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We analyze the transition of the self-organized criticality one dimensional directed running sand-
pile model of Hwa and Kardar [Phys. Rev. A 45, 7002 (1992)] from very low external forcing to
high forcing, showing how six distinct power law regions in the power spectrum at low drive become
four regions at high drive. One of these regions is due to long time correlations among events in the
system and scales as ∼ f−β with 0 < β ≤ 1. The location in frequency space and the value of β
both increase as the external forcing increases. β ranges from ≈ 0.4 for the weakest forcing studied
here to a maximum value of 1 (i.e., a 1/f region) at stronger levels. The greatest rate of change
in β is when the average quiet time between avalanche events is on the same order as the average
duration of events. The correlations are quantified by a constant Hurst exponent H ≈ 0.8 when
estimated by R/S analysis for sandpile driving rates spanning over five orders of magnitude. The
constant H and changing β in the same system as forcing changes suggests that the power spectrum
does not consistently quantify long time dynamical correlations and that the relation β = 2H − 1
does not hold for the time series produced by this SOC model. Because of the constant rules of the
model we show that the same physics that produces a β = 1 scaling region during strong forcing
produces a 0 < β < 1 region at weaker forcing.

I. INTRODUCTION

Simple models have been used to study the dynamics
of some physical systems, such as confined fusion plasmas
[1, 2], space plasmas [3, 4] and earthquakes [5], among
others. These models comprise a connected network of
local nonlinear gradients that can persist because of a
critical threshold. Random external forcing of the sys-
tem increases local gradients; when one of them exceeds
the critical threshold a relaxation event is triggered that
stabilizes the gradient. The gradient is reduced by trans-
ferring mass, heat or some other quantity specific to the
system to neighboring regions which can make them un-
stable, creating a series of relaxations. This sequence of
events, called an avalanche, occurs much faster than the
external drive increases the gradients. These models and
this type of dynamics are characteristic of self-organized
criticality (SOC) [6–8].

One of the first SOC models was the sandpile [7, 9, 10].
A one dimensional variation of it was studied for strong
external forcing by [11] and later for weak external forc-
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ing by [12]. Both studies show that even though the
system is randomly driven, long time correlations exist
in the dynamics on time scales much longer than the du-
ration of any single avalanche. The question of whether
long time correlations exist in a time series—a basis for
predictability—is fundamental to many physical and geo-
physical fields.

One of the features of long time correlations in a sys-
tem, including the SOC sandpile, is a region in the power
spectrum that scales as a power law f−β with β 6= 0. [11]
shows that β = 1 (i.e., 1/f) in this region of correlations
at high drive, where avalanches almost always overlap in
time. [12] shows that β ≈ 0.4 at very low drive, where
avalanches essentially never overlap.

Values of β = 1 appear in the spectra of many physical
processes [13, 14], where it is referred to as 1/f noise
for historical reasons. This modern mystery still inspires
much current work but no general theory explains the
origin of 1/f . One of the original motivations of SOC was
to offer an explanation of 1/f noise but the conclusions
have been mired in controversy since its introduction [15].

One way that correlations can be quantified is
by the Hurst exponent, H [16], where a value of
0.5 < H < 1 indicates positive correlations in a
data series, 0 < H < 0.5 indicates anticorrelations
and H = 0.5 indicates lack of correlations [17, 18].
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Algorithms exist to generate a data series with a power
spectrum with any given value of H [13]. These artificial
data sets, called fractional Gaussian noise (fGn), have
Gaussian distributions and the relation β = 2H − 1 is
derived based on this type of statistics [19]. β can then
be interpreted directly through H as a measure of cor-
relations in the time series. Note that if this equation
were to hold for all data sets then any series with a 1/f
spectrum would have H = 1 over the same time scales.

Using rescaled range (R/S) analysis, [12] found that
H ≈ 0.8 in the region discussed above for the low drive
sandpile. Here we show that H maintains this value in
the correlated region for over five orders of magnitude of
driving rate, as the sandpile goes from low drive to high
drive. H remains constant because the rules of the sand-
pile (the low level physics of the system) do not change as
driving rate increases. The dynamics simply takes place
on shorter time scales.

However, while H stays constant with driving rate β
increases from ≈ 0.4 for the lowest drive studied here to a
limiting value of 1 at the highest drive. The greatest rate
of change in β occurs as driving rate increases and the
average quiet time between avalanche events decreases
until it is on the same order as the average duration of
events. There are two main points to these results. First,
the dynamics that produce a 1/f region at high drive is
the same at low drive, even though β < 1. Second, the
relation β = 2H − 1 that is often used to connect β and
H does not hold for the SOC sandpile model.

