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Abstract

The attractivity properties of the set of equilibria of a special class of homogeneous dynamic
economic systems are examined. The nonlinearity of the models and the presence of eigenvalues
with zero real parts make the application of the classical theory impossible. Some principles
of the modern theory of dynamical systems and invariant manifolds are applied, and the local
attractivity of the set of equilibria is veri4ed under mild conditions. As an application, special
labor-managed oligopolies are investigated.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic economic systems have been analyzed by many researchers during the last
decade. Among the di9erent model types the most attention has been given to dynamic
oligopolies. Okuguchi [11] presented a comprehensive summary of single-product
oligopolies without and with product di9erentiation and also gave a detailed analy-
sis of earlier works on the subject. The existence and uniqueness of the equilibrium is
examined and the stability of the equilibrium is analyzed with discrete and continuous
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time scales. The extensions of the models and results for multi-product oligopolies
were presented in Okuguchi and Szidarovszky [12], where the di9erent variants of the
Cournot model are also discussed including labor-managed oligopolies, rent-seeking
games, and models with production adjustment costs.
In this paper the asymptotic behavior of a special labor-managed oligopoly will be

examined. The problem can be formulated as follows.
Let us consider an n-4rm industry, where all 4rms are labor-managed. Let us assume

the hyperbolic price function

p(s) =
b
s
;

where s is the total output of the industry, and linear production functions li, and linear
labor-independent cost functions ci:

li(xi) = aixi and ci(xi) = �ixi + �i;

where xi is the output of 4rm i (i = 1; : : : ; n).
Economic interpretation requires that all parameters b, ai, �i, and �i be positive. The

surplus per unit of labor for 4rm i is given by

�i(x1; : : : ; xn) =
xip(s)− wli(xi)− ci(xi)

li(xi)

=
b

ai(xi + Qi)
− w − �i

ai
− �i

aixi
; (1.1)

where Qi =
∑

l�=i xl is the output of the rest of the industry, and w is the competitive
wage rate. This economic situation can be modeled as an n-person game where the set
of strategies for each 4rm is the interval Xi = [0;∞) and the payo9 function of 4rm i
is �i.
The existence of positive equilibria will be 4rst examined and their asymptotic be-

havior will then be analyzed. We will show that there are in4nitely many positive
non-isolated equilibria under appropriate conditions. As the equilibrium set is con-
nected, the classical Lyapunov theory cannot be used to analyze the asymptotic behav-
ior of the equilibria. It will turn out that the modern theory of dynamical systems and
invariant manifolds serves as a useful technique in our case.
This paper is developed as follows. In Section 2 we will examine the existence of

equilibria and give a complete description of the equilibrium set. Then the dynamic
extension of the model will be introduced with continuous time scales. The major
attractivity properties of the equilibria will be formulated in Section 3. In Section 4 we
will introduce and discuss the main theoretical issues and then apply these results in
Section 5 to analyze the asymptotic behavior of the equilibrium set in a special class of
homogeneous systems that includes our dynamic model as a special case. In Section 6
we will present an elementary proof of the strong attractivity part of our main result
based on simple techniques in solving homogeneous systems.
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2. Existence of positive equilibria

Let us consider the Nash–Cournot equilibrium of an n-person game. It is a vector
of simultaneous strategies (in our case a vector of production levels) which can be
considered as a steady state in the sense that no player can improve its payo9 by
unilaterally moving away from the equilibrium. In the dynamic extensions, the Nash–
Cournot equilibria are usually the steady states of the dynamic systems [10,12].
For each 4rm i and Qi ¿ 0, the best response can be obtained as

xi(Qi) = argmax
xi¿0

{
b

ai(xi + Qi)
− w − �i

ai
− �i

aixi

}
:

Assuming an interior optimum, the 4rst-order conditions are given in the following
way:

− b
ai (xi + Qi)2

+
�i

aix2i
= 0;

which can be written as

xi =

√
�i√

b−√�i
Qi (i = 1; 2; : : : ; n): (2.1)

In order to ensure that xi ¿ 0, we have to assume that �i ¡b. The second-order con-
ditions are always satis4ed since at the optimum

2b
ai(xi + Qi)3

− 2�i

aix3i
=

2�i

aix3i

(√
�i

b
− 1

)
¡ 0:

From Eq. (2.1) we have

s= xi + Qi = xi

(
1 +

√
b−√�i√

�i

)
= xi

√
b√
�i

and 4nally,

1 =
∑n

i=1 xi
s

=
∑n

i=1

√
�i√

b
:

The payo9 of 4rm i at any equilibrium is

�i(x̂1; : : : ; x̂n) =
b
aiŝ

− w − �i

ai
− �i

aix̂i
=

b
aiŝ

(
1−

√
�i√
b

)
− w − �i

ai
;

which is positive for all i if and only if ŝ is suIciently small:

ŝ¡min
i

{√
b(
√
b−√�i)

aiw + �i

}
: (2.2)

Thus we have proved the following:
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Proposition 2.1. Assume that �i ¡b for all ;rms. Then positive equilibria of the
labor-managed oligopoly exists, if and only if

n∑
i=1

√
�i =

√
b:

If this condition is satis;ed then x̂i =
√

�i=
√
bŝ (i = 1; : : : ; n) is an equilibrium with

any positive ŝ satisfying relation (2.2), and all positive equilibria can be obtained in
this way.

3. The dynamic model and attractivity analysis

Let us assume the continuous time scale and that at each time period each 4rm
adjusts its output proportionally to its marginal pro4t. The resulting dynamic model is

ẋi = ki

(
− b

ais2
+

�i

aix2i

)
(i = 1; : : : ; n); (3.1)

where the speed of adjustment ki ¿ 0 is a given constant for each i. The 4rst step in
analyzing the asymptotic behavior of the system is to determine the Jacobian of the
right-hand sides. Simple di9erentiation shows that at any equilibrium

J =
2
ŝ3




k1

(
b
a1

− �1ŝ3

a1x̂31

)
k1

b
a1

· · · k1
b
a1

k2
b
a2

k2

(
b
a2

− �2ŝ3

a2x̂32

)
· · · k2

b
a2

...
...

