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SUMMARY

Two-point, two-time correlation equations are ob-

tained by considering the Navier-Stokes equations

{or two points in a turbulent fluid at lwo different

lines. By neglecting the triple correlations in the

equations, a solution is obtained for the space-time

velocity correlation in the final period of decay

The analysis is extended to earlier times by con-

sidering the Navier-Stokes equations at three points

in the fluid at three different times. The resulting

set of equations is made determinate by neglecting
the quadruple correlations in comparison with the

triple correlation.% as in a previous paper by the

author which considered correlations invol_ing only
one time.

The diffusion oJ particles from a source in a

deeayin 9 turbulent field is calculated approximately

by a.ssuming that the velocity fluctuations are small.
The theoretical results are compared with experi-

ments for diffusion from a line 8ource in a decaying
turbulent stream.

INTRODUCTION

Most of the theoretical work on homogeneous
turbulence has been based on correlations between

fuctuating quantities at several points in a fluid

at a single time (e.g., ref. 1). Correlations in-

volving several different times as well as several
points in the fluid are also of considerable interest

and have been studied by several authors (rcfs.

2 to 8). These studies were concerned mostly

witt_ the kinematics of space-time correlations,

although some aspects of the dsmamical problems
were also considered. In connection with the

dynamical problem, Bass (ref. 5) set up the space-

time equivalents of the Khrm_n-Howarth equa-
tion (ref. 9), but no solutions were obtained.

This paper is concerned primarily with the
dsmamical problem. First, a solution for the final

period is obtained by neglecting the triple corre-
lations in the two-point, two-time equation. A

similar solution was obtained by Batchclor and

Townsend (rcf. 3) by use of a method that con-

sidcred unavcraged velocities rather than the

two-point, two-time equations considered here.

However, the method used in this report is more
convenient for extension to earlier times. The

extension to earlier decay times, or to higher

Reynolds numbers, is made by retaining the

triple correbLtions. An e.vpression for these corre-

lations is obtained by neglecting the quadruple

correlations in a three-point, threc-tinae equation.
Solutions for still earlier times could be obtained

by considering the turbulent fluid at a larger

number of points and times. This proccdurc is

analogous to that used previously by the author

for multipoint correlations at a single time (rcfs.
10 and 11).

By assuming that the turbuIent fluctuations are

sufficiently small for squares and products of the

fluctuations to be negligible, turbulent diffusion

from a source is calculated approximately; it can

be shown tImt the Lagrangian correlation and the

Eulcrian time correlation are essentially equal for

this case. The possibility of replacing the La-

grangian by the time correlation at a point has

been suggested by Burgers (ref. 4). Recently

Baldwin (ref. 12) obtained an experimental indi-

cation that this is a reasonable approximation.

In the next section the space-time correlations

for the final period are considered; a higher order

approximation for earlier times is taken up in later

sections of the paper.
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Subscripts:

SYMBOLS

indicates substantial derivative

energy spectrum funelion

arbitrary fimclions

_,'-- 1

constant thai del)entls on initial con-
ditions

in t eger
points

instant aneous pressure

longitudinal space-time correlation

coefficient, defined by eq. (21)
distance vectors

dimensionless time, defined by eq.

(43)
dimensionless time increment T'--T

dimensionless time halfway between
T and T'

limes

lime halfway between t and t'
reference time

time increments t'--t and t"--t,

respectively

inst anlaneous velocity components
component o[" velocity in y-direction

given by eq. (38)
space coordinates

distance in y-direction that a fluid

particle originally at y=0 travels

during time interval t'--tt

space coordinates

Fourier trans['orms defined by eqs.

(27), (28), and (29)
constant that depends on initial con-

ditions

angle between K and _:'
wave nllnll)er vectors

equals d_d_a(l_a

microscale based on space interval
microscale based on time intervM

kinematic viscosity

densily

Fourier transform defined 1)y eq. (7)

or (8)

L lmgrangian

i,j,k,1 tensor sul)scrit)ts that have values 1, 2,

or 3 and designate coordimtte directions

Superscripts:

'," referring to points P' and P"

TWO-POINT, TWO-TIME CORRELATION AND

SPECTRAL EQUATIONS AND APPLICATION

TO FINAL PERIOD OF DECAY

For obtaining l.}te two-point, two-lime correla-

tlion equalions, first, write the Navier-Stokes

equations for the points P and P' separated by
the distance vector r and the time increment