The region with H ≈ 0.8 (which we refer to as the
SOC region) is just one of several in the spectral and
R/S measures. We will show that six distinct power law
regions in the low drive spectrum and five regions in the
low drive R/S analysis both become four regions at high
drive. [12] shows that the causes of the regions at low
drive are, from shortest to longest time scales: low level
physics, quiet times, memory stored in local gradients
(the SOC region), system size effects and external drive.
The reason that the number of regions changes at high
drive is because events are triggered more frequently in
time so that they almost constantly overlap and, there-
fore, virtually eliminate quiet times.

II. MODEL AND METHODS

We use the one dimensional directed running sandpile
of [11], a cellular automaton. The model consists of a
single column of L cells and each cell contains an integer
number of ‘sand grains’, where the number is referred
to as the height of the cell. At each time step for each
cell, there is a probability 0 < P0 < 1 that U0 grains of
sand will fall on it from a ‘rain’ from above. The local
gradient is the height difference between two cells. If
a local gradient exceeds a defined critical gradient Zcrit

then the gradient is stabilized by a transfer of Nf grains
of sand from the higher cell to the lower. This action is a
flip and it can make one or both of the neighboring cells

unstable in the next time step so that the disturbance
propagates. An uninterrupted sequence of one or more
flips is called an avalanche. We used U0 = 1, Nf = 3 and
Zcrit = 8 in all results presented here; these are the same
parameters used in [1].

Low and high drive are distinguished by the amount
of sand falling on the system and how large the system
is. Average input into the system is the driving rate,
JIN = P0L. To compare systems of different size and
driving rate, we use the effective driving rate JE = P0L

2.
We discuss this distinction in Section IV.

The time series analyzed in this study are total flips
at each time step. A flip is a single relaxation event, a
transfer of Nf grains from one cell to the next. The total
number of flips at each time step is, then, the total num-
ber of unstable cells in the system. This can be thought
of as the instantaneous (potential) energy dissipation in
the system.

We analyze the flips time series with the power spec-
trum and R/S analysis. For a data series X(t), the

power spectrum is defined as S(f) = |F (f)|2, where

F (f) = N−1
∑N−1

t=0 X(t)e−ı2π(f/N)t. The rescaled range
is defined as R′(τ) ≡ R(τ)/S(τ), where S(τ) is the stan-
dard deviation and

R(τ) = max
1≤k≤τ

W (k, τ) − min
1≤k≤τ

W (k, τ) (range),

W (k, τ) =

k∑

t=1

(Xt − 〈X〉τ ) (cumulative deviation) and

〈X〉τ =
1

τ

τ∑

t=1

Xt (mean).

If the rescaled range of the time series scales as R′(τ) ∼
τH , the slope of the plot of R′(τ) versus the time lag τ
on a doubly logarithmic plot is the Hurst exponent, H .

III. RESULTS

Figure 1 shows the power spectra of the flips time series
of the one dimensional directed running sandpile for over
five orders of magnitude of effective driving rate, P0L

2,
which increases from top to bottom in the figure. The
sandpile size is L = 200, a size found in [1] to be adequate
for studying SOC dynamics without corruption by edge
effects. We also present results for sandpile sizes up to
L = 2000. The lowest drive used is P0L

2 = 0.002 and the
highest is P0L

2 = 296. The higher limit is chosen to stay
below the normal overdrive limit of P0L < Nf/2 (derived
in Section IV).

Multiple distinct power law regions are seen in all of
the spectra. The highest frequency regions share a com-
mon slope. At low drive a very prominent bump at low
frequency moves to higher frequency as driving rate in-
creases. This movement is due to more sand grains falling
onto the system faster, thereby triggering avalanches
more frequently so that the dynamics moves to shorter
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FIG. 1: Power spectra of flips time series of L = 200 sandpile
for five orders of magnitude of effective driving rate in P0L

2
∈

[0.002, 296]. Spectra have been shifted along y axis for easier
viewing.

time scales. The avalanches overlap in time and thus
eliminate quiet times. The loss of quiet times also ac-
counts for the loss of two regions in the spectrum—six
regions at low drive become four regions at high drive.

Three spectra from Figure 1 are shown in Figure 2(a),
representing low, medium and high driving rates of the
sandpile. The six regions of low drive and four regions
of high drive are shown by the solid lines. The lines are
power laws f−β and the numbers next to them are the
values of β. The lowest frequency f 0 region of the low
drive case is not seen because of the finite size of the time
series. Its existence is assumed based on the f 0 regions
seen in the spectra of higher drive cases.

