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1. Introduction

FIM is a new global weather prediction model cur-
rently under development in the Global Systems Di-
vision of NOAA/ESRL. The acronym FIM indicates
that the model uses a flow-following (i.e. quasi-
Lagrangian) vertical coordinate, finite-volume nu-
merics, and an icosahedral global grid.

Global models fall into two classes, spectral and
grid-point, depending on the spatial representation
of model variables on the sphere. Spectral mod-
els have gained almost universal acceptance in the
last several decades. However, drawbacks of such
models in terms of operations count and communi-
cations overhead have led, in recent years, to the de-
velopment of new types of grid-point global models
discretized on geodesic grids (Tomita et al. 2001).
Among the various geodesic grids, the icosahedral
grid stands out in providing near-uniform coverage
over the globe while allowing recursive refinement of
grid spacing. If configured as a grid consisting of
a large number of hexagonal cells with 12 embed-
ded pentagons, the icosahedral grid lends itself par-
ticularly well to the finite-volume approach in which
conventional finite-difference operators are replaced
by numerically approximated line integrals along grid
cell boundaries.

Williamson (1968) and Sadourny et al. (1968)
were the first to solve the shallow-water equations
on icosahedral grids using finite-difference formu-

lations. More recently, Colorado State University
modelers (Heikes and Randall 1995; Ringler et al.
2000) developed an icosahedral-hexagonal shallow-
water model (SWM) based on finite-volume numer-
ics. The German Weather Service is currently us-
ing an icosahedral-hexagonal model for operational
global weather prediction (Majewski et al. 2002). A
Japanese group (Tomita et al. 2004) has developed
a nonhydrostatic general circulation model (GCM)
formulated on an icosahedral-hexagonal grid and
has carried out high-resolution cloud-resolving GCM
simulations.

Recognizing the potential of finite-volume icosa-
hedral models in high-resolution global weather
and climate prediction, MacDonald, then director of
NOAA's Forecast Systems Laboratory, teamed up
with Lee to develop a finite-volume icosahedral SWM
which they sucessfully subjected to the suite of SWM
tests of Williamson et al. (1992). In light of the posi-
tive outcome of this study, MacDonald in mid-2005
formed a group of modelers to develop an opera-
tional 3-D icosahedral global model, initially for nu-
merical weather prediction (NWP) but with an eye
on climate simulation. The group was specifically
charged with adding a third dimension to the SWM
in the form of an Arbitrary Lagrangian-Eulerian (ALE)
or “flow-following” vertical coordinate, and to set the
stage for its use in operational global NWP at 15 km
horizontal resolution.

The ALE vertical coordinate, the second novel



feature in FIM aside from the icosahedral grid, is
based upon a compound or “hybrid” grid consist-
ing of isentropic layers in the free atmosphere and
terrain-following or o coordinate layers near the
ground. Itis an improved version of a scheme used
successfully in atmospheric and ocean models such
as RUC [Rapid Update Cycle: Bleck and Benjamin
(1993), Benjamin et al. (2004)] and HYCOM [HY-
brid Coordinate Ocean Model: Bleck (2002)]. Use
of a vertical coordinate with Lagrangian attributes is
meant to reduce nonphysical dispersion during 3-D
transport (as well as during lateral mixing) of trac-
ers such as moisture, potential vorticity, and chem-
ical compounds. Physical parameterizations in FIM
match those used operationally by the Global Fore-
cast System (GFS) at the National Centers for En-
vironmental Prediction (NCEP). Validation of FIM, a
“draft” hydrostatic version of which was completed by
the middle of 2008, will be based on extended-range
real-data forecasts using GFS initial conditions.

In preparation for converting the SWM to a
“stacked SWM” featuring a hybrid vertical coordi-
nate, a set of 2-D numerical experiments including a
single-layer ocean with an emerging seamount (turn-
ing ocean bottom into dry land) were carried out.
Once the 2-D model’s capability to accomodate zero-
thickness coordinate layers was confirmed, the team
proceded to construct and test a purely isentropic
multi-layer coordinate model along the lines of Bleck
(1984a), leaving implementation of the isentropic-
sigma hybrid coordinate until later. The global cir-
culation in the isentropic model, maintained against
dissipation by Newtonian relaxation toward a baro-
clinically unstable basic state [basically, Held and
Suarez (1994) forcing translated to an isentropic
framework], remained robust for months of simula-
tion time. Hybridization of the vertical coordinate and
implementation of GFS model physics were the final
steps in model development.

2. Basic Equations

Denote the spatial coordinate system by (z,y,s)
where z,y are the common horizontal coordinates
and s is an arbitrary but monotonic function of height,
subject only to the requirement that bottom and top
of the model atmosphere are s surfaces. The phys-

ical dimensions of s are arbitrary; in fact, s can be
chosen to be a continuous extension of the vertical
layer index.