At:

bu,, b(u_uA.) 1 5p b2u,
_t ± _ p 57, +_ _x_._x_ O)

bu,!. b('u,.'u_) 1 _)p' b=u"

where the subseripls can lake on the values 1, 2,

3 and a repeated subscript in a term indicates a

summation. The quantities u, and u_ are inslan-

taneous velocity components, x, is a space

coordinate, t is the time, O is the density, v is
lhe kinematic viscosity, and p is the instantaneous

pressure. Multiplying the first equation by uS,

the second by u,, and taking space averages
result in

! ! 2 ¢

b_u; bu,uiUk 1 bpui_ b u,u, (3)

m _ k

bu_u;. _)u,u,'u'k 1 bp'u,_ b=u,u;
+_ p b_ -t-v _x',.Ox'_ (4)

where the fact that quantities at xt and t are

imlcpendent of x_ and t' was used. By introducing

lhe lransrormations b/bx_= -- b/&'_, b/bx_= bib&,

(b/bl) t, --=(b/bOa t-- b/hat, and 5tOt' = b/hAt, which

arm ot)tained by writing a correlation as a

function of r_, t, and At and differentiating, the

following equations are obtained h'om (3) and
(4):

_)u,u; 0 ,. _ , ,
+bT.,u#_u'(- r,-at, t .+at)-&. u,u_.,(r,at,o

-- 1 2 r

1 b ___ 5 pu',(--r,--at,t+at)+2v 0 u,u,p br_ _ i)rkOr,

"""'7

bu,u, {_ 5 u,u_G(--r,--At,t +:xt)
bat &'_

(5)

q

_ 1 b , , _ "i) _l_i

p --&gPU,(--r,--At,tTAt)+_ &,&,, (6)

Equations (5) and (6) are the space-time equiva-

lents of the Khrmfn-Howartl_ equation. They
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were obtained in n slightly different form, for
the ease or isot,.opic, turbulence, t)y Bass (reL 5).

In order 1o convert equations (5) and (6) 1o

spectral form, the following three-dimension_d
Fourier I ransrorms are inlroduced:

(12) and (13) are neglected, and the following
solutions are obtained:

_'-=A (,,,_t) e- 2_-"(,-to) (14)

u,u,(r,At,t)= _u(K,kt,t)d _ " qlK (7)

£ou/u_u;(r,_t,t)= _l_/K,_t,t)d _" _d_ (S)

pu_'(r,_t,t)= Xj(K,At,t)d" " _dK (9)
m

where K is a wave number vector and dK_dK_dK2d_a.

By inlrodueing these t ransfornas, equations (5)
and (6) become

_-_ % i_,,,,(-,,,-._t,t +.xO- %<kj(,,,m,O

1 . X l
=-,, _< j-_, i_jx,(-,,,-m,t+m)-2=&,,_ (10)

+ _K,_v,.,(-,,,-at, t +at)

l
=--- _jX_(--K,--At,l+At)--vK_s (11)

P

In order lo convert the tensor equalions (10) and

(11) to s('alar equations, contra('t lhe indices i

and j:

+i(-_)_,_,(-,,,-at,t+_t) (12)

_+v_ _.=Z(--_)_,_/--,.,--_t,t+m) (13)

The pressure lerms d,'op out of these seMar equa-

tions because of lhe eonlinuity relalion builD&=

_).**/r_.l:,=0 alld lhe relation b/br,=--b/'54 (see
eqs. (3) and (4)).

FINAL PERIOD

Equations (12) and (13), as they staml, conl,in

Ioo many unknowns for solutions to be obtained.

For the final l)oriod of decay, however, the triph;

correlation or inertia terms should be negligible

compared with the double correlation {ernls.

Thus, the forms on lhe right si(h,s of eqtl,,lions

_,,=f2(_,t)e -_,=a* (15)

In order fox" these equations 1o be consistent,,

E=j'(,,) e-,_'a'e-_,,'('-'o) (1 O)

where the energy speciru,n function l;'=2_rg2_,
has been introdueed. Evahmte .f(K) by h, tting

E=Jo_/3r_ when K is small ILia, vef. 13). This

gives

E=Jo_' -'.,w.( ,-,o+_ .a,) (17)

where J0 is a constant thai depends on initial

conditions. For At=O, equation (17) reduces to

the usual expression for the energy spectrum
function in the final period, which involves only

one lime. By inlegrating equ,xtion (17) with

respect to ,_, the time correhxtion is obtained as

Jo _.,/ 1 \-_z_
(Is)

anti, for isoh'opie turbulem:c, the longitudinnl

space-lime eorrelalion is

, / 1 \- _n. Jo p--5/2

"/l"/1 (r'Al '_) =_._S (_)x]2 _X f- 'f d-_-_ Af)