...
...

kn
b
an

kn
b
an

· · · kn

(
b
an

− �nŝ3

anx̂3n

)




=
2
ŝ3

(D+ a1T);

where

D= diag
(
−k1

�1ŝ3

a1x̂31
; : : : ;−kn

�nŝ3

anx̂3n

)
; a =

(
k1

b
a1

; : : : ; kn
b
an

)T

and 1= (1; : : : ; 1)T:

After neglecting the factor 2=ŝ3, the characteristic polynomial of matrix D+a1T can
be written as

det(D− �I + a1T) = det(D− �I) · det(I + (D− �I)−1a1T)

=
n∏

i=1

(
−ki

�iŝ3

aix̂3i
− �
)(

1 +
n∑

i=1

kib=ai

−ki(�iŝ3=aix̂3i )− �

)
; (3.2)
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Fig. 1. The graph of function g.

where we used the Morrison’s identity [5].

det(I + uvT) = 1 + vTu

with u; v∈Rn and I being the n×n identity matrix. This relation can be easily proved by
using the 4nite induction with respect to n. The roots of the 4rst product are negative.
In order to examine the locations of the roots of the second factor we introduce function
(Fig. 1)

g(�) =
n∑

i=1

kib=ai

−ki(�iŝ3=aix̂3i )− �
:

It is easy to see that it satis4es the following properties:

g(0) =−1; lim
�→±∞

g(�) = 0; lim
�→−ki(�i ŝ3=ai x̂3i )−0

g(�) = +∞;

lim
�→−ki(�i ŝ3=ai x̂3i )+0

g(�) =−∞

and

g′(�) =
n∑

i=1

kib=ai

(−ki(�iŝ3=aix̂3i )− �)2
¿ 0:

These relations and the fact that the equation g(�)+1=0 is equivalent to a polynomial
equation of degree n imply that all roots of the second factor of (3.2) are real: zero
is a single root, and all other roots are negative by the Intermediate Value Theorem.
The presence of a zero eigenvalue shows that based only on eigenvalue analysis, the
asymptotic properties of any equilibrium are undetermined. Since the set of equilibria
is an in4nite connected set, Lyapunov theory cannot be applied either. As we will
demonstrate in the next section, the modern theory of dynamical systems may serve
as a useful tool to analyze the attractivity of the equilibrium set of this system and in
general, of a certain class of homogeneous systems.
The main result can be summarized as
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Fig. 2. The illustration of Theorem 3.1 in the case that n = 2; k1=a1 = 1; k2=a2 = 0:5, �1 = 25; �2 = 9,
and b = 64.

Theorem 3.1. Let us assume that the conditions of Proposition 2.1 are satis;ed. Then
in dynamical system (3.1) (Fig. 2)

1. The set of equilibria is an open ray starting from the origin, given by the para-
metric equation

xi =

√
�i√
b

s

where s¿ 0 and i = 1; : : : ; n.
2. The ray in 1 is a strongly attracting set, i.e., any point near the ray is attracted

to some particular point on the ray.
3. The basin of attraction contains a cone which is centered at the ray in 1.
4. At each point of the ray in 1, there is a stable manifold transversing the ray.

These stable manifolds are mutually disjoint. They are C1-continuous depending
on the points on the ray. Furthermore, the cone described in 3 can be partitioned
into the union of the local stable manifolds.

4. Mathematical preliminaries

In this section, we are going to review some basic concepts and then introduce the
relevant results of the modern theory of dynamical systems. For further details the
reader can refer to the literature, e.g., see [1–4,6–9]. It is worthwhile to point out that
most of the results remain valid for both maps and Nows.
An n-dimensional topological manifold M is a set of points that locally looks like

Rn via an atlas. Namely, for each x∈M , there exists a neighborhood U of x and a
homeomorphism h, such that h maps U to an open ball B ⊂ Rn. A pair of (U; h) is
called a chart or a system of local coordinates. A collection of charts is called an atlas.
For any two charts (U1; h1) and (U2; h2) associated to the same point x, the coordinate
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change h2 ◦ h−1
1 is a homeomorphism on h1(U1 ∩ U2) ⊂ B1. By gathering all charts

compatible with the present ones, a unique maximal atlas is de4ned. If h2 ◦ h−1
1 is r

times continuously di9erentiable for every two charts then the resulting atlas is called
a Cr-atlas and the resulting manifold is called a Cr-manifold. A k-dimensional (k6 n)
submanifold V of M is itself a di9erentiable manifold as well as a subset of M such
that the maximal atlas of M contains a chart (U; h) for which the induced map h|U∩V

on U ∩ V maps to Rk × {0} ⊂ Rn, and de4nes charts for V compatible with the
di9erentiable structure of V [4,9].
At each point x∈M , there is an n-dimensional linear space TxM , called the tangent

space of M at point x, attached to M at x. Each tangent vector v in TxM represents an
equivalence class of curves through x in M such that in any local coordinate system,
v is tangent to all these curves at x in the Euclidean space. The disjoint union (or
collection) of all these tangent spaces is called the tangent bundle of M , denoted as
TM [4,9].
A Riemannian manifold is a di9erentiable manifold with an inner product gx(·; ·)

on each tangent space, which depends smoothly on the base point. The collection
of the inner products along with the di9erentiable structure is called a Riemannian
structure. If the phase “inner product” is replaced with “norm” in the above de4nition,
the corresponding manifold is called a Finsler manifold and the collection of the norms
along with the di9erentiable structure is called a Finsler structure [4,9].
A continuous dynamical system is a continuous time evolution process occurring in