The associated R/S analysis for the low, medium and
high drive power spectra are shown in Figure 2(b). Five
regions at low drive become four regions at high drive.
Power law lines and their slopes are indicated in the fig-
ure. The slopes are the Hurst exponent H for each region.
Again, the region for the longest time scales at the lowest
drive is not seen because of the finite length of the time
series but is inferred based on the higher drive cases.

To conveniently discuss the regions and breakpoints,
we use the labelling convention of the cartoons in Figure

3. Figure 3(c) is taken from Figure 6 of [11] and the
others are drawn in that spirit. Figures 3(a) and (b) are
from [12] but are reproduced here for completeness. The
sources of all of the regions are discussed in [11] and [12].

The breakpoints between regions in the two different
measures, power spectrum and R/S, can be compared
with each other. The results are shown in Figure 4. The
breakpoints of the two measures, found independently,
agree very closely with each other, though the R/S break-
points appear at slightly longer time scales than those of
the power spectrum. This effect is known from compar-
isons of R/S analysis with structure functions [20] and
we conclude that both measures can distinguish the same
dynamical regions through the identification of different
power law regions.

The breakpoints between neighboring regions scale
with driving rate as shown in Figures 5 and 6. TA in
the spectrum and TB in both measures stay relatively
constant, reflecting the unchanging rules of the system
that produce discontinuous jumps in the gradient of the
flips time series. The other breakpoints scale with driving
rate as power laws. Region B of the spectrum and region
C of both measures shrink and eventually disappear as
drive increases and average quiet time shrinks.

At low drive, individual avalanches appear in the flips
time series as trapezoidal pulses [12] and this is reflected
in the slopes of regions A and B. β ≈ 3.4 of region A
and H ' 0.9 of region A/B remain relatively constant
as driving rate changes because of the fixed rules of the
system. These values are consistent with those found for
a random superposition of trapezoids. β ≈ 2 in region
B stays relatively constant until that region disappears,
reflecting the distinct and separate trapezoids that even-
tually become extinct as avalanches overlap each other
more and more.

β = 0 and H = 0.5 are signatures of an uncorrelated
data series and these values seen in region C at the lowest
drive reflect the uncorrelated triggering of avalanches on
short time scales by the external drive. In the autocorre-
lation process on these time scales, the distinct avalanche
pulses are shifted and multiplied by the relatively long
periods of quiet times. That is, the avalanches correlate
with the zeros of quiet times, producing an uncorrelated
spectrum and rescaled range. β in regions C and D both
increase with P0L

2 but at different rates until they reach
the same value of β ≈ 1 at high drive. This is a limiting
value that does not change regardless of how high the
drive becomes, up to the saturation limit of the model.

The Hurst exponent of region D remains a relatively
constant H ≈ 0.8 regardless of driving rate even as region
D moves from long time scales at low drive to shorter time
scales at high drive. H stays constant because the rules
of the sandpile do not change as driving rate changes.
Avalanches are still triggered by the random drive but
on shorter and shorter time scales as the drive increases.
The avalanches are still correlated at all driving rates
because the same process triggers them. The constant H
and changing β of region D is shown in the upper plot of
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FIG. 2: (a) Power spectra and (b) R/S analysis of flips for different driving rates. The y values of both measures have been
shifted for easier viewing. Numbers shown are the exponents of power law fits to regions, β for the spectra and H for R/S.
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Figure 7. This will be discussed further in Section V.
β and H of region E both increase with driving rate,

β towards 0 and H towards 0.5, Figure 8. At all drives,
region E is due to anticorrelations among large discharge
events that tend to reset the system and erase its mem-
ory. These events are anticorrelated because after a large
event clears out the system another large event is unlikely
since the majority of cells in the system are below criti-
cal. Discharge events can be either a single system-wide
event or a rapid succession of smaller events; they are
discussed in both [11] (high drive) and [12] (low drive).
As drive increases, these large events, while still anti-
correlated, occur closer together in time and reflect the
random external drive of the system which itself is char-
acterized by β = 0 and H = 0.5, the values to which
region E approach.

Region F always has β = 0 and H = 0.5. We con-
jecture that this region reflects the random system drive
and that β and H remain constant at any driving rate
for all time scales beyond TF.

