Planet Hunting In New Stellar Domains

John A. Johnson

Institute for Astronomy University of Hawaii

In Collaboration With:

Geoff Marcy (UCB) Debra Fischer (SFSU) Matthew Muterspaugh (SSL) Katie Peek (UCB) Peter Williams (UCB) Sabine Reffert (ZAH-Landessternwart)

Why should stellar mass matter?

Larger Star \rightarrow Larger Disk

→ More raw materials for planet building (Core Accretion Model)

The Stellar Mass Distribution of Planet Searches

Doppler Wobble

1

97% of exoplanets detected by Doppler techniques

 $1 \text{ m s}^{-1} \approx 10^{-3} \text{ pixel}$

Iodine Cell Method

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Butler et al. 1996

Photo courtesy of Laurie Hatch

Precision Radial Velocities Johnson, Marcy et al. (2007)

From Anomalies to Statistics

- Catalog of Nearby Exoplanets (Butler et al. 2006)
 225 total known exoplanets (<u>exoplanets.org</u>)
 187 host stars within 200 parsecs of the Sun
- Planets are common, found around >7% stars.
- Occurrence rate vs. stellar properties
 - Stellar Mass
 - Chemical Composition

Stellar Metallicity and Planet Occurrence

Fischer & Valenti (2005)

Stellar Mass and Planet Formation

Laughlin, Bodenheimer & Adams (2004)

Kennedy & Kenyon (2007) ApJ in press "Baseline" Model Effect of disk temperature QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. profile on the radial extent of core-forming region Peak near 3 M_{sun} Planet fraction M Difference and a decompressed) decompress are needed to see this pict 0.5 2 M_*

Searching for planets around stars of various masses

Uniformly Detectable Planets: $M_P \ge 0.5 M_{Jup}$

Extending the Search to Lower Stellar Masses

The NASA Keck M Dwarf Planet Search

- 150 K- and M-dwarfs
 M_{*} < 0.7 M_☉
- 8 year baseline
- 2 Neptunes (GL 436b, confirmed GL 581b)
- 4 Jupiters around 3 host stars

The GL 876 System

Rivera et al. 2006

GL 849

Butler, Johnson et al. 2006

GL 317

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Johnson, Butler et al. (2007)

Jupiters Are Less Common Around M Stars

1.8 \pm 1.2% of M dwarfs have Jupiters within 2.5 AU, compared to... 5.6 \pm 1.6% of FGK dwarfs (Keck only)

Is this due to lower stellar mass, or some other variable such as metallicity?

Butler, Johnson et al. 2006

Metallicity Bias Among M Dwarfs?

Standard Argument:

- Spectroscopic [Fe/H] unknown for M dwarfs
- M Dwarfs have lifetimes longer than the age of the Galaxy
- Old stars are metal-poor
- Our M Dwarfs must be systematically metal-poor, which explains the lack of planets

Metallicity Bias Among M Dwarfs?

• There is no well defined age-metallicity relationship in the Galactic Disk

Nordstrom et al. 2004 Nordstrom et al. 2007 Takeda et al. 2007 [Fe/H] (Valenti & Fischer)

Stars within 20 pc

Age [Gyr] (Takeda et al.)

Metallicity Bias Among M Dwarfs?

• No metallicity trend with spectral type

Why so few planets around M Dwarfs?

- It's not due to a metallicity bias
- It's likely due to stellar mass
- We can test the mass hypothesis by going to higher stellar masses.

Extending the Search to Higher Stellar Masses

Problem: Massive dwarfs are poor Doppler targets

- Fewer spectral lines
- Rotational broadening
 - A and F-type stars are rapid rotators
 (vsini >> 50 km/s)
- Large velocity jitter
 - Jitter = excess radial velocity noise
 - Likely due to pulsation, rotational modulation of surface features

Main Sequence: The Sun 1.0 Msun 1.0 Rsun

5770 K Vsini = 2 km/s Velocity Precision: 1 m/s A-type Star 2.0 M_{sun} 1.9 R_{sun} 8200 K Vsin*i* = 100 km/s Velocity Precision: ~100 m/s