some phase space. Let the phase space M be a di9erentiable manifold of dimension
n. A Now is the time evolution given by a di9erentiable function F(x; t) = ’t(x),
x∈M; t ∈R, which satis4es the group composition property ’t ◦ ’t = ’t+s. When we
4x x∈M and vary t, we obtain a parameterized di9erentiable curve, which is called
the Now line with initial condition x. Let f(x) be the tangent vector to this curve at
t = 0, i.e., at x. The map x → f(x) forms a di9erentiable vector 4eld on M in the
tangent bundle. Note: x∈M and f(x)∈TxM . Thus we have constructed a di9erential
equation system

dx
dt

= f(x); (4.1)

to which the Now ’t(x) is a solution. The local existence and uniqueness of the
solution can be guaranteed by some mild conditions on the vector 4eld f(x), for
instance, continuous di9erentiability. If the solution exists for all real values of t, then
the vector 4eld is called complete. Accordingly, if the solution exists for all positive
(negative) values of t, then the vector 4eld is called forward (backward) semi-complete.
An example of a complete vector 4eld is the one de4ned on a closed compact manifold.
An example of a forward semi-complete vector 4eld is the one in dynamical system
(3.1). The solution to (3.1) with initial point near an axis reaches the axis within a
4nite backward time period.
An equilibrium x̂ of system (4.1) is the initial condition whose Now line is only

a point, that is, ’t(x̂) = x̂ for all t or, equivalently, f(x̂) = 0. An equilibrium x̂ is
asymptotically stable if for any #¿ 0 there exists a neighborhood of x̂ such that for
any initial condition x chosen in this neighborhood the Now line ’t(x) lies within the
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ball B(x̂; #) and limt→∞ ’t(x) =x̂. Similarly, one can de4ne the asymptotic instability
by using the backward time t ¡ 0 and let t → −∞.
An invariant set, V , of a Now ’t(x) in M is the set where any Now initiated in it

will stay in it in both forward and backward time, i.e., for any x∈V , ’t(x)∈V for
all t. Especially, V is called invariant manifold if V is also a submanifold of M . It is
easy to see an invariant manifold is tangent to the corresponding vector 4eld at each
of its points [3]. An invariant set V is called attractive (or repulsive) if there exists a
neighborhood U of V , such that for any x∈U , ’t(x) converges to V as t → ∞ (or
t → −∞). The set of all points which are attracted (or repulsed) by V is called the
basin of attraction (or repulsion) of V [1]. V is called strongly attractive (or repulsive)
if ’t(x) converges to some point in V for any initial condition x in the basin of V as
t → ∞ (or t → −∞).
A stable manifold WS(x̂) of a Now ’t(x) at an equilibrium x̂ is a submanifold of M

such that: (1) it is an invariant set of Now ’t(x), (2) it is classi4ed as the set of points
x, where ’t(x) → x̂ exponentially as t → ∞. Replacing t → ∞ with t → −∞, we
get the de4nition of an unstable manifold Wu(x̂) of a Now ’t(x) at an equilibrium x̂.

As a well-known fact, the local stability and instability of a Now at an equilibrium is
determined by the behavior of the local linearization of the Now at the equilibrium, by
comparing the magnitudes of the eigenvalues of D’t(x), the Jacobian or the derivative
of ’t with respect to x, at x̂ to 1. This is equivalent to the comparison of the real
parts of the eigenvalues of Df(x̂), the Jacobian of f at x̂, to zero in system (4.1), since
it is easy to verify that D’t(x̂) = exp(Df(x̂)t). A suIcient condition for asymptotic
stability (instability) is that Re(�i)¡ 0 (¿ 0) for every eigenvalue �i of Df(x̂).

In stability theory, equivalence relations are a frequently used tool. We next introduce
two special equivalence relations which are called Now equivalence (or conjugacy) and
orbit equivalence.
Two Cr Nows ’t :M → M , and  t :N → N are said to be Cm (m6 r) >ow

equivalent or conjugate if there exists a Cm di9eomorphism h :M → N such that
’t = h−1 ◦  t ◦ h for all t ∈R. Usually, h is called a conjugacy. If h is only a Cm onto
mapping and satis4es h ◦ ’t =  t ◦ h, then ’t and  t are said to be semi-conjugate,
and h is called a semi-conjugacy.
Note that conjugacy or semi-conjugacy can be viewed as coordinate change, as it is

illustrated in Fig. 3.
A Now  t on M is a time change of another Now ’t if for each x∈M the orbits

O’(x) = {’t(x)}t∈R and O (x) = { t(x)}t∈R coincide and the orientations given by
the change of t in the positive direction are the same.
Two Cr Nows ’t :M → M , and  t :N → N are said to be Cm (m6 r) orbit

equivalent if there exists a Cm di9eomorphism h :M → N such that +t = h−1 ◦  t ◦ h
is a time change of ’t .
A Now  t :N → N is an orbit factor of ’t :M → M if there exists an onto

continuous map h :M → N that takes orbits of ’t onto orbits of  t .
Suppose ’t and  t , corresponding to vector 4elds f and g, respectively, are semi-

conjugate via h. Then

h(’t(x)) =  t(h(x)): (4.2)
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Fig. 3. A diagram of semi-conjugacy.

Di9erentiating both sides of (4.2) with respect to t we obtain

Dh(’t(x))f(’t(x)) =Dh(’t(x))
d’t(x)
dt

=
d t(h(x))

dt
= g( t(h(x))) = g(h(’t(x)));

that is,

Dh(x)f(x) = g(h(x)): (4.3)

So the Jacobian of a semi-conjugacy, Dh, maps the vector 4eld of one Now to the
vector 4eld of its semi-conjugate Now.
Suppose x̂ is an equilibrium of ’t . Then  t(h(x̂)) = h(’t(x̂)) = h(x̂), so h(x̂) is an

equilibrium of  t . Thus semi-conjugacy preserves equilibria.
Di9erentiate both sides of (4.2) with respect to x to get

Dh(’t(x)) · D’t(x) = D t(h(x)) · Dh(x): (4.4)

Rewrite (4.4) at equilibrium x̂ as

Dh(x̂) · D’t(x̂) = D t(h(x̂)) · Dh(x̂): (4.5)