Let v be the (Cartesian) horizontal velocity vec-
tor; Vs the 2-D gradient operator at s = const;
I = c,(p/po)*/° the Exner function; § = ¢, T/II
the potential temperature, M = gz + 116 the Mont-
gomery potential; ¢ the vorticity (i.e., the vertical or
k component of the velocity curl vector); 6§ the net
diabatic heating; and F the sum of frictional forces.
The set of dynamic equations solved in FIM can then
be formulated as follows [see Kasahara (1974) and
Bleck (1978a) for detailed derivations]

Mass conservation:
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Conservation equations for moisture-related vari-
ables (gaseous, liquid, frozen water) and chemi-
cal compounds such as ozone have the same form
as (2). Source and sink terms in these equations
— the analogs of e'ap/as — are governed by addi-
tional equations expressing what is commonly called
“model physics”.

Lateral mixing terms are presently omitted from
the above equations. The dissipative properties of
the horizontal numerical discretization scheme (see
below) appear to be sufficient to counteract accumu-
lation of energy on the grid scale. However, the effect
of turbulent vertical mixing on mass field constituents
is included in the right-hand-side of (2), and there



is a commensurate amount of turbulent vertical mo-
mentum mixing symbolically represented in (3) by F.

Discretization in the vertical is accomplished in
FIM by integrating prognostic variables, as well
as their governing equations, over individual lay-
ers bounded by s surfaces. FIM actually goes one
step further: following the shallow-water paradigm,
it views the atmospheric state as one in which most
variables are piecewise constant in the vertical with
discontinuities across s surfaces.

Introducing the stairstep discretization of 8 in the
hydrostatic equation (4) implies that M is vertically
constant in each coordinate layer. Since V0 is ver-
tically constant by definition as well, the pressure
force terms in (3), if formulated with a layer average
of II, do not create vertical shear within a coordinate
layer. Thus, there is no need to distinguish v from
its layer average v. The layer-averaged momentum
equation therefore can be written as

Momentum conservation:
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Here, indices 1 and 2 denote the upper and lower in-
terface, respectively, of the coordinate layer in ques-
tion, and Ap = po — p1. The vertical advection terms
(those involving §) are arrived at by integrating
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by parts and involve interface velocity values de-
noted here by v. Since v is discontinuous at inter-
faces, the definition of v is to some extent arbitrary
and in practice depends on the finite-difference ver-
tical advection scheme.

The layer-integrated mass and thermal energy
equations (1), (2) assume the form

Mass conservation:
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Thermal energy conservation:
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As before, the caret denotes interface values needed
in the vertical transport terms. The method by which
they are constructed (upstream, centered,...) deter-
mines properties such as monotonicity and diffusive-
ness of vertical advection in the model.

Equations for other mass field tracers (moisture
etc.) have the same form as (7).

Regardless of whether 6 represents potential tem-
perature or another mass field tracer, it is generally
necessary to retrieve its value (a concentration or
mixing ratio) from the product §Ap representing the
“amount” of # per unit area. This operation becomes
ill-conditioned if Ap at the end of the time step is
much smaller (by at least one order of magnitude)
than at the beginning. In FIM we avoid generating
spurious values when dividing Ap into 8Ap by re-
quiring that the new # value remain within the range
spanned by the old # values at the point in ques-
tion and its neighbors. Unfortunately, this introduces
an element of nonconservation into the transport
process for which a number of “engineering” reme-
dies are available, such as distributing the # amount
gained or lost among neighboring grid cells. Since
this problem arises only in nearly massless cells, the
# amount in question tends to be small, and redis-
tributing it is generally not worth the effort.

3. The Dynamic Core

3a. Time differencing

Given right-hand side values for the generic differ-
ential equation u; = F'(u,x,t) at 3 consecutive time
levels n—2, n—1,n, and  at time level n, the 37¢ order
Adams-Bashforth scheme (Durran 1991) expresses
u at time level n+1 by

At
W=t TSR3 - 16F" T 4 5E ) (8)

where At is the model time step. The Adams-
Bashforth scheme is an explicit scheme and requires
only one evaluation of F' per time step. Previous
studies (Lee and MacDonald 2000; MacDonald et al.
2000) have shown that it is an accurate and efficient
scheme for numerical weather prediction models.



3b. The icosahdedral horizontal mesh

The governing equations in FIM are formulated in a
local stereographic projection (Lee et al. 1995) of an
icosahedral grid onto a plane surface. The grid is
generated from an icosahedron which has 12 ver-
tices and 20 equilateral spherical triangles with 30
shared edges. Each edge is a segment of a great
circle on the sphere. The icosahedral grid provides
guasi-uniform coverage of the sphere and allows
hierarchical refinement of grid spacing by progres-
sively subdividing triangles into smaller ones. The
triangular cells are used to construct hexa- or pen-
tagonally shaped Voronoi cells (Heikes and Randall
1995), the pentagons occupying the 12 vertices of
the original icosahedron. After G consecutive bisec-
tions of triangle edges, the total number of grid cells
isn =10 x (29)% + 2.

An icosahedron can be constructed from evenly-
sized and -shaped hexagons (though some end up
creased and amputated), but these attributes are lost
when the icosahedron is transformed into a sphere.
There are tradeoffs between minimizing geometric
distortion and minimizing variations in cell size dur-
ing the transformation. Tests indicