary regions of
neighboring processors using a sequence of PUT calls.
Because this algorithm is sending only messages containing
locally held visible data, no synchronization is needed
between PUT calls and successive calls can be issued as
soon as the previous PUT call has been initiated. Although
the simple PUT algorithm requires more messages than the
shift algorithm, the lack of synchronization during the
update makes this algorithm quite effective over a range of
platforms.

All the remaining implementations of the update operation
are variations of the shift algorithm. As discussed above,
the shift algorithm requires some kind of synchronization
during the updates in each of the coordinate directions to
guarantee that 1) data needed from other processors has
arrived and 2) no data is being overwritten before it is used.
However, making an explicit synchronization call between
each coordinate update can result in significant
communication overhead. To avoid this, the first
implementation of the shift algorithm, M_P, attempted to

eliminate global synchronization during the update by using
message-passing. Message-passing enforces
synchronization between sender and receiver and
guarantees that no update along a coordinate direction
occurs too early.

The second implementation of the shift algorithm, P_Flag,
represented an effort to get around problems found for the
message-passing algorithm on some platforms. Because the
architecture of the Cray T3E was optimized for one-sided
communication rather than message-passing, the M_P
algorithm gave substantially poorer performance than S_P
on the Cray T3E. A new algorithm using a modified PUT
operation to perform each update, designated P_Flag, was
designed to get around this problem. The standard PUT
operation has no way of signaling the remo te processor that
the data has arrived. The modified PUT attempts to fix this
by augmenting the message to include one additional
pointer to a location on the remote processor and an extra
integer. The extra integer is a flag that is used to tell the
remote processor about data arrival. After completing PUTs
in both the positive and negative directions, each processor
then checks the flags corresponding to these two PUTs to
see if the data coming from its neighboring processors has
arrived. If not, the processor waits until the data shows up
before starting the updates in the next coordinate direction.

The M_P and P_Flag algorithms have not given any
consideration to actual configuration of the processors.
However, most new parallel machines contain several
processors per node. Within a node, processors can
communicate optimally using shared memory (direct access
to data); between nodes processors communicate using
network protocols. To improve performance on these
architectures, a hybrid shift algorithm, M_P/P_Flag, was
created that attempts to optimize communication based on
whether the target processor is on the same node or not. If
the processor is on the same node, data is sent using the
modified PUT operation with flag described above. If it is
on a different node, message-passing is used.

As described above, none of these implementations has
synchronization at the beginning or end of the update
algorithm. Algorithm M_P does not need any additional
synchronization because the send-receive paradigm
guarantees that both the source and recipient of the data
have completed other operations before the update can
proceed. Using P_Flag and M_P/P_Flag without
synchronization at the beginning of the update is a little
riskier and it is possible that ghost cell data may be
overwritten on a remote processor before that processor has
had a chance to use it. Algorithm S_P is susceptible to
writing over data before it is used and there is no guarantee
for this algorithm that a processor has all of its ghost cell
data updated before proceeding with the next set of
operations. Explicit synchronization calls may not be
necessary if the application itself enforces synchronization
between updates, but S_P will, in general, require some
kind of synchronization to guarantee that the ghost cell data

 4

is available when needed. It is therefore important when
assessing the relative merits of the different update
implementations to consider the effect of synchronizations
prior to and after the update because they can add
significantly to the time required to fill in the ghost cell
data.

3. Performance Evaluation
Two different evaluations of the ghost update operation
were performed. The first was a timing study of the update
operation on large integer arrays across two different
platforms, the second was a parallel implementation of a
two-dimensional lattice Boltzmann simulation. The two
platforms used in the first study were an IBM SP
(configured with 16 processors per node) and the Cray T3E.
The benchmark code was designed so that the amount of
data on each processor remained constant as the number of
processors was increased. Calculations were performed in
both two and three dimensions on arrays filled with
arbitrary integers.

Timings for the IBM-SP in two dimensions are shown in
Figure 4. For two dimensions, the simple PUT algorithm is
about 4 times faster than any of the shift algorithms (the
shift algorithms all behaved roughly the same). Note that
for this particular test, good scaling behavior is exhibited by
a constant time for the update operation as the number of
processors is increased, and all the algorithms behave well
in this regard. For three dimensions, the message-passing
(M_P) and hybrid algorithm (M_P/P_Flag) were roughly
comparable and faster than the other two algorithms by a
factor of two.

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250 300

S_P
M_P
P_Flag
M_P/P_Flag

Number of Processors
Figure 4. Update timings for two-dimensional test case on the
IBM SP

The picture changes significantly if the probable cost of
synchronization is added to these updates. The timings for
the two dimensional system, including a synchronization
call between updates, are shown in Figure 5. It is
immediately apparent that all algorithms except M_P have
significant synchronization costs for larger numbers of

processors (even more so when one considers that M_P can
probably be safely used in most cases without any
additional synchronization whatsoever). These results
suggest that the M_P implementation is more effective on
the IBM SP for most cases (the only exceptions seems to be
the single node case with 16 processors). The results in
three dimensions (not shown) indicate that M_P is more
efficient for all numbers of processors.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 50 100 150 200 250 300

S_P(sync)
M_P(sync)
P_Flag(sync)
M_P/P_Flag(sync)

Number of Processors
Figure 5. Timings for the update operation with embedded
synchronization for the two-dimensional test case on the IBM
SP.

Figure 6. Comparison of update timings for two-
dimensional test case on a Cray T3E.

