

Feasibility of Reusable Vehicle Modeling: Application to Hybrid Vehicles

Sponsored by Lee Slezak (U.S. DOE)

Aymeric Rousseau Phil Sharer Francois Besnier Argonne National Laboratory

Issues Related to Vehicle Modeling

- Large number of configurations
- Models complexity selection
- Models maintenance
- Models compatibility
- Results post-processing

Leverage resources

- 'Forward' modeling (driver-to-wheels with control and feedback) to ۲ portray transient component behavior and vehicle response
 - Component dynamics (e.g., engine starting and warm-up, shifting, clutch _ engagement ...)
 - Physiological component models possible
 - Control strategies that can be utilized in HIL, RCP or vehicle testing —
 - Can utilize variable time steps to enhance accuracy

Realistic Shifting Event (0.6 sec shift with manual gearbox)

Detailed Models Necessary for Realistic Behavior

Large Number of Configurations Achieved Through Building

Elle Edit View Simulation Format Iools Help

▶ ☞ 문종 ※ 않 않 요요 > • 표양 편 통료수용

		-	-						1.1.1																															
	-+-	÷	ļ,			·						+	ļ	·	4.4.	4					į	-++	-4-4							+-+-			·	÷						
	-	÷				į		įį.	· · · · ·			÷	į	jj	ş.ş.	4-4-4		·			i				· · · · ·					4.4.	· · · · · ·		įį.	4.4				ş	4-4-	
	4	4	1		-j	į., į.		1.4.				1.1.	i	j j	į.,	1.1.1		1.1.1			1	. j j.	44	- -				·		4.4.	i		jj.	4.4	.i.i.			j., j.,	į	-i
		4			-i	1.4		1				1.1	i	L	1.4.	1		L			·	1.1											L	4.4				L.L.	1.1.	
	.1	1.						1.1.				1	ii		1.1.	1.1.1		1.1.1		21.	1										i. i			1.1					1.1.	
	1	1	1									1	1	1.10	1.1.	100						1.1								1.10				1.1	11	1		1.1.	1.1.	
		1				1.1		1.1.	1.1.	1.1		1.1.	ii.,		1.1.	1.1.1					1.1.	1.1	11	1.1			11			1 1				11	.1.1.			1.1	1.1.	
		1	1.1		1.	1.1		1.1.	1.1			1.1	1.1.	1	1.1.	1.1.1						1.1	11	1.1		11	11		1.1	1.1				1 1	11			1.1.	1.1.	
	.1	18		<i>.</i>	4.										11	1.1.1	-					1.1				11								1.1	11	31.4				
												12. 20			121]	1			12		1.1								1.12				1.1					1.1.	
1	1	1							100						11.					6						111								11						
1	1	1				11	1															1.1	11			11	11							11	TT				11	
	1			15 2		14	-						1.1	(a., 15)	$(a,b) \in \mathbb{R}$					4	100					11	11				1.1		1	1.1						
	-	-			1	16	-		11		25	1			26	1 1 1			- 6			11			1.00	11				1 1				: :	111	1		11	1 1	1
1	1	-			1		:		1.1			1			101					1		1 1				1 1				1 10	121			1 1	11	1			1	
	1																			8	100	11												TT		1 A		1.1	14.1	
1	1	-			1	11									TT	111						TT				11				11				TT		1		TT.	111	1
1	1	1				11															1.1.	111				11						20		TT				111	T.I.	
1	1							11				TT		111		1111		1777			111	17				111			111	TT			111	TT	TT	1		111	111	-1
1	1	1	1		1	11			111			1	111		111	1111					1	111	10.1	111		111	111			11	1			111	111	1		111	TT	
	1	1			1		1	111	: :			11			1	111				1	111	11		111		1 1				1 1				: ;	11			11	111	
	1	1			1	10						11									111	T	11			11				1.16				TT	11			11	11	
1	T	T			1	E T	1	TT				TT			TT	TT						TT				TT	TI			TT				TT	111	1		TT.	TT	
	-				1	11	1	TT						1								TT				11				TT				11	11	1		111	TT	1
1	T	T	1.1		1	11	1	1.1.		111		TT	1		111	1111		1100	11		111	111	11	1.1		TT	111			TT	1		1	11	TT			111	1.1.	1
1	Ť				1	11	1					1				1111						17				11				TT									111	
	1						1	11			1	11				111		1111		8		177	111	111		111	11			1 10	111			111	111			111	1	
	1	1			1		1	1	1			11			1	1 1 1			1	8.0	111	11		11		11	11							11	TT			111	111	
	1		1		1		1	1	111			TT		1	111	1111		111	11		111	11	111	111		11				11	11			1 1	11	11		1 1	1 1	
	1	1					:	111				1				1 1 1						11				1 1	1 1		1 1	: :				: :	11	1		1 1	1 1	
	1						1						111		1	111				1		T				111								TT	TT			TT	TT	
1	1	1	11			11		1.1.				T			101			1111				11	11			111	TT			TT			L.L.	TT	TT			TT	TT	
1	T	1			1	11	1	11				11			111	111					111	11				11				TT				TT	11			11	11	
1	1	1	111			17	1	11				TT	1.1.		111	1111					1.1.	11	111			11	11	111		11				11	1.1.			TT.	1.1.	
1	1	1	1		1	11	1	11	111		1	TT	111	1	TT.	1111					111	11	11			11	11			TT	111			11	11			TT	11	1
1	1	1	1		1	11	1	11	111			11			11	111				1	111	11	11	11		11	TI			1 1	1			11	11	1		11	11	1
	:	1			1		:					1			1				1 1			11	1 1			11			1 1	11	1			: :	11				1 1	
	1					11																11								1 1	10.5			TT					111	
1	T	T	1		1	11		TT				TT			TT						TT.	111				TT	TI						11	TT	111	1		TT.	TT	
11	T				1	17						111	1	1	111	1111		111			1111	11	11			TT	11			111			1	111	11			111	111	
1	1	1			1	177		11				TT	111		117			111	111	2.1		111				111	11			111				11	111			111	11	
0	1	1		07		1					~																							1					11	
	1	1	1		1	11	1	11	11	11		1.1	1		1 1	111					11	11	11	11	111	11	11			1 1	11			11	11	1		11	11	
1	1	1	1		10	11	1	111	11			11	1111		TT	TTT	1	111	11		11	111	11	111	111	111	111			11	1111			11	111	111		11	111	111
1	1	1	1	1	1		1	11	1.4		1	1		10	1			1111			111	11				11					1			TT	TT	1		11	111	
		1	1		1	11		111	11						TT	TTT		1111			11	11	11			TT	TT		11	TT			11	TT	TT	1.1		TT	TT	
1	1	T	1		1	11						T			TT	1111		1.1.1				111	111			111			1	TT	1			TT	111			11	111	
1	1	T	1		1.	17	1	1.1.		11		11		1	11	1		1			1.1.	11	111	1.1.		11	11			TT	1.1.			11	111			TT.	11	-1
1	*	1			1	11	-	11		11		TT	1	1		1111		1			1010	17	111			11	11			111	1318			11	11			11	11	
		-				5 S						4		h	A	444		bashes!			1				- ! ?															- 4
1	S	tar	t			B) 🙆	1 1				0	Inbox	- Mic.,	. 1	2 L: (V	ehicie	6	Ayl	R - SAEC		1	MATE	AB	4	🙏 la lum	odeling	h	J Sh	nulation	in .	📕 spl	t_2wd		0	19		(3)	6.00	11:27	AM