Di9erentiating both sides of (4.5) with respect to t and interchanging the order of
di9erentiation, which can be done since the partial derivatives are continuous, we get

Dh(x̂) · Df(x̂) = Dg(h(x̂)) · Dh(x̂): (4.6)

If h is a conjugacy then Dh(x̂) is nonsingular, and Df(x̂) and Dg(h(x̂)), the Jacobians
of f and g at the equilibria x̂ and h(x̂), respectively, are thus similar. Hence conjugacy
preserves the eigenvalues of the Jacobian of the vector 4eld of any of the two conjugate
Nows at its equilibrium.
If h is only a semi-conjugacy then Dh(x̂) may be singular and h may not preserve

all the eigenvalues. However, let � be an eigenvalue of Df(x̂) and let a be one of its
eigenvectors. Then Df(x̂)a = �a and Dg(h(x̂))Dh(x̂)a = Dh(x̂)Df(x̂)a = Dh(x̂)(�a) =
�Dh(x̂)a. If Dh(x̂)a �= 0, then � is an eigenvalue of Dg(h(x̂)). Therefore, only those
eigenvalues of the Jacobian of the vector 4eld at the equilibrium are preserved which
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have an eigenvector whose image mapped under the Jacobian of the semi conjugacy
is nonzero. In other words, the eigenvalues whose generalized eigenspaces are mapped
to the null space by the Jacobian of a semi-conjugacy will not be preserved under
the semi-conjugacy. On the other hand, the following Lemma 4.1 guarantees that all
eigenvalues of Dg(h(x̂)) are also eigenvalues of Df(x̂).

Lemma 4.1. Let A, B, and P be matrices with sizes n × n, m × m, and m × n,
respectively, satisfying PA = BP and rank(P) = m. Then the set of all eigenvalues
of B is contained in the set of all eigenvalues of A. Moreover, the Jordan form of
B can be obtained from the Jordan form of A by deleting n − m rows and n − m
columns in the Jordan form of A corresponding to all generalized eigenvectors v for
which Pv = 0.

Proof. See Appendix A.1.

In summary, we have

Proposition 4.2. A semi-conjugacy maps the vector ;eld of a >ow to the vector ;eld
of another >ow by using Eq. (4.3). A semi-conjugacy preserves equilibrium and pre-
serves those eigenvalues of the Jacobian of the vector ;eld at the equilibrium, whose
generalized eigenspaces are not mapped to the null space by the Jacobian of the
semi-conjugacy. Especially, a conjugacy preserves equilibrium and all eigenvalues of
the Jacobian of the vector ;eld at any equilibrium. Thus a semi-conjugacy preserves
the local stability properties of a dynamical system at an equilibrium.

Let ’t be a time change of  t via t = �(s; x), i.e., ’t(x) = ’�(s;x)(x) =  s(x). Let
x̂ be an equilibrium of  t . Then ’t(x̂) =  s(x̂) ≡ x̂. Hence, x̂ is also an equilibrium
of ’t .

Note that @�=@s¿ 0 by the requirement of the same orientation of the time change.
By the semi-group property  s(x) =  0( s(x)), we see t = �(s; x) = �(0;  s(x)). Also
dt = @�(s; x)=@s ds on the Now line with initial condition x. Then we have

d s(x)
ds

=
d’t(x)
dt

dt
ds

=
@�(s; x)

@s
f( s(x)) =

@�(s;  s(x))
@s

∣∣∣∣
s=0

f( s(x)): (4.7)

Let g be the vector 4eld of  t and -(x)=@�(s; x)=@s|s=0. Relation (4.7) immediately
derives g(x) = -(x)f(x). Then for any vector v∈Rn,

Dg(x)v = (D-(x)v)f(x) + -(x)Df(x)v:

At equilibrium x̂, f(x̂) = 0. So

Dg(x̂)v = -(x̂)Df(x̂)v;

i.e.

Dg(x̂) = -(x̂)Df(x̂):

Hence the Jacobians of g and f are positive scalar multiples of each other. Therefore,
we obtain the following proposition.
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Fig. 4. The stable, unstable, and center manifolds.

Proposition 4.3. The vector ;eld of a time change  t from >ow ’t is obtained by
rescaling the length of each vector in the vector ;eld of ’t with a positive factor.
Therefore, time change preserves equilibrium and preserves the signs of the real parts
of the eigenvalues of the Jacobian of the vector ;eld at any equilibrium. Thus a
time change preserves the local stability properties of a dynamical system at any
equilibrium.

We will next introduce some known theorems which will be later used in establishing
the main result of this paper.

Theorem 4.4 (Center manifold theorem for Nows; Arnold and Il’yashenko [3],
Guckenheimer and Holmes [6]). Let f be a Cr+1 (06 r6∞) vector ;eld with equi-
librium x̂ and let A=Df(x̂). Divide the spectra (i.e. the set of eigenvalues) into three
parts, .−; .+; .0 corresponding to the eigenvalues of A with negative, positive, and
zero real parts, respectively. Let the eigenspaces of .−; .+; .0 be Es; Eu; Ec, respec-
tively. Then the di@erential equation ẋ = f(x) has invariant manifolds Ws; Wu, and
Wc of class Cr+1; Cr+1; Cr , respectively, with dimensions coinciding with Es; Eu; Ec,
respectively, which go through x̂ and are tangent to Es; Eu, and Ec, respectively, at x̂.
Solutions with initial conditions on Ws (resp. Wu) tend exponentially to x̂ as t → ∞
(resp. −∞). Ws is called the stable manifold, Wu the unstable manifold, and Wc the
center manifold of the equilibrium x̂. The stable and unstable manifolds are unique,
but the center manifold need not be.

The statement of this theorem is illustrated in Fig. 4.
The attractivity property of a center manifold is given as follows [8]:
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Theorem 4.5. In Theorem 4.4, if .+ is void, then there exists a neighborhood U
of the equilibrium such that all solutions of (4.1) with initial conditions in U will
maintain in this neighborhood for all t ¿ 0 and tend exponentially to some solution
of (4.1) on Wc as t → ∞.