The Cray T3E turns out to be much simpler to evaluate.
Due to the h/w barrier support, the synchronizations are
very fast in all cases compared to the time required for the
update. For this platform, the cost of synchronization can be
disregarded and only the times required for the update
operations themselves need to be considered. The timings
for the ghost cell update operations in two dimensions are
shown in Figure 6. The update algorithms are all very well

0

1

2

3

4

5

0 20 40 60 80 100 120 140

S_P
M_P
P_Flag
M_P/P_Flag

Number of Processors

 5

behaved on the Cray and that there is only a minor amount
of variation in the times with increasing number of
processors. Furthermore, the P_Flag algorithm is the fastest
algorithm in two dimensions and for all numbers of
processors. Similar results are obtained in three dimensions.
For the Cray T3E, the modified PUT algorithm P_Flag
appears to be the optimal solution for all problems.

4. Application Experience
Finally, the Global Arrays with ghost cells were used to
implement a two-dimensional lattice Boltzmann simulation
of flow in a lid-driven square cavity [7,8]. The lattice
Boltzmann method is an explicit technique for simulating
fluid flow. It is therefore local and each node only needs
information from nearest and next -nearest neighbor nodes
in order to perform an update. Both the nearest and next -
nearest neighbors can be accessed using a ghost cell region
that is one node wide. This algorithm fits neatly into the
Global Array with ghost cells model. Each node update is
followed by a ghost cell update that communicates new
values of the node across processor boundaries. The global
address space of the Global Arrays makes it easy to set up
the problem and apply boundary conditions by allowing
straightforward conversion between local and global
indices.

The lid-driven cavity is a square region completely filled
with fluid that has “stick” boundary conditions on three
sides of the cavity and a constant velocity parallel to the
surface on the fourth side. On the IBM SP, the message-
passing algorithm M_P was used for the ghost cell updates.
Timings are shown in Figure 6 for a simulation on a 1024 x
1024 lattice over 5000 steps at a Reynolds number of about
850. The plot of total computation time shows reas onably
linear behavior over the entire range of processors, although
it begins to flatten out noticeably at the end. The update
time shows a very large drop in going from 8 to 16
processors and then flattens out substantially, but it remains
a relatively small fraction of the update time for all number
of processors. Note that for this test the problem size is
fixed and the amount of data per processor decreases as the
number of processors is increased, so the decrease in update
times is expected. A velocity magnitude plot of the system
after a longer simulation of 100,000 steps is also shown in
Figure 7.

100

1000

10000

1 10 100 1000

Total

Update

Number of Processors

Figure 7. (Top) Timings for a 5000 step lattice
Boltzmann simulation on 1024 x 1024 grid. Both the total
time for the lattice Boltzmann calculation and the time
required to update the ghost cells are shown. (Bottom)
Velocity magnitude after 100,000 steps. The top surface
is moving at constant velocity to the right.

5. Conclusions
Several algorithms for updating ghost cell regions were
presented and analyzed. It was found that the optimal
algorithm depends on the characteristics of the particular
computer system being employed and, to a lesser extent, the
size and dimensionality of the problem. Several of the
update algorithms require synchronization either before or
after the update and these synchronizations can
significantly affect the overall performance of the update
operation. The current implementation of the ghost cell
update operation in the Global Array toolkit allows the user
to control the synchronization semantics embedded in the
update operation. Incorporation of the ghost cell routines

 6

into a lattice Boltzmann code indicates that the ghost cells
perform quite well in an actual application.

6. Acknowledgment
This work was performed under the auspices of the U.S.
Department of Energy (DOE) at Pacific Northwest National
Laboratory (PNNL) operated for DOE by Battelle
Memorial Institute. This work was supported by the Center
for Programming Models for Scalable Parallel Computing,
sponsored by the Mathematical, Information, and
Computational Science Division of DOE’s Office of
Computational and Technology Research. The Molecular
Science Computing Facility at PNNL, and National Energy
Research Supercomputing Center provided computational
resources for this work.

References
[1] J.A. Crotinger, J. Cummings, S. Haney, W. Humphrey,
S. Karmesin, J. Reynders, S. Smith, and T.J. Williams.
“Generic Programming in POOMA and PETE.” Generic
Programming Lect. Notes in Comput. Sci., 1766, 218,
2000.
[2] D.L. Brown, W.D. Henshaw, and D.J. Quinlan.
“Overture: An Object-Oriented Framework for Solving
Partial Differential Equations on Overlappling Grids.”
SIAM Conference on Object-Oriented Methods for
Scientific Computing, 1999.
[3] S. Baden, P. Collela, D. Shalit, and B. Van Straalen.
“Abstract Kelp”, Proc. 2001 International Conference on
Computational Science, 2001.
[4] J. Nieplocha, R.J. Harrison, R. Littlefield. “Global
Arrays: Shared Memory Programming Model for
Distributed Memory Systems ”, Supercomputing’94, 1994.
[5] S. Plimpton. Fast Parallel Algorithms for Short-Range
Molecular Dynamics. J. Comput. Phys.,117,1, 1995.
[6] C. Ding and Y. He. “A Ghost Cell Expansion Method
for Reducing Communications in Solving PDE Problems”,
Supercomputing 2001, 2001.
[7] S. Hou, Q. Zou, S. Chen, G. Doolen, and A.C. Cogley.
“Simulation of Cavity Flow by the Lattice Boltzmann
Method.” J. Comput. Phys., 118, 329, 1995.
[8] B.J. Palmer and D.R. Rector. “Lattice Boltzmann
Algorithm for Simulating Thermal Flow in Compressible
Fluids.” J. Comput. Phys., 161, 1, 2000.