- - X

File Edit View Smulation Format Tools Help

🔧 start

🥠 kimo...

Ele Edit View Simulation Format Tools Help

Configuration Structure Allows Drivetrain Building and Manages Compatibilities

Structure	Field name	Description								
config	name	Name of the powertrain (example: "par_2wd_p2_ct")								
	pwt	Hybrid Family (example: "Parallel Hybrid")								
	axle	Number of axles (example: "2 wheel drive")								
	trans	Transmission technology (example: "ct" for continuous variable transmission)								
	name_compo	Component used in the powertrain (example: {'drv', 'eng', 'mc', 'wh')								
	ver_compo	Component versions the user can select								
	pos_compo	Location of each component in the powertrain and component it is connected to								
	prop_strat	Control strategies available for the powertrain.								
	trs	Transient needed for the powertrain								

Model Complexity Selection Facilitated by Generic Component Model Format

- Models follow Bond Graph principle
- Consistent input/output nomenclature
- Plug-and-play component models
- Configuration easy to visualize in block diagram code

2004-01-1618

Model Maintenance Ensured Using Libraries

2004-01-1618

Parameter Names Follow Nomenclature

- Based on three parts:
 - Type of component (e.g.: eng = engine)
 - Type of data (e.g.: trq = torque)
 - Complement of information (e.g.: max = maximum)
- All the model parameters and variables are composed using these three parts

Parameter	Type of component	Type of data #1	Type of data #2			
eng_spd_hist	"eng" for engine	"spd" for speed				
mc_volt_hist	"mc" for motor controller	"volt" for voltage				
ptc_eng_trq_max_hist	Engine information used in the controller ("ptc")	"trq" for torque	"max" for maximum			

Mux Lines Used to Locate Parameters in Buses

Name of the line => "name_parameter"2bus

Accessing Parameters From Buses

x

*

Generic Vehicle Powertrain Controller Organization

A generic organization common to all powertrains

Vehicle Configuration

Model Structure List All the Users Choices from the Graphical User Interface

Field #1	Field #2	Field #3	Meaning							
gui	size		Graphical user interface window size							
units			Units used in PSAT (metric or english units)							
drivetrain	name		This is the name of the model							
	'component name	ver	Component version							
	abbreviation' (i.e :	type	Component type (SI, CI)							
		init	Component initialization file							
		scale	Component scaling file							
		calc	Component calculation file							
prototyping			used only with the optional PSAT-PRO							
sim	cycle	run	ON when we choose to run a cycle							
		number	Number of cycles							
	acceleration	run	Acceleration test							
strategy	conso	prop	Propelling strategy init. file & model							
		shifting	Shifting strategy init. file & model							
		braking	Braking strategy init. file & model							
results	conso	ess_soc_init	Initial state of charge							
		final_abs_soc	Final absolute state of charge							
		fuel_econ	Fuel economy in miles per galon							

Proprietary Information Are Added Without Code Modification

Compatibility Is Managed For the Users

Specific Tools Developed To Visualize Results and Understand Behavior

CENTER FOR

Reusable Tools Ensure Resource Leverage

- Proprietary data set, component model and control strategies can be easily implemented thanks to:
 - Naming nomenclature
 - Generic component model format
 - Flexible GUI
- Large number of predefined configurations can be selected as the powertrain is built
- Flexible post-processing
- Most of the concepts can be applied to other tools

Aymeric Rousseau Philip Sharer arousseau@anl.gov psharer@anl.gov

Transportation website PSAT www.transportation.anl.gov www.psat.anl.gov