The next result is about the stability of a normally hyperbolic invariant manifold.
We 4rst review some concepts before presenting the theorem.

• A hyperbolic equilibrium of a Now is a 4xed point at which the Jacobian of the
vector 4eld has no eigenvalues with zero real parts, or equivalently, the Jacobian
of the Now has no eigenvalues with absolute value equal to one.

• A Now ’t is called r-normally hyperbolic at an invariant submanifold V where
16 r6∞, if
◦ ’t is Cr .
◦ TVM , the tangent bundle of M restricted on V , has a D’t-invariant splitting
into 3 continuous subbundles

TVM = Nu ⊕ TV ⊕ Ns

where TV is the tangent bundle of V . Thus for any x∈M ,

D’t(x) = D’t |Nu
x
⊕ D’t |TxV ⊕ D’t

Ns
x
:

◦ There exists a Finsler structure ‖·‖x on TM such that for all x∈M , 06 k6 r:

m(D’t |Nu
x
)¿ ‖D’t |TxV‖k and ‖D’t

Ns
x
‖¡m(D’t |TxV )

k ;

where the derived norm ‖A‖ and the minimal norm m(A) of a linear operator
A is de4ned as

‖A‖= sup{‖Ax‖: ‖x‖= 1} and m(A) = inf{‖Ax‖: ‖x‖= 1};
respectively. Note: ‖Ak‖6 ‖A‖k , m(Ak)¿m(A)k . When A is invertible,
m(A) = ‖A−1‖−1.

• A k-dimensional submanifold in an n-dimensional manifold can be locally viewed
as the image of some mapping � from some open set in Rk to Rn. A parameterized
collection of submanifolds is called continuous at a point y∈Rn (where y is in
some submanifold parameterized by a parameter 00 and locally represented by
the image of a mapping �00 ) on parameter 0 in C1-topology if there exists a
neighborhood 10 of 00 and an open neighborhood U of x = �−1

00
(x) in Rk such

that the submanifolds near y are represented by �0(U ) where 0∈10 and �0

converges to �00 in C1-norm as 0 → 00.
• Suppose M is an n-dimensional di9erentiable manifold. A family of smoothly
embedded manifolds {N�}�∈A (called leaves or 4bers) is called a foliation on
M if N� ∩ N� = � for � �= �, M ⊂ ⋃

� N�, and for each x∈M , there ex-
ists a neighborhood U and a homeomorphism h :U → Rn such that h maps
every connected component of

⋃
� N� ∩ U to h(U ) ∩ (Rk × {y}) ⊂ Rn for

some y∈Rn−k .
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Theorem 4.6 (Fundamental theorem of normally hyperbolic invariant manifolds). Let
’t :M → M be a Cr >ow of a C∞ manifold M with r¿ 1 leaving the C1 sub-
manifold V ⊂ M invariant, where V is assumed either being compact or being a leaf
or a union of leaves of a foliation of M. Assume that ’t is r-normally hyperbolic
at V respective to the tangent bundle splitting TVM = Nu ⊕ TV ⊕ Ns, where D’t

exponentially expands and contracts the vectors in Nu and Ns, respectively. Then

1. Existence: There exist locally ’t-invariant submanifolds Wu(’t) and Ws(’t), called
a local unstable manifold and a local stable manifold at V, respectively, tangent
at V to Nu ⊕ TV , and TV ⊕ Ns, respectively. (Remark: The local invariance of
Wu; W s means ’t(Wu) ⊃ Wu, and ’t(Ws) ⊂ Ws.)

2. Uniqueness: Any locally invariant set near V lies in Wu ∩Ws.
3. Characterization: Ws consists of all points whose forward ’-orbits never strays

far from V, and Wu of all points whose reverse ’t-orbits never stray far from V.
4. Smoothness: Wu; W s and V are class Cr .
5. Foliation: Wu and Ws are invariantly ;bered by Cr submanifolds Wuu

x , Wss
x , x∈V ,

tangent at x to Nu
x and Ns

x respectively. Wuu and Wss are invariant in the sense that
’t(Wuu

x ) ⊂ Wuu
’t(x) for t ¡ 0 and ’t(Wss

x ) ⊂ Ws
’t(x) for t ¿ 0. Wss

x is characterized
by ‖’(y) − ’(x)‖ → 0 exponentially as t → ∞ for any y∈Wss

x , and Wuu
x is

characterized by ‖’(y)− ’(x)‖ → 0 exponentially as t → −∞ for any y∈Wuu
x .

6. Continuity: The leaves of foliation Wuu
x and Wss

x are continuous on parameter
x∈V in C1-topology.

7. Permanence: If ’̃t is another Cr >ow on M and is Cr close to ’t (i.e., close in
Cr-norm). Then ’̃t is r-normally hyperbolic at some unique submanifold Ṽ , which
is Cr close to V. The invariant manifolds Wu(’̃t), Ws(’̃t), and the leaves Wuu

x (’̃t),
Wss

x (’̃t), are Cr close to those of ’t .
8. Linearization: Near V, ’t is topologically conjugate (i.e. C0 conjugate) to

D’t |Nu⊕Ns , the restriction of the Jacobian of the >ow to the subspace Nu ⊕ Ns.

For more detail, refer to the fundamental theorem of normally hyperbolic invari-
ant manifolds in Hirsch et al. [7] and the Hadamard–Perron Theorem in Katok and
Hasselblatt [9].

5. The veri)cation of the main result for a class of homogeneous systems

The main result of this paper, Theorem 3.1 in Section 3, is stated for a special class
of homogeneous systems, where the vector 4eld f(x) at the set of equilibria (which is
a ray) has the local linearization that satis4es the property that one single eigenvalue is
zero and the other eigenvalues have negative real parts. The reader may have noticed
that the second half of the main result in fact contains the 4rst half. However, the
purpose of this paper is not only to present the relevant result, but also to demonstrate
some useful ideas in working on di9erential equation systems. It is very bene4cial to
state our result in this way, since we are going to use di9erent methods to prove each
part of the result.
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First we point out some straightforward properties of homogeneous systems by the
use of the following lemma.