IV. DISTINGUISHING BETWEEN LOW AND

HIGH DRIVE

High drive means that avalanches overlap with each
other in time but not necessarily in space (though for very
high drive both types of overlap usually occur). This is
relevant because some systems that have been discussed
as possibly SOC, such as earthquake fault systems, have
distinct events that do not overlap in time and, therefore,
may be relatively weakly driven. In the sandpile, high
drive is not simply defined by the ratio of input current
to maximum output current, JIN/Nf . This just defines
whether the system is overdriven or not, since flux in
must never exceed the maximum possible flux out (Nf)
of the bottom cell.

There are two overdrive limits, Nf and Nf/2. Consider
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FIG. 4: Inverse breakpoints of the power spectra versus break-
points of R/S analysis for flips time series of different size
sandpiles and driving rate.

a cell that is unstable in the midst of a large avalanche.
Being unstable, it dumps Nf grains to its downhill neigh-
bor. In the next time step, for what we call a normal
avalanche, this first cell is stable. But since it has lost
Nf grains, its uphill neighbor is now unstable and will
send Nf grains into the original cell. In this way, during
a normal avalanche, a cell alternates between stable and
unstable until the avalanche ends or washes past the cell.
The time average flux through the cell is Nf/2 and the
maximum steady state input current is then JIN = Nf/2.

We define JIN = Nf/2 as the normal overdrive limit
and JIN = Nf as the super overdrive limit. A sandpile
can still be in steady state between the two limits but
the dynamics of the system changes since many cells are
unstable for successive time steps to transport the in-
creased flux in. Steady state is not possible for JIN > Nf

since flux into the system will always exceed flux out. We
will only discuss driving rates below the normal overdrive
limit.

The limit for spatial overlap has been previously given
as P0 < L−1 [11]. This comes from the condition of
P0 s < 1, where s is the average size of an avalanche and
s ∼ L (in nonoverlapping regime). But since we analyze
the flips time series, we need to quantify overlapping in
time, not space.

To find the condition for overlap in time we must con-
sider quiet times. If the average avalanche duration s is
greater than the average trigger time Tt then avalanches
will overlap in time. Using Tt = Nf/P0LU0 [21] (flux out
divided by flux in), the condition for overlapping in time
is s > Tt or L > Nf/P0LU0, giving P0L > Nf/LU0. The
most general quantity, then, to measure for comparing
sandpiles in the same drive regime but where all dynam-
ical parameters are different is Vg = P0L

2U0/Nf , where
Vg > 1 indicates high drive.

For our model, U0 = 1 and Nf = 3 � L so the
high drive condition reduces to P0L > L−1. It is con-
venient to remember this condition as (driving rate) >
(system size)−1. In practice, we find the condition for
low drive (when region C has β = 0 and H = 0.5) to be
P0L � L−1.

The average quiet time q decreases as system size in-
creases even as input current JIN = P0L remains con-
stant. This effect is due to the increase in the average
size of an avalanche with system size, s ∼ L, and larger
avalanches lasting longer in time. That s is independent
of driving rate (for low, nonoverlapping drive) reflects the
critical nature of the steady state of the sandpile. A crit-
ical cell is the food of an avalanche. A larger sandpile has
more cells and therefore can have more neighboring cells
that are close to critical. Any avalanche, then, has more
food to eat and can live longer. Since avalanches propa-
gate at the same speed (1 cell per time step) regardless of
system size, the larger systems will have larger avalanches
regardless of driving rate.

With the low drive condition P0L � L−1 we see that
there are two routes to high drive: 1) increasing driv-
ing rate P0 while keeping the system size L fixed and 2)
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FIG. 5: Breakpoints of power spectra and R/S analysis versus driving rate for L = 200 sandpile. Numbers shown are exponents
of power law fits to the data.

increasing L while keeping P0L fixed. The first method
is easy to visualize and is the more ‘traditional’ way of
increasing drive. Consider a sandpile being driven by an
input current of JIN = P0L grains per time step over
the entire system. Increasing P0 will obviously increase
JIN and decrease q. More grains of sand fall in fewer
time steps, avalanches initiate much more frequently and
therefore begin to overlap in time.