-- 1 (19)exp Sv t--to+7 2At

Equalions (18) and (19) again reduce to the usual

expressions involving only one {inle if At 0

(e.g., ref. ], p. 94).
If a new time t,,,, which lies halfway between t

and t'(t,_=t÷kt/2) is defined, then At does not.

appear explicitly in equations (17), (18), and (19),
and u,u---_ is a fu,wtion o,dy of t,. and r. For

insIance, the longitu(lin,d space-lime correlation
becomes

,,- - J0 -_/2

uOt,,tr,l,_)=_ v ° (/,,,--to)-'_/_

e.rp [ res_,(t,,,- t,,)] (20)
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However, the correlation coefficient is not inde-

pendent of At. The longitudinal space-time cor-
relation coefficient Rn is defined as

/_ll----- ulu_(r,t_) (21)

, t,,, At ) ,8

i)e('oDlos

'_1 5/4
-- !

to/

exp_t - _ __- _ (22)
.. " _ 4v(t,,.--to) j

and, for the fin'd period,

- 1/ A
RH(r'At'tm)= l l--4_ \t,_---=

Batchelor and Townsend (rcf. 3) previously ob-
tained this equation but by a different method,
which considered unaveraged velocities. A dimen

sionless plot of RH is presented in figure 1. The
values of R:_ decrease as time interval At increases.
This is similar to the variation of correlation

coefficient with distance and would be expected
physic,dly. The curves go to zero at a finite value
of Al(At/2=t_--to) whereas, as r increases, they
go to zero only at r=¢o. The point where the
value of R_I is zero corresponds to the point where
one of the velocity fluctuations becomes infinite.

1.0

m _ _L

1

"-'- --""_ _ _ _

I
.2 .4 .6 .8

_.6

_=.4

.2

These curves for tim final period would not, of
course, be expected to be accurate in the vicinity
of tha_ point. The singular behavior could be
avoided, for positive values of At, by evaluating
the correlation coefficient at t rather than at t,,,
as in equation (19). However, this coefficient
would not be ssmmletric with respect to At.

A microscale Xt, which is based on time interval,
can be defined by analogy with the usual micro-
scale X, which is based on space interval. Thus,
Xt might be defined as

i
• 0

where u =:_u_u_ for isotropie turbulence. The

ratio of k_ to X_ is then

w

, , (b2R.ia_t_)o

For the final period this becomes

/ ^, _ J0 (t,_--t0)-3n

Thus,'Xt/h in the final period is a function of decay
time as well as of J0 and u. Calculation of ht/h

1 I
I

f

_ 0 _ .......

_ "-d

P
1.0 1.2 1.4

At

tm -to

U

I

1

1.6 I.E]

LJ

I
i

I

I

2.0

F]C,I:RE l.--Variation of longitudimd space-time double-velocity correlation coefficient in final period (eq. (21)) with

space and time intervals. Correlation coefficient ev tlu'd .'d at, l,. t+At/2.
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from this equation and the experimental data of

Batchelor and Townsend ill the final period (ref. 3)

indicated values of that ratio on the order of unity.

THREE-POINT, THREE-TIME CORRELATION AND

SPECTRAL EQUATIONS

To obtain tile three-point, three-time correlation

equations, write the Navier-Stokes equation at the

points P, P', and P" separated by the distance
vectors r and r' and the time increments At and

At'. The vector confi_mmd.ion is shovm in figure 2.

.._ p",x", t"

P _'_ 7,_/

X,t
--. p',x', t'

FsavRE 2.--Vector configuration for deriving three-point,

three-time corrclution equations.

The first two equations arc the same as equations

(1) and (2) with the subscripts k replaced t)y 1.