Lemma 5.1. In system (4.1), assume that M is an n-dimensional manifold and x̂ is an
equilibrium which is also the limit point of some other equilibria x̂i (i=1; 2; : : :). Then
there is at least one limiting position of the lines passing through x̂ and x̂i, which
is an eigen-direction corresponding to the zero eigenvalue of Df(x̂). Furthermore, if
there are k (k6 n) linearly independent limiting positions of these lines, Df(x̂) has
at least k linearly independent eigenvectors corresponding the zero eigenvalue.

Proof. See Appendix A.2.

Proposition 5.2. Suppose (4.1) is a homogeneous system with a non-origin equilib-
rium. Then the set of equilibria of (4.1) is the union of some rays radiating from
the origin, including or excluding the origin, depending whether the origin is in the
domain of (4.1) or not. At any equilibrium, Df has at least one zero eigenvalue and
the ray of equilibria on which the equilibrium lies is an eigen-direction of eigenvalue
0. Furthermore, Df are positively linearly dependent at the non-origin equilibria on
the same ray of equilibria, and therefore their spectral sets are identical in terms of
signs +; −; and 0.

Proof. Assume that system (4.1) is homogeneous of degree �, i.e.,

f(�x) = ��f(x) (5.1)

for all �¿ 0. The origin 0 is an equilibrium when �¿ 0, and is a singularity point
when �¡ 0. If x̂ is an equilibrium, then f(�x̂)=0 either for ∀�¿ 0, or for ∀� �= 0∈R
when � is an integer or the reciprocal of an odd number. This implies that the set of
equilibria can be visualized as the union of rays radiating from the origin, including
or excluding the origin, depending whether the origin is in the domain of (4.1) or not.
Di9erentiating Eq. (5.1) with respect to t at �= 1 yields identity

Df(x) · x = �f(x):

At an equilibrium x̂ this yields Df(x̂) ·x̂=0, which implies that at any non-origin equi-
librium, Df has a zero eigenvalue and the ray from the origin through the equilibrium
is an eigen-direction of eigenvalue 0. By Lemma 5.1, the same conclusion is true to
the case where the origin is an equilibrium. Using Eq. (5.1) and the chain rule, we
have

�Df(y)|y=�x = D(f(�x)) = ��Df(x)

and

Df(y)|y=�x = ��−1Df(x); (5.2)

where � �= 0. Thus Df are positively linearly dependent on the same open ray of equi-
libria. This implies that there is a one-to-one correspondence between the eigenvalues
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of Df at any two points on the same open ray of equilibria via some positive multiple
scalar ��−1. Therefore the spectral sets of Df on the same ray are identical in terms
of signs +; −; and 0.

Assume next that the Jacobian of the vector 4eld at the equilibrium in the above
homogeneous system has a zero eigenvalue with multiplicity one and all other eigen-
values with negative real parts. Then there is an open ray of equilibria starting from
the origin such that each point on it satis4es the same eigenvalue assumption from
Proposition 5.2. Such a ray is isolated from other equilibria, i.e., there exists a cone
vertexed at the origin and centered at this ray which contains no other equilibrium.
Otherwise, the ray is the limiting position of other rays of equilibria by Proposi-
tion 5.2. According to Lemma 5.1, there is an eigenvector corresponding to the zero
eigenvalue transversing the original ray (i.e., they are not tangent to each other).
This violates the assumption that the zero eigenvalue is single. Thus, we obtain the
following result.

Proposition 5.3. Assume that there is an equilibrium of a homogeneous system (4.1)
such that the Jacobian of the vector ;eld at the equilibrium has a single zero eigen-
value and all other eigenvalues with negative real parts. Then through this equilibrium
there is an open ray of equilibria starting from the origin such that each point on
the ray has the same eigenvalue property as the original equilibrium does. Such a
ray of equilibria is isolated from any other equilibrium.

We are going to verify the main result, Theorem 3.1. First we make use of the
concepts and theorems introduced in Section 4. At each equilibrium on the ray, from
Theorem 4.4, there is a center manifold which is the ray and a stable manifold with
dimension n − 1 which transverses the ray. From Theorem 4.5 we know that at each
equilibrium, there exists a neighborhood such that any Now line starting in it will tend
exponentially to a solution on the center manifold, which is some point on the ray.
The union of these neighborhoods makes an attraction basin. This proves the strong
attractivity of the ray. It is easy to verify that the ray of equilibria is a ∞-normally
hyperbolic invariant manifold due to the property of the eigenvalues of the Jocobian of
the vector 4eld at each equilibrium. Besides, the ray is a leaf of a foliation of Rn \{0}
by partitioning Rn \ {0} with rays radiating from the origin. So we can use Theorem
4.6. The locally stable manifold of the ray is the basin of attraction. The leaves of
the foliation of the basin are the stable manifolds at the equilibria with C1-continuity
on the equilibria on the ray. Using the homogeneity assumption (5.1), we may show
that the basin of attraction contains a generalized cone vertexed at the origin and cen-
tered at the ray. Select any 4xed stable manifold Ws

x̂ at x̂. We claim that �W s
x̂ is

a stable manifold at the equilibrium �x̂ for any �¿ 0. In fact, Ws
x̂ is the union of

the Now lines with initial conditions in it. Let ’t(x) be any one of these Now lines.
Then

d(�’t(x))
dt

= �
d’t(x)
dt

= �f(’t(x)) = �1−�f(�’t(x)):
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Changing the time by ds=�1−� dt, we can see that �’t(x) is the time change of some
Now lines of system (4.1), which tend exponentially to �x̂ as t → ∞. Besides, �W s

x̂
and Ws

x̂ are di9eomorphic. Then �W s
x̂ is a manifold and thus, a stable manifold at

�x̂. Varying � from 0 to ∞, we obtain a generalized cone vertexed at the origin and
centered at the ray.