The other way to increase drive is not as intuitive: con-
sider a fixed JIN = P0L and increase the system size L.
To keep JIN constant, P0 must decrease. But, because
of the increase in L, the average avalanche size increases
and avalanches begin to overlap in time. Since P0L is the
same as before, the same number of avalanches per time
are triggered but they last longer on average and thus
overlap. This is seen in the power spectrum. When L is
increased and P0L is kept constant, the breakpoint T−1

B

moves to lower frequencies and T−1
C stays fixed. Region
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C, then, has shrunk in width because quiet times have
decreased due to the larger system. This is a restate-
ment of the trapezoid analysis of Part I [12], where we
show that breakpoint T−1

B moves to lower frequencies for
larger trapezoids (that represent larger avalanches due to
larger systems). Therefore, increasing system size while
keeping constant the average flux in (P0L) has the effect
of increasing the driving rate.

This has implications, for example, in investigations
of finite size and/or multifractal scaling. Figure 9 shows
justification for comparing systems with the same effec-
tive driving rate, P0L

2 = 2.0. The spectra of systems
with different driving rates P0L and system sizes L but
with the same P0L

2 can be rescaled to lie on top of each
other. The spectra of systems with the same driving rate
P0L but with different system size L cannot be rescaled
to lie on top of each other. We used a rescaling function
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of the form

y0 log10 S(f) = g (x0log10(f/x1)) ,

where S(f) is the power spectrum and g(f) is a scal-
ing function. Different sets of parameters [x0, x1, y0] are
needed for each spectrum so this is not the same as, for in-
stance, the multifractal rescaling of avalanche size PDFs
of [9], where the same value of each parameter is used for
different system sizes.

We mention two notes about the effective driving rate.
First, P0L

2 is used because our measure, flips, is a global
quantity where information about the entire system must
be known. Hence, P0L, total input into the system, and
L system size must be known. But other local measures,
such as flux through a single cell, may only need to know
P0L. The other note is that the appropriate rescaling
quantity may instead by P a

0 Lb where a and b may be
values near to but different from 1 and 2, respectively.
We have not investigated this and have found P0L

2 to be
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FIG. 9: Rescaling of power spectra of two different systems
with P0L

2 = 2.0, one with L = 200 and one with L = 2000.

a reasonable value for comparison.

V. DISCUSSION

The cause of the change in the spectra and R/S anal-
ysis is that the average size and frequency of quiet times
decrease as effective driving rate increases. Sand falls
on the system more frequently and triggers avalanches
more quickly so that all dynamics moves to shorter time
scales. Avalanches overlap in space and time and the
correlations among them move to shorter time scales.

Region C is the quiet times indicator. When it exists
and β = 0 and H = 0.5 the system is in a low drive regime
and events are distinct and well-separated. The presence
of correlations among events on long time scales is seen
in values of β > 0 and H ≈ 0.8 in region D. As events are
triggered more closely together in time, the average quiet
time decreases to below the average avalanche duration
and the separation between regions C and D is lost. This
decrease of quiet times also causes β in region D to change
most drastically. The simultaneous effects are seen in
Figure 7.

There are two main points that we would like to partic-
ularly emphasize and discuss. The first is that β in region
D increases with driving rate until it reaches a limiting
value of 1, a 1/f region. The second is that H in region
D stays constant while β changes and, thus, β = 2H − 1
is not satisfied.

At high drive, region D is known to have a 1/f scal-
ing [11] and the reason was given that overlapping of
events produces this special spectral region. Our results
show that at low drive, when events do not overlap and
0 < β < 1, the system still has the same physics (by
definition) and the same correlations exist at all driving
rates, as shown by the constant H . Given the import
attached to the specific 1/f scaling over the years, we
point out that perhaps 1/f is not always 1/f . By this we
mean that the physics that produces 1/f may still exist
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in a system that does not actually reveal a 1/f spectrum
simply because the system is more slowly driven and the
‘signal’ is broken up by large periods of quiet times. It
implies that a f−β scaling with 0 < β < 1 can be just as
‘special’ as β = 1.

We can test for this effect by inserting Poisson-
distributed quiet times into a series of fractional Gaussian
noise (fGn) [13]. FGn is a time series that has a Gaussian
probability distribution and an arbitrary Hurst exponent.
We inserted quiet times into a fGn series of nonnegative
integers created with H = 0.8 such that the average of
the quiet times was approximately the same as the av-
erage of the original fGn series (≈ 20). The results are
shown in Figure 10. The spectrum and R/S analysis are
shown for the original and modified series. The original
series follows β = 2H − 1, with H ≈ 0.8 and β ≈ 0.6.
When quiet times are added between each point of the
original series a region of H ≈ 0.5 appears up to a cer-
tain time lag. Beyond this time lag, H ≈ 0.8 as expected
since the correlations among the data have not changed.
In the spectrum, β ≈ 0 down to the inverse of the same
time lag and then β ≈ 0.43 (note that the R/S shows
the breakpoint at a longer time than in the spectrum,
the same effect seen in Figure 4). This shows that the
introduction of quiet times into a correlated series affects
β but not H . This effect accounts for the change seen in
the sandpile flips data, when β decreases with decreasing
drive and increasing average quiet time.