Early-type Stars Are Rapid Rotators A Star: Vsini = 70 km/s

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

G Star: Vsini = 2 km/s

Wavelength (Ang)

Main Sequence: The Sun 1.0 M_{sun} 1.0 R_{sun} 5770 K Vsini = 2 km/s Velocity Precision: 1 m/s

A-type Star 2.0 M_{sun} 1.9 R_{sun} 8200 K Vsin*i* = 100 km/s Velocity Precision: ~100 m/s

Classes of Evolved Stars

Disadvantages of K Giants

Hekker et al. (2006)

Disadvantages of K Giants

Torres et al. (2007)

Stellar Radii and Short-Period Planets

Subgiants: Ideal Intermediate-Mass Targets

- A and F-type main sequence stars rotate too fast, too few lines
- K giants are slow rotators but jittery
 - Large, fluffy atmospheres
 - Difficult to determine stellar masses
- Subgiants:
 - Widely spaced mass tracks
 - Low jitter (~5 m/s)
 - Small radii, probe hot Jupiters

Subgiants: My Sample

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

1

159 stars at Lick and Keck Observatories

119 Subgiants $M_V > 2.0$

40 Giants $M_V < 2.0$

 $1.1 < M_* < 2.0 M_{\odot}$

Mass Distributions

"Normalized" Histograms

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Results From The Subgiants Planet Search Planets Orbiting Massive Stars

An Eccentric Hot Jupiter

 $M_*=1.3 M_{\odot}$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Johnson, Marcy et al. (2006b)

An Eccentric Hot Jupiter

Johnson, Marcy et al. (2006b)

The Wild Seasonal Variations of HD 185269

QuickTime[™] and a decompressor are needed to see this picture.

> The 345% variation in stellar irradiation during the 6.8 day "year" cause dramatic seasonal variability

Courtesy of Jonathan Langton, Greg Laughlin and www.oklo.org

HD 192699: $M_* = 1.68 M_{\odot}$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

HD 175541: $M_* = 1.65 M_{\odot}$

1

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

HD 210702: $M_* = 1.85 M_{\odot}$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Retired A-Stars and Their Planets

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

HD 16175: $M_* = 1.38 M_{\odot}$

Johnson, Marcy et al. (2007)

HD 167042: $M_* = 1.65 M_{\odot}$

Johnson, Marcy et al. (2007)

κ Corona Borealis: M_{*} = 1.80 M_{\odot}

Johnson, Marcy et al. (2007)

Additional Planet Candidates

Follow-Up Observations Needed

Distribution of Semimajor Axes

- Combine with K giants and clump giants
- 13 out of 13 planets around stars with
 - $M_* > 1.5 M_{sun}$ orbit beyond 0.8 AU!

Stellar Radii and Short-Period Planets

Evaluating Planet Occurrence as a Function of Stellar Mass

- Planets with a < 2.5 AU, $m_p \sin i > 0.8 M_{jup}$, $N_{obs} > 8$
- Compare w/ CCPS sample of M dwarfs and Sun-like stars

Planet Occurrence Rate For a < 2.5 AU, $m_p \sin i > 0.8 M_{Jup}$, $N_{obs} > 8$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Johnson, Butler et al. (2007)

An Expanded Subgiants Planet Search

• 320 additional stars at Keck and Lick Observatory

– Decrease error bars by ~ 2

- Higher precision of Keck/HIRES
- Targets in "sweet spot" of H-R diagram
 - High Mass
 - Low V_{rot}sini
 - Low jitter
- Catalog of Spectroscopic Properties for 450 Subgiants

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Metallicities of Subgiants

All stars: <[Fe/H]> = 0.0 Stars w/ Planets: $\langle Fe/H \rangle = 0.0$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Conclusions

- Subgiants are ideal proxies of A and F stars
 - Mass of an A dwarf, precision of a G dwarf
- Semimajor Axis Distribution at higher masses not consistent with Sun-like stars
 - Relic of Formation/Migration?
 - Higher occurrence rate for $M_* > 1.3 M_{\odot}$
 - Treasure trove of planets around A stars.