Remark. Theorem 3.1 remains true without the homogeneity assumption, which is
clear from the above proof. Of course, the terms of “ray” and “cone” may not be
applicable in a general case without homogeneity. They ought to be replaced by “set
of equilibria” and “basin of attraction”, respectively.

6. An elementary method to prove the strong attractivity in the main result

In this section, we present an elementary method to prove the strong attractivity of
the ray in Theorem 3.1 by applying conjugacy and the .-process.
As we have seen in Section 4, a conjugacy preserves the local stability of a dynamical

system. The homogeneity of a system guarantees that the system can be factored into a
system in the projective space with lower dimension, which may be easier to analyze.
This enables us to study the stability properties of the conjugate system and then to
draw conclusion on the original system. Our main goal in this section is to demonstrate
these useful techniques.
The projective space Pn−1 is the collection of all lines passing through the origin

in Rn \ {0}. It can also be obtained by identifying the diametrically opposite points
on the n − 1 dimensional sphere Sn−1. Pn−1 is a manifold with local coordinates
given by the onto di9erentiable mappings pi :Rn \ {xi =0} → Rn−1 via (x1; : : : ; xn) →
(x1=xi; : : : ; xi−1=xi; xi+1=xi; : : : ; xn=xi), where i= 1; : : : ; n [4]. The passage from one coor-
dinate system to another using the above pi is called the .-process [2].

A homogeneous di9erential system can be locally factored into the one-dimension-less
projective space using the .-process. Without loss of generality, we assume that x1 �= 0.
Let p1 be the mapping described as above, and let ui = xi=x1 for i = 2; : : : ; n. p1 is
a coordinate change and thus, is a semi-conjugacy. From (4.3), Dp1 maps the vector
4led f in system (4.1) to a new vector 4eld g2 in a semi-conjugate system.
Let � be the degree of homogeneity of vector 4eld f de4ned by (5.1). Decompose f

and g2 into their components, respectively, as f = (f1; : : : ; fn)T, and g2 = (g2; : : : ; gn)T.
Let f̃ i(sgn(x1); x2; : : : ; xn) = fi(sgn(x1); sgn(x1)x2; : : : ; sgn(x1)xn), for i = 1; : : : ; n, and
furthermore let f̃ = (f̃ 1; : : : ;f̃ n) and u2 = (u2; : : : ; un). From (4.3), we see that

Dp1 =




−x2
x21

1
x1

· · · 0

...
...

...
...

−xn

x21
0 · · · 1

x1




=
1
x1




−u2 1 · · · 0

...
...

...
...

−un 0 · · · 1


 : (6.1)
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Note that

g2(x1; u) =Dp1 · f(x1; x2; : : : ; xn)

=Dp1 · f(x1; x1u2; : : : ; x1un) = |x1|�Dp1 · f̃(sgn(x1); u2; : : : ; un)

= sgn(x1)|x1|�−1




−u2f̃ 1(sgn(x1); u2) +f̃ 2(sgn(x1); u2)

...

−unf̃ 1(sgn(u1); u2) +f̃ n(sgn(u1); u2)




= |x1|�−1




g̃2(sgn(x1); u2)

...

g̃n(sgn(x1); u2)




= |x1|�−1g̃2(sgn(x1); u2); (6.2)

where g̃i(sgn(x1); u2) = sgn(x1) · (−uif̃ 1(sgn(x1); u2) + f̃ i(sgn(x1); u2)), ∀i = 2; : : : ; n;
and g̃2(g̃2; : : : ; g̃n)T.
Note that x1 have the same sign in either one of the two connected components of

Rn \ {x1 = 0}. Thus, g̃2 can be viewed as a function of u2 only.
By rescaling the time t with a time s such that ds = |x1|r−1 dt the vector 4eld g2

becomes g̃2. The original homogeneous system is factored into a subsystem

du2
ds

= g̃2(u2); (6.3)

which is an orbit factor of the original system (4.1).
If the eigenvalues of f at the equilibrium are assumed to be as in our main result

Theorem 3.1, the eigenvectors corresponding to the zero eigenvalue are all along the
ray of equilibria by Lemma 5.1 since the zero eigenvalue is single. It is easy to verify
that Dp1(x) · y = 0 if and only if x and y are parallel. Hence the null space of
Dp1(x̂) at an equilibrium x̂ is the ray of equilibria on which x̂ lies. By Proposition 4.2,
semi-conjugacy p1 preserves all the eigenvalues of Df(x̂) at an equilibrium x̂ except
the zero eigenvalue. By Proposition 4.3, the time change preserves the negative sign
of the real parts of all the eigenvalues of Dg̃2(û2), where û2 =p1(x̂) is an equilibrium,
which is exactly the same point for any x̂ on the same ray of equilibria. Thus û2 is an
asymptotically stable equilibrium of system (6.3).
In order to receive the strong attractivity of the ray of equilibria in the original

system, we construct a change of variable p = (idx1 ; p1), where idx1 is the identity
map which maps the x1-coordinate to itself. Then p is a conjugacy to the so-called
canonical line bundle on Pn−1. Dp maps vector 4eld f to a new vector 4eld g, which
determines a new Now conjugate to the original Now.
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The Jacobian of p is

Dp=

(
1 0T

0 Dp1

)
;

furthermore,

g(x1; u) =Dp · f(x1; x2; : : : ; xn)

=

(
f1(x1; x2; : : : ; xn)

g2(sgn(x1); u2)

)

= |x1|�−1

( |x1|f̃ 1(sgn(x1); u2)

g̃2(sgn(x1); u2)

)

= |x1|�−1

(
x1g̃1(sgn(x1); u2)

g̃2(sgn(x1); u2)

)
; (6.4)

where g̃1(sgn(x1); u2) = sgn(x1)f̃ 1(sgn(x1); u2).
Here g1 depends only on u2 in either one of the connected components of {x1 �= 0}.