A difference between the sandpile time series and other
physical systems that have a 1/f spectrum is that in the
sandpile series, there are definite lower and upper limits
to its values. These limits are 0 when there is no ac-
tivity in the sandpile and L when all sites are unstable.
In other systems that exhibit 1/f noise, such as resis-
tance fluctuations [22], there are no such limits though
the probability of extremely large deviations from the
mean are very small.

There is still the issue, though, that β = 1 appears
to be a limiting value as driving rate increases. Is this
simply due to (overlapping of events? [12] shows that
removing all quiet times from between separate events of
a low drive flips time series produces a spectrum with a
region D where β = 1. There is no overlapping of events
by design. But what this altered series and an unaltered
high drive series have in common is an almost complete
lack of quiet times. It appears that 1/f is due more to
a lack of quiet times and distinct pulse shapes than to
overlapping.

There are some quiet times in the high drive sandpile
but they are very small, on average. To test if they are
important to the dynamics, we shuffle superpulses. A
superpulse is defined as the structure between successive
quiet times in a high drive flips time series (Figure 11). A
superpulse comprises many overlapping avalanches. By
randomly shuffling the superpulses of a high drive time
series, we see that the correlations that lead to 1/f and
H ≈ 0.8 are on time scales shorter than the average su-
perpulse. Beyond these time scales, β ≈ 0 and H ≈ 0.5,

signatures of uncorrelated data (Figure 12). We conclude
that quiet times are unimportant in the dyanamics of the
high drive sandpile.

Our second point is that the relation β = 2H − 1 does
not hold for the sandpile, a SOC system. This rela-
tionship was derived based on Gaussian statistics [19].
But R/S analysis itself has no requirement for Gaussian
statistics in order for it to measure correlations. There-
fore, the relation β = 2H−1 that is often associated with
the Hurst exponent and power spectrum does not always
hold for all systems, such as SOC and the running sand-
pile. So a physical system cannot be modeled by both
SOC and fGn.

VI. CONCLUSIONS

We have analyzed the one dimensional directed run-
ning sandpile SOC model for five orders of magnitude of
effective driving rate and for different system sizes and
shown how the power spectrum and R/S analysis change
from low drive to high drive. The most noticeable feature
of the change in signatures is the loss of the power law re-
gion C at low drive with β = 0 and H = 0.5. This region
is due to uncorrelated quiet times between distinct indi-
vidual avalanches. The region disappears because events
are triggered more frequently in the sandpile as driving
rate increases; this causes a virtual extinction of quiet
times. β and H of this uncorrelated region increase with
driving rate until they reach limiting values of β ≈ 1
and H ≈ 0.8, both being signs of long time correlations.
The greatest change in β with increasing driving rate is
when the average quiet time is on the order of the average
avalanche duration.

At low drive, the power law region D exists on time
scales longer than region C. Here, β ≈ 0.4 at very low
drive and β increases with increasing driving rate, reach-
ing the limiting value of 1 as region D merges with region
C. The Hurst exponent of this region stays approximately
constant, H ≈ 0.8, as driving rate changes, reflecting the
same types of correlations among separate events and
the same underlying rules of the system at any level of
external forcing.

The changing β and constant H of the correlated
region D imply that 1/f is not always 1/f and that
β = 2H − 1 does not hold for the SOC sandpile model.
This first part means that the dynamics that produces a
1/f signature at high drive is still present at low drive
(since H is constant) but that the spectrum will instead
scale as f−β with 0 < β < 1. This is taken to mean
that such values of β are not necessarily any less ‘special’
than β = 1 and that the search for a general underlying
process that leads to 1/f may be found in systems with
different values of β.

β = 2H − 1 is often accepted as a true statement that
relates β and H , regardless of the system. It was de-
rived based upon an artificial data set that is created
by an algorithm that is designed to make the relation
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true. We see that this relation does not hold for a sys-
tem that creates time series that are, perhaps, more ‘nat-
ural’. When looking at a physical system, then, both the
power spectrum and the R/S analysis can be calculated
and compared to see if the system under study can be
modeled as a simple fractional Gaussian noise process
where β = 2H − 1 does hold or by some other process
where it does not hold, such as SOC.
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