The third equation is

buT. b l bp"+. b_u_.'
5V" ± ax;---_'(_'#u;')=-_ ax-_ bx;' ax;' (23)

]3y multiplying the fn'st equation by u_u'k', the

second by u_u'_', the third by u_u_ and by taking

space averages, the following correlation equations
can be constructed:

b- , ,, b , ,, b
b_ u,m,_ - br_,u,mu,:u,- br_ u,u;ui.'u,

-}-0_ _'ui'tlk u't_ , i , ,t

1 b u' ,r
=_;(___ pui?lk--_-_P iu_

b , ,, 5 _\

_2 i ¢t "._ i rt "2 i? H--
+2_ -- -t" _\ Or,br, br,b,', ]- _ ) (24)

UlqJi k tbat

=--- p'u_u'#+_ o u,u_u_ (25)
p _, br_br_

O 't 'u" b 'u"u"
bat' t,'ui _,+_ u,ui _

_ " b_u,u;u,/1 bp"uiu_ F_ (26)
p br_ br'_Or',

where the following transformations were used:

b b b b b b b

b b b b
5_=5_' b-_=b-£7'

Equations (24), (25), and (26) arc the three-point,
three-time correlation equations. In order to

convert these equations to spectral form, the

following six-dimensional Fourier transforms can
be defined:

u,u_u'# (r,At, r',At',t)

=L L ft,_(_,At,_',At',t)e'(" "+_" " ") d_d_'

(27)

! Ii ! A !U_UzUiU_ (r,Al,r , t ,t)

(2s)

;#.... +_' "_')d.d_' (29)
ca - _

Also,

u,u; u; u'_' (r ,At ,r',At ' )

and

=%u,u'_u'_' (--r,--At,r'--r,At'--At,t + At)

f _-oa ! t t
= _l_(--_--_ ,--At,_ ,At --At,

t-f At)# ('" _+_" "_')d_<l_' (30)

t ig i! l ttu,uiu_ u_ (r,At,r ,A )

f i! ! ! i y •
:Uk'_l_liUi (--r ,--At ,r--r ,At--At ,t-_At )

= f ;._ _._(--_--_',--At',_,At--At',

t + At')e".'_+."_')d_(l_ ' (31)
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Similar expressions can be obtained for pressure
correla t ions.

Substituting the preceding rcb_tions into equa-

tions (24), (25), and (26) gives, for the three-

point, three-time spool ral e(lua |ions :

b

--i_Sjl,k(--K-- K',--_t,K',At'--At,t-k At)

(32)

(33)

In order for these equations to be consistent.,

_fl,,,=Kk[_8,a(K,.')]o e.rp { -- 2v [_ ( t -- to-+-l At )

q-KK'(t--to) cOS O-]-K'_-(t--t°+:At')]} (35)

where the indices i and j have been contracted

and lhe equation has been inner-multiplied by ga
in order to convert it to scalar form. The sub-

script 0 refers to the wdues of fl.k at t--to.axt=at'

--0; and 0 is the angle between K and K'.

In order to connect/_,_ and _,_,, let r'=At'--O

in equation (27) and compare with (8) to obtain

f_° , ,_,-_(.,._t,t) = B._(,_,_t,. ,O,t)d. (36)
co

Substitution of equations (35) and (:t6) into (12)
results in

bE ,, _
-57 +._, E=I_ (37)

_vller(_

alld

E: 271"t/2_fli t

at- at',t + _t')-_ id_,u(- ,,- ,,',- at %,,,
o

kt--at',t+At') (34)

SOLUTION FOR TIMES BEFORE FINAL PERIOD

For the fired period of decay, a solution was

obtained by neglecting the triph, correlations in

the two-poinl, two-time equations. Similarly, a

solution applieal)le to tin:es before the final period
eouht 1)e obhfined by retaining lhc triph, correla-

lions and neglecting the quadrul)h' correlations in

the three-point, three-time equations. A fuller

discussion of this procedure is given in references

10 and 11. In reference 10 it is shown thal, if

terms corresponding to quadruple correlations are

neglecled, the terms corresponding to pressure

correlations must also be neglected. Thus, if all

the terms on the right sides of equntions (32), (33),
and (34) are negh, cted, the equations can be

integrated between t0 and t to give

¢_u_-- f ,:(_,_',_t,_t') exp [--2v(_=+ _,_; + _'=) ( t-- :o)1

_u_ gu_(_._'.t, At') exp (--w_,kt)

/%_=/_u_(_,_',/,:X/) exp (--v_'_At ')

oo
W /._(5._)o(2rr) =_=_'_ exp{ -- 2v[:(t -- to

[£+At/2)+,/=(t--to)]} • eaT, [--2w.'(t--to)
l

+,',(t- }. If'/,,, [-2,,,'(,-,o

+at)ld(eos 0)],t,/ (3S)

where d_' is written as --2_-g'Zd(eos 0)dK'. The
quantities (/_-x)0 depend on the initial conditions
of the hu'l)uh'nce. In order that these results

will reduce {o previous results for At--0 (ref. 10),
let

• " f ] 4 ,'6 6 ,'4

(2_r) _ ",_._._(_,_ )0=--_/3,,(_ _ --,_ _ ) (39)

Then.