We also rescale the time t to s by ds= |x1|r−1 dt. Then an orbit equivalent system is
obtained as follows:

d
ds

(
x1

u2

)
=

(
x1g̃1(u2)

g̃2(u2)

)
: (6.5)

From the 4rst component in (6.5), we get d ln |x1|=ds = g̃1(u2), and ln |x1(s)| =
ln |x1(0)|+

∫ s
0 g̃1(u2(4)) d4. Since û2 is an asymptotically stable equilibrium, u2 locally

tends to û2 exponentially as s → ∞, i.e., there exist a 00 ¿ 0 and an s0 ¿ 0, such that
|u2(s)−û2|¡ e−0s when s¿ s0. Since f is C1, continuously di9erentiable, so is g̃1 in
any one of the connected components of {x1 �= 0}. Note that g̃1 vanishes at û2 by
the meaning of equilibrium. Hence there exist a 5¿ 0 and a 01 ¿ 0 such that for all
u2, |u2 −û2|¡5 implies |g̃1(u2)|= |g̃1(u2)− g̃1(û2)|¡01|u2 −û2|. (Just take a number
larger than the absolute value of the derivative of g̃1 at û2 for the value of 01.) Choose
s∗ ¿s0 such that e−0s∗ ¡5. Then for all s1; s2 ¿s∗,

|ln |x1(s2)| − ln |x1(s1)‖ =
∣∣∣∣
∫ s2

0
g̃1(u2(4)) d4 −

∫ s1

0
g̃1(u2(4)) d4

∣∣∣∣
=
∣∣∣∣
∫ s2

s1
g̃1(u2(4)) d4

∣∣∣∣6
∫ s2

s1
|g̃1(u2(4))| d4

¡
∫ s2

s1
01|u2(4)−û2| d4
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¡
∫ s2

s1
01e−004 d4

=
01
00

(e−00s1 − e−00s2 ) → 0

as s1; s2 → ∞. So ln |x1(s)| is Cauchy, lims→∞ ln |x1(s)| exists and is 4nite. Therefore,
lims→∞ x1(s) exists and is 4nite. On the other hand, x1(s)=x1(0) exp{

∫ s
0 g̃1(u2(4)) d4}.

The sign of x1(s) remains the same as that of the initial condition, therefore the Now
line stays in the same connected component of {x1 �= 0} and thus the Now of system
(6.5) is complete near the two rays {(x1;û2) | x1 �= 0} in the canonical line bundle
on Pn−1. Hence we have proved the strong attractivity of the image of the ray of
equilibria for the orbit equivalent system (6.5). So the strong attractivity of the same
ray in the original system immediately follows from Propositions 4.2 and 4.3.

Appendix A.

A.1. Proof of Lemma 4.1

Without loss of generality, we assume that there is only one Jordan block associated
with eigenvalue � in the Jordan canonical form of matrix A. Let {e1; : : : ; en} be a
natural basis in this generalized eigenspace. Then Aei = �ei + ei+1, for i=1; : : : ; n− 1,
and Aen = �en. By PA = BP, we get

BPei = �Pei + Pei+1 for i = 1; : : : ; n− 1;

BPen = �Pen: (A.1)

It is easy to see that if Per = 0 for some r ¡n, then Pei = 0 for all i¿ r. Since P
is full-ranked, {Pe1;Pe2; : : : ;Pen} consists of m linearly independent vectors. Assume
that Pek �= 0 and Pei=0 for all i¿ k. We claim that {Pe1;Pe2; : : : ;Pek} is a maximal
linearly independent group. In fact, if there is an l, 16 l¡k, such that Pel+1; : : : ;Pek
are linearly independent while Pel; : : : ;Pek are linearly dependent, then there exist
not-all-zero real numbers cl; : : : ; ck such that

∑k
i=l ciPei =0. Multiplying by B on both

sides of this equation and using Eqs. (A.1) (note: n is replaced with k in the last
equation of (A.1)), we obtain that

∑k−1
i=l ciPei+1 = 0. We know cl; : : : ; ck−1 cannot

be all zero, otherwise ck will be zero since Pek �= 0 and this violates that c1; : : : ; ck
are not all zero. Thus Pel+1; : : : ;Pek are linearly dependent, which is a contradiction.
Hence, from Eqs. (A.1), we know that {Pe1;Pe2; : : : ;Pek} produces a Jordan block.
Therefore, the Jordan blocks of B are actually obtained from the Jordan blocks of A
by deleting some rows and columns if necessary.

A.2. Proof of Lemma 5.1

M is di9eomorphic to Rn. We denote the unit ball of Rn centered at x̂ by B(x̂; 1).
The rays from x̂ to x̂i intersect B(x̂; 1) at ŷi. There is a one-to-one correspondence
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between x̂i and ŷi. Since B(x̂; 1) is compact, the set {ŷi} has at least one limit point.
Each limit point determines one limiting position of the rays. Among all the limiting
positions of the rays, there are not more than n linearly independent directions since
B(x̂; 1) is n-dimensional. At each limit point of ŷi, say ŷ, we will show that unit vector
→
x̂ŷ is a unit eigenvector of a zero eigenvalue.

Without loss of generality, we assume that ŷi → ŷ.
From the Taylor’s expansion,

0= f(x̂i)− f(x̂) = Df(x̂) · (x̂i −x̂) + o(‖x̂i −x̂‖):
Dividing by ‖x̂i −x̂‖, one gets

0= Df(x̂) · x̂i −x̂
‖x̂i −x̂‖ + o(1):

Let i → ∞, then (x̂i −x̂)=‖x̂i −x̂‖ → ŷ −x̂. So

Df(x̂) · (ŷ −x̂) = 0:

Therefore, ŷ −x̂ is a unit eigenvector of the zero eigenvalue of Df(x̂).
The above derivation also implies that if there are k (k6 n) linearly independent

limiting positions of the rays, then there must be at least k linearly independent eigen-
vectors associated with the zero eigenvalue of Df(x̂).
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