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 DOE goals

 Why emphasize solid fuels ?

 Thermodynamics, exergy and entropy production
e Direct Carbon FC

A fuel cell that produces H, and converts heat into
power??

« Exergy efficient integrated solar-biomass systems

e Conclusions

e ————
“
TUDelft



DOE goal for the 215t century fuel cell
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Why emphasize solid fuels ?

1. Solid fuels will become more important in the future!

e Coal: abundant and cheap

 Biomass: sustainable

 Waste: negative value

 More efficient CH, conversion routes involve solid C

NB: Also liquids are closer to solids than to gases
In terms of their exergy value.
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Why emphasize solid fuels ? (2)

2. Present conversion of solid fuels is not efficient

e Combustion (Carnot limitation)
e (Gasification (Carnot & entropy production)
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H,/0, Fuel cell and Carnot efficiency
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Entropy production in conventional
gasification

C+ 120, ==>C0O + Q(heat)
0%, ' 1

1. Doubling of the # gas molecules
2. Entropy AS = Q/T
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Electrochemical gasification :

2C + O, ==> 2C0O A4>0 Power
2 AH<0 & :
TAS DCFC R
=1- >100% :
,7fC AH Q CO

e (Solar) Heat can be converted into power with an
efficiency higher than the Carnot efficiency!

o Self regulating process
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The ‘holy grail’ of electrochemistry :
A Fuel Cell that produces hydrogen
and converts heat into power !

C Power

>

DCFC
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Q | CO
CO +H,0==>H,+ CO,
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How to reach or approach this
‘holy grail’ ?

* Electrochemistry is the key technology because it can
approach reversibility = zero entropy production =
conservation of exergy.

e Use small driving forces F since AS ~ (F)?

e Solar energy is ideal renewable source to supply the
heat, thereby increasing the efficiency of this
technology as well.
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How to reach or approach this
‘holy grail’ ? (1)

1. Direct Carbon Fuel Cell:

e ctric power out
— +
=== A\irin
Net reaction:
: C+0, =CO
Carbon in 2 2
R_eactlve, nano-scale Air out
disorder C from thermal >

decomposition of CH,
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How to reach or approach this
‘holy grail’ ? (2)

2. Direct Carbon Fuel Cell at high T: C+ %20, => CO
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How to reach or approach this
‘holy grail’ ? (3)

3. In-direct Carbon Fuel Cell/integrated systems :
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Combination of Molten Carbonate
gasifier and MCFC or SOFC

MCEC/ | YNges
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Explaining the difference between conventional
combustion/gasification and electrochemical
conversion.
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Chemical versus electrochemical
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Energy Research Policy

 |dentify solar-biomass regions

* Prevent entrenchment in inefficient technologies by
designing a roadmap to develop EXEFF systems

o Electrochemistry and fuel cells are key technologies
e ‘First’ systems ‘then’ components
 Demand specification of exergy efficiency

 Promote cooperation between research areas; solar
biomass, coal and fuel cells and Al production industry

 Promote cooperation between Europe, USA and Japan
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Countries with large potential for Solar
and Biomass can become the energy
(H,) producing countries of the future.

4 N
b Fuel cell .

technology

- _/

Biomass
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How to prevent entrenchment in
conventional gasification?

entrenchment
in sub-optimum

optimal situation
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Conclusions

 Solid fuels will become increasingly important in the future.

« Present conversion systems for solid fuels are inherently
inefficient.

« New conversion systems for solid fuels with higher (exergy)
efficiency are possible; ultimately a flexible hydrogen &
power producing system converting heat into power can be
conceived.

 Fuel cell technology is a key-technology.

« The DCFC producing pure CO, is one of the very promising
options

« A well defined roadmap is necessary to provide a framework

for the development of these systems and to prevent
entrenchment in inherently inefficient technologies
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ldentification of R&D needs

* Design of a roadmap towards exergy efficient energy conversion
systems with socio-economic analysis of flexible H2/power
production

* Design and analysis of exergy efficient energy conversion systems
and comparison with conventional systems to show potential
benefits

* Integration of solar with gasification and fuel cells

e Steam and CO, gasification

* Molten salt (carbonate) gasification and in-situ gas cleaning.
 DCFC design and up-scaling

e Electrochemical oxidation of Carbon including transition from CO,
to CO production as function of T

e Use of multi-valent ions (V) as catalyst for Carbon oxidation
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Empty slide
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Empty slide
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Following slides contain additional
Info for question session.
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ohjeciives EValuate processes for fossil conversmnE
il

to electric power at efficiencies > 70 %

Electrochemical

conversion

...y H-pyrolysis gEm====2>>  Electric

» Coal, Ilgnlte or caH Air power
2

* Natural gas | pyrolysis ~Of L d Il F—co,
* Petroleum > mmm)> "]i "; =2 Sequester or reuse
* Petr. coke I e
* Biomass ) Fuel cells, turbines, refinery, etc.

Target: 70 — 80 % efficiency

< >

The pyrolysis of CH, => C + (x/2)H, consumes 3-8% of fuel value; no ash
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concept Direct Carbon Conversion (DCC): electric powerE
from electrochemical reaction of C and O, =

s> |0 tric power out

] <</ Air in

Net reaction:
C+0O, = CO,

Carbon in

Reactive, nano-scale

:l |:> A|r out

CO, out

disorder C from thermal
decomposition of CH,

« Total efficiency ~ 80% of AH_4

 Pure CO, product for reuse/sequestration

* Use highly reactive carbons from CH, pyrolysis
Inherent simplicity
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LLNL Carbon/air cells operate at sufficiently
high power density for base-load applications
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Outline

Table 3 Order of magnitude comparison between the electrochemical conversion
efficiencies of C, H, and CH, (Cooper, J. F. et al 2000)

Fuel Nte Muemstioss My Mot
C 1.0 1.0 0.8 0.8
H, 0.7 0.8 0.8 0.45
CH, 0.89 0.8 0.8 0.57
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Looking for ways to use the full
exergetic quality of solid f%el y

o Solid fuels become increasingly more
Important (security of supply).

o Coal because it's abundant.

e Biomass because it is CO, neutral.

 Waste.

» Also liquids are closer to solids than to gases
In terms of their exergy value.
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INn-Direct Carbon Fuel Cell
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Figure 6 Indirect Carbon Fuel Cell concept by Nakagawa and Ishida (Nakagawa, N. and Ishida, M. 88)
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In-Direct Carbon Fuel Cell
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Learning curves of conventional and potentially more efficient technology
When to make a transition?
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Indirect Carbon SOFC & gasifier
with molten carbonate assistance.

O SOFC

C+CO,+H,0 (+0,)

7

Molten Carbonate
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Combination of Molten Carbonate
coal/biomass gasifier and MCFC

* In the syngas (hydrogen) producing integrated system
the Fuel Cell can operate at low utilization.

 Hence low Nernst loss and high fuel cell efficiency.
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Exergy efficiency of Coal/Biomass
conversion
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Solar Exergy (approx.)
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