," ] 4,'6 6,

(2,_)_ i(-_O_,,_(-,,,-,, )o=-_o(_ _ -_ _ ') (40)
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Substituting equations (39) and (40) into (38) and

earrs-ing out tire integrations with respect to 0 and
i result in

,o 105_" _at_ 45_"
_' -(t-t0_ /"_(t---_o)_

19_ l° ;3_:12 ]

0rI2)'I2256_o2cxp [--3 "_o:(t--t°+: :_t)]

. 105K6 45K s
_','_(t- t0+_t) '/_ 4--i//_(t- to+._tF/_

191d0 3K12 "-]
¢/2(t__to+At)_/2 u_/2(t__to+At)._/__ ] (41)

Equation (41) reduces to the expression for the
energy-transfer function involving only one time

j.o(ref. 10) if At=0. Note that IVdK 0 only
o

for At= 0.

Substituting equation (41) in (37) and inte-
grating with respect t,o t result in

E J_P [--2u_2(t--to+_At)]= .-_ff ex p

_,2 _O e.rp[ 3 2(t_to+_ _t) ]256u 2

15V_P 12_'2K _vv_(t--to)v_ vs/2(t--to) 5/2

-4- 7Y_d° 16_K12
3_/_(t_ to)3/2 4- ,d_t_( t _ to),n

--32KI'-'_33 ]_'(K P('_20) 1/2)]

r"' BOe,pE_3 _v(t__to+_,Xt) ]256v 2

15y_ a 12v'_ 8_v_(t--to+At) 'n elf(t--to+At) _n

7v_o 16v,'2__
q-_v_/_(t_to+At)_/_ _ 3ua/_(t_ to+At) _/_

--_32_'a-F(_[v(t--t2+At).]'/_)] (42)

where

F(w)=e-_"/o_ e_'d,

or

For evaluating tire function of integration (with

respect to time) in equation (42), the theory of

I_in (ref. 13) or of Batchelor (ref. 1) is used.

According to those theories the eoefftcient of the

first term in lhe expansion of E in powers of _ is

independent of time, whereas the other terms may

not be. Thus, the function of integration, since
il cannot be a function of time, is set equal to tire

first term of the expansion, which is J0_/3r. The

theories of I,in and Batehelor are based on the

assumption that, correlations are exponentially

small for large wdues of r. This is eonsislenl

with ttre results of the present, theory (reg. 10

and 11) and does uot seem to be inconsistent with

some results of Batchelor and Proudman (ref. 14),

if tire effects of tire singularities arising in their

analysis are assumed to be negligible. According

to Batehelor and Proudman, correlations, in

genera!, wouhl be expected to be negative power

functions of r for large values of r, and all terms in

the expansion of E would, in general, be functions

of time. However, their results by no means

rule out the possibility of exponentially small

correlations or of a constant first term in the ex-

pansion of E. Tire present theory gives ex-

ponentMly small correlations for large r (refs. 10

and 11) and is consistent with a constant first

term in the expansion of E for evaluating the

function of integration in equation (42).

By using lhe relation

u,u'_(_t,t) f=-2 --.+o Ed_

and introducing the dimensionless l_ime

T=- P'/_J_/_( t-- t°) (43)

589561--61--2
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the dimensionless time correlation becomes where 0]_ 1. For AT=0, this becomes

/3_j° u_u:(a,,,) 1 ( -I2aT)-Sn " :3o_:9 _(t) T -'_12
jo_,/o_,5:9 2 --32(27r) '>_T+ 5T2 j_4,, ps/o 2 --32(27r)_:vF0"2296T-7

f which is tile same as ill(' expression for tile lurbu-

25/(3x_) 25/(3_/3-) lent energy obtai,,cd previously (ref. 10). As in
/ 2 "(,_:2 / 1 k7/_ "

] the of lhe fired period, an qverage time t., t
Tr:2(T+_, A7'1 (T-?aT) r/: (7"+ AT case\ a / 3 /

+5l/2 can be introduced. Equation (44) becomes,

when writIen in terms of the (limensionIess T,_

rather than T,
140/(9,'3) 140/(9,'3)

