Using the full exergetic quality of solid fuels.

DCFC Workshop, NETL DOE Pittsburgh

Dr. Kas Hemmes

August 1, 2003

1

Faculty of Technology, Policy and Management Section Energy and Industry

Delft University of Technology

Outline

- DOE goals
- Why emphasize solid fuels ?
- Thermodynamics, exergy and entropy production
- Direct Carbon FC
- A fuel cell that produces H₂ and converts heat into power??
- Exergy efficient integrated solar-biomass systems
- Conclusions

DOE goal for the 21st century fuel cell

August 1, 2003

Why emphasize solid fuels ?

1. Solid fuels will become more important in the future!

- Coal: abundant and cheap
- Biomass: sustainable
- Waste: negative value
- More efficient CH₄ conversion routes involve solid C

NB: Also liquids are closer to solids than to gases in terms of their exergy value.

Why emphasize solid fuels ? (2)

2. Present conversion of solid fuels is not efficient

- Combustion (Carnot limitation)
- Gasification (Carnot & entropy production)

H₂/O₂ Fuel cell and Carnot efficiency

August 1, 2003

Entropy production in conventional gasification

$$C + \frac{1}{2}O_2 = = > CO + Q(heat)$$

 $\frac{1}{2}$: 1

1. Doubling of the # gas molecules 2. Entropy $\Delta S = Q/T$

August 1, 2003

Electrochemical gasification :

- (Solar) Heat can be converted into power with an efficiency higher than the Carnot efficiency!
- Self regulating process

The 'holy grail' of electrochemistry : A Fuel Cell that produces hydrogen and converts heat into power !

$\mathbf{CO} + \mathbf{H}_2\mathbf{O} = => \mathbf{H}_2 + \mathbf{CO}_2$

August 1, 2003

How to reach or approach this 'holy grail' ?

- Electrochemistry is the key technology because it can approach reversibility = zero entropy production = conservation of exergy.
- Use small driving forces F since $\Delta S \sim (F)^2$
- Solar energy is ideal renewable source to supply the heat, thereby increasing the efficiency of this technology as well.

How to reach or approach this 'holy grail' ? (1)

1. Direct Carbon Fuel Cell:

How to reach or approach this 'holy grail' ? (2)

2. Direct Carbon Fuel Cell at high T: $C + \frac{1}{2}O_2 => CO$

How to reach or approach this 'holy grail' ? (3)

3. In-direct Carbon Fuel Cell/integrated systems :

Explaining the difference between conventional combustion/gasification and electrochemical conversion.

August 1, 2003

Energy Research Policy

- Identify solar-biomass regions
- Prevent entrenchment in inefficient technologies by designing a roadmap to develop EXEFF systems
- Electrochemistry and fuel cells are key technologies
- 'First' systems 'then' components
- Demand specification of exergy efficiency
- Promote cooperation between research areas; solar biomass, coal and fuel cells and AI production industry
- Promote cooperation between Europe, USA and Japan

Countries with large potential for Solar and Biomass can become the energy (H₂) producing countries of the future.

How to prevent entrenchment in conventional gasification?

August 1, 2003

Conclusions

- Solid fuels will become increasingly important in the future.
- Present conversion systems for solid fuels are inherently inefficient.
- New conversion systems for solid fuels with higher (exergy) efficiency are possible; ultimately a flexible hydrogen & power producing system converting heat into power can be conceived.
- Fuel cell technology is a key-technology.
- The DCFC producing pure CO₂ is one of the very promising options
- A well defined roadmap is necessary to provide a framework for the development of these systems and to prevent entrenchment in inherently inefficient technologies

Identification of R&D needs

- Design of a <u>roadmap</u> towards exergy efficient energy conversion systems with socio-economic analysis of flexible H2/power production
- Design and analysis of exergy efficient energy conversion <u>systems</u> and comparison with conventional systems to show potential benefits
- Integration of solar with gasification and fuel cells
- Steam and CO₂ gasification
- Molten salt (carbonate) gasification and in-situ gas cleaning.
- DCFC design and up-scaling
- Electrochemical oxidation of Carbon including transition from CO₂ to CO production as function of T
- Use of multi-valent ions (V) as catalyst for Carbon oxidation

Empty slide

August 1, 2003

Empty slide

August 1, 2003

Empty slide

August 1, 2003

Following slides contain additional info for question session.

August 1, 2003

Illustration of the reversible and irreversible heat losses in a fuel cell.

• The pyrolysis of $CH_x => C + (x/2)H_2$ consumes 3-8% of fuel value; no ash

JFC:July 03

Concept Direct Carbon Conversion (DCC): electric power from electrochemical reaction of C and O₂

- Total efficiency ~ 80% of ∆H_{std}
- Pure CO₂ product for reuse/sequestration
- Use highly reactive carbons from CH_x pyrolysis
- Inherent simplicity

JFC:July 03

LLNL Carbon/air cells operate at sufficiently high power density for base-load applications

Outline

Table 3 Order of magnitude comparison between the electrochemical conversion efficiencies of C, H₂ and CH₄ (Cooper, J. F. et al 2000)

Fuel	η_{fc}	$\eta_{\text{Nernst loss}}$	η_{irr}	η_{tot}
С	1.0	1.0	0.8	0.8
H ₂	0.7	0.8	0.8	0.45
CH ₄	0.89	0.8	0.8	0.57

Looking for ways to use the full exergetic quality of solid fuel !!

- Solid fuels become increasingly more important (security of supply).
- Coal because it's abundant.
- Biomass because it is CO₂ neutral.
- Waste.
- Also liquids are closer to solids than to gases in terms of their exergy value.

pCO2=0.00033 atm

RT/nF * ln(1/pCO₂) = RT/nF * 8 = 160 mV (T = 650 °C)

Figure 6 Indirect Carbon Fuel Cell concept by Nakagawa and Ishida (Nakagawa, N. and Ishida, M. 88)

August 1, 2003

Learning curves of conventional and potentially more efficient technology When to make a transition?

August 1, 2003

Indirect Carbon SOFC & gasifier with molten carbonate assistance.

August 1, 2003

Combination of Molten Carbonate coal/biomass gasifier and MCFC

- In the syngas (hydrogen) producing integrated system the Fuel Cell can operate at low utilization.
- Hence low Nernst loss and high fuel cell efficiency.

Exergy efficiency of Coal/Biomass conversion

Solar Exergy (approx.)