" _ ,,912 : I ",,9/2

"' " '- .4oI("-,,,3)24o/(2_ _3) 9 - " '_
/ 2 "_ 11/2 _" / l "k 11/2

T+35T) ' )
6160/(S 1-V_) 6160/(S1%,:3)

/ 2 \1312[ / I \13/2

32_-_, 1-3-5,..11+2n

T _- _1_ (T+:'T); i--
/ F

( (_ T+_ a'/ T+5 a

(44)

(45)

_:_ u:t;(_t,t,,,) 1 Tg.i, 2
ji4:._ ::o 2 32 (2_r)'/2

• 1 r 7/2 l 7/2

25/(3V,3)

r , 1 7/2 r, ] \7/2 • • -} (46)

"'"7
This expression for u_u_ does nol become in(h,pend-
ent of aT when written in terms of T.. as was
the case for the final period. However, the

.2 \

0 2 4 6 8 I0 12 14 16 18 20
AT

FIGtrrm 3.--Variation of time double-velocity correlation coefficient (eq. (47)) with dimensioifless time interval and

decay time, and comparison with values for final period. T defined by equation (43) ; correlation coefficient evahmted
at Tm= T-I- A T/2.
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expression is still s31nmetric with respect to AT.

This is in agreement with the results of Meeeham

(ref. 7), who came to that conclusion by kinemat-
ical considerations.

A more physically meaningful quantity than
u_u', is the time correlation coefficient, defined as
follows :

u,u;(At,t_)"

R,,==-[ I

(47)

A plot of R., obtained from equations (45),

(46), and (47), is shown in figure 3. The final-
period contributions are shown as dashed curves

for comparison. As in the case of the final period,
the values of R, decrease with dimensionless time

separation. That is, of course, the type of be-
havior that would be expected on physical grounds;
the time correlation coefficient, can be considered

as a measure of the sameness of the velocities at

different times at a point, in much the same way

that the space correlation coefficient provides a

similar measure for _-elocities at different points a___t.t
one time. It. is of interest that the values of u_u'_

by themselves do not exhibit this behavior; in

fact, they increase rather than decrease with time

separation, as shown in figure 4. This unusual

variation is apparently due to the nonlinear decay
of the turbulence with time and would not be

observed for stationary turhulence. For the

tf)l 0_
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FIGURE 4.--Variatfons of dimensionless double-velocity correlation with time interval and decay time. Correlation

evahlated at, T,,.
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decaying east, it appears that the correlation

coefficient, as defined by c___.quation (47), is much
more meaningful than u_u_ by itself. The dis-

cussion of the time microscale given in connection

with the final period wouht, of course, ha._._ve been
meaningless if it had been based on utu_ rather
than on the correlation coefficient.

Comparison of the dashed with the solid curves

in fig_we 3 indicates that. the general effect of tim

higher order inertia terms in the correlation

equations is to decrease the correlation coefficient

at a Wen value of time separation. This is

opposite to the corresponding effect for space

correlation (see, for instance, the experimental

results of Stewart and Townsend (ref. 15) or the

theoretical results of Deissler (ref. 11)). It is

possible that the reduction of correlation coefficient

by inertia terms is caused by the nonhomogeneity
of the turbulence with time.

APPROXIMATE CALCULATION OF TURBULENT

DIFFUSION FROM A SOURCE FOR SMALL

VELOCITY FLUCTUATIONS

Similarly, the Lagrangian correlation is expamted
as

1

+2 v(t) (t'--t)_+L Dt '2 Je=,
(49)

The substantial or par(Me derivative can be
written as

O_,(t'), b,,(t'), 5_,(t')
Dv(t') _ bv(t') Fu (50)

Dt' bt' - b_, tv _ tw

For small velocity fluctuations,

Also

D_,(t').. 5_,(t')
Dt _-= Ot" (51)

D2v(t') .._ b Dv(t')..obh'(t ') (52)
Dt '2 =bt' Dt' = bt '_

The time correlations considered in the pre-

ceding sections were concerned with velocities at

different times at a fixed point in the fluid
(Eulerian correlations). On the other hand,

calculating the turbulent diffusion of particles
from a source usually involves the Lagrangian

correlations, which are based on the velocity of a

moving fluid particle at different times, rather
than on the velocity at a point. For small

velocity fluctuations, however, it has been sug-

gested by Burgers (ref. 4) that the two correlations

should not differ greatly. This can be shown as
follows:

First, consider the Eulerian time cola'elation

v(t)v(t'), where v is the component of the velocity

in the y-direction ; similar results could be obtained

for the other velocity components. The Eulerian

correlation can be expanded in a series as

r(t)v(t')--:[v(t)v(t')],,=, +E_t' _] c,=_(t'- t)

1 b 2
+_E_tT_v(t)v(t )']c= (t'--t)'+ ...

F_v(t:!-] (t'-t)
=v_(t)+v(t)/ bt' J_,=,

1 Fb',,(t')7
v(t) L bt '_ _Jt'=t (t'-t)2+ " ' " (48)

and so on for higher order deriwltives. From
equations (48), (49), (517, and (527

"v(t )v( t') _--[_,(t )v( t') lL (53)

is obtained, wlfich was the relation to be proved.

It should be noted that relation (53) is most
accurate for small values of t'--t as well as for

small velocity fluctuations, inasmuch as the approx-

imate relation (51) had to be applied a greater

number of times to the higher order deriwltives
in equation (49) than to the lower order ones (see

eq. (5277.

It. should also be emphasized that equation (53)
was obtained for the case of no mean motion.

Thus, Eulerian time correlations measured with

a stationary instrument in a moving stream will

probably (lifter considerably from the Lagrangian
correlations. IIowever, if the instrument is mov-

ing with the stream, the two correlations will be
approximately equ'd if the turbulence level is not

too high (see ref. 12).

Next, the equation for the turbulent diffusion

of particles originally concentrated at a source is

considered. The thcor 3- of turl)ulent diffusion was

originated by G. I. Taylor in 1922 (ref. 16) and has
since been studied by a number of authors (e.g.,

refs. 17 and 18). The distance in the y-direction
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that a fluid particle origimdly at y=0 travels

during the time interval t'--h is

ft tt
Y(t')= v(t)dt (54)

1

Multiplication of this equation by v(t') gives

v(t')Y(t')= l dY'2 f j'--= v(t)v(t')dt (55)
dr'

Taking the part icle average over all the "marked"

particles that were originally concentrated at a
source at, y--O and integrating with respect to t_
result in

f 12 ft tl
Y_ 2 [c(t)c(t')]Ldtdt' (56)

Equation (56) gives the mean square of the dis-

tanee that the marked fluid particles concentrated

at y=0 at time t_ have traveled by time 12. It,

is evidently ai)plicable to decaying as well as to

stationary turbulence. Note that the double

integral in equation (56) cannot be converted to

single integral as in the ease of stationary
turbulence.

If the approximate relation (53) is introduced

and it is noted that, for isotropic turbulence,
_(t)r(t')=[u,(t)u_(t')]/3, then equation (56) can be

written in din:ensionless form for isotropic Im'l)u-
lence as

f_0]fgk'lT/9_,--'_.)2 f r°_ f r °" fl_tg?li(t)tii(t_)j_o,,0 _ _-=_ _ , j_o_,,_/9 dTdT' (57)

where the dimensionless time T is defined by

equation (43) and the time correlation is obtained

from equation (18) or (44) by remembering that
At=t'--t or AT= T'-- T.

FINAL PERIOD

For diffusion in the final period of decay, equa-

tion (57) ('an be integrated to give

t3_l°v'_/9 __ 1____ 1 g 1 + 1 -]
L(T_+AT,) T, Jjjool9 2--9 ,+ _ -- _i7_ -_5,2

(
(ss)

J

where T_ is again the dimensioifless time at wliich

diffusion begins and .'.ST_ is the diinensionless time

during which diffusion takes place (T2--T_). For

large diffusion times,

j_ _ _ (59)9 ,t_Tr TI/2

Tllat is, the turbulent diffusion distance reaches a
constant value and becomes independent of AT.,

for large diffusion times. This differs front the

case of stationary turl)ulenee, where J _ increases

linearly with A_ for large diffusion times. The
reason it reaches a constant vahw for decaying

turl>uhmce is that for large times the turtmh'nce

goes to zero, so that no n+ore lurt)uhmt diffusion

can lake place.
Figure 5 shows dimensionless root-mean-square

diffusion distance for the final period plotted

against diffusion time for various values of 7'1, the
time at which diffusion begins. The curves have

eonsiderat)le curvature at early times but approach

a linear fomn for large vahies of T_. For early

limes, lhe diffusion distances are much larger than

those for |aler liines because of tile higher lurlnl-

lenee ]evel at early times.

TIblES BEFORE FINAl, PERIOD

It, might ])e flrgued liilil, strictly speaking, the

approximate relation (53) slioul(t be used only in

the final I>eriod, inasmuch as inertia terms were

neglected in obtaining it. Inasmuch as no experi-
mental diffusion data exist fo,' the fhlal period,

however, some sort of approximation nlusl be
made for earlier times in order to coral)are the

theory with experiment, The restilis mighl still

be appli('able for small times of diffusion; experi-
mental data of Bahlwin (ref. 12) for diffusion in a

fully developed pipe flow indicated that equation

(53 applies reasonabl,y well for tliat ('ase, ahhougii

tim l.urbulenee probaljly did not correspond to that

in a final perio<l of decay.
For limes earlier linui those corresponding to

the final period, equation (44) is used in (57) witli

AT repla<'ed by T'--T. In this case tile integra-
lion was carried out mimerieally on high-speed

computing nmchinery. The restllting plot is

shown in figure 6, where the final-perio(l cent ril)u-
lions are sliown /is (htsiied curves for comparison.

The higher order inertia ternls have a noliceabh'
effect on tim diffusion al early tiinesj at later
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0 2 4 6

FIGURE 5.--Predicted root-mean-square turbulent diffusion
less diffusion time

I

I

8

AT 2

to 12

I

distances for final period as a function of dimension-
and decay time.

thnes tile effect of those terms becomes negligible,
and tile solid curves approach those for tile final

period.

These curves should apply to tile calculation of
tile width of the diffusion wake from a line source

in a moving stream. In this case At would be

rephtced by the distance downstream from the

source divided by the velocity of the mean stream.

Comparison of tim curves in figures 5 and 6 with

those obtained experimentally (e.g., ref. 19) does,

in fact, indicate a marked similaritv. In order to

obtain a more quantitative comparison, the

constants Jo, _o, and to, which depend on initial
conditions, were ewduated from the decay data of

Uberoi arid Corrsin aml equation (45). Equation

(45) was found to represent the decay data closely

when J0= 1.05 X10 -9 ftr/sec _, /30= 1.81X 10 -33
ftlS/sec 3, and t0=--0.407 sec. With these values

for the constants, diffusion data for an earl v and
a late time are plotted in figure 7. Included for

comparison are analytical results for the same

wdues of T_. The agreement between theory and

experiment seems to be good for large wdues of/'1

and small wdues of AT2, whereas some deviation

is indicated for other conditions. This might have

been expected from the nature of tim approxima-

tions made in obtaining equation (53), which was

used in the analysis. As discussed previously,

that relation is most accurate for small velocity
fluctuations (large T]) and for small diffusion
times.

CONCLUSIONS

The time correlation coefficient in a decaying
homogeneous t urbuh, nt fiehl, when evaluated at

a time halfway between tile times at which tim

two velocities are considered, decreased with time

interval in nmch the same wav that space correla-
tion coefficients decrease with space interval. Thc

time correlations by t lmmselves, on the other hand,

were independent of time separation in the final

period and increased with time separation at
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I i

41, ±- : J'--
Total turbulent diffusion distance / ,t

Final- period contribution - ---- _ / ..
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FmI-RE 6. Predicted root-moan-square diffusion distances for times before finM period and comparison with finai-l)eriod

contributions.

earlier times, although they were symmetric

with respect, to At. The correlation coe_cient

(eq. (47)) appears to be a much more physically

meaningful quantity than the correlation for a

decaying turbulent field. The effect of the higher
order inertia terms in the correlation equations

for times before the final period was to reduce the

wtlue of" the correlation coefficient at a given time

intcrwd below that for the final period. The

ratio of time microscale to space microscale in the

final period was a function of decay time and of
initial conditions.

By assuming that the velocity fltwtuations are

sufficiently small for squares and pro(]uets of

velocities to be negligible, it can bc shown that
the Eulerian time correlation is approximately

equal to the Lagrangian correlation. Turbulent

root-mean-square diffusion distances were calcu-

lated by using this approximation and the equa-
tions for the time correlation obtained herein.

The agreement between theory and experiment

was good for large decay times (low turbulence
levels) and for small diffusion times; for other

conditions, some deviation was indicated. This

was apparently due to the assumption of the

equality of Eulerian and Lagrangian correlations,

that assumption being most accurate for small

velocity fluctuations and short diffusion times.

LV:WTS _ESEARCH CENTER

NATIONAL AEltONAI_TICS AND SPAC'I." ADT'.TINTgTRATION

CLEVELAND, OHIO, November 16, 1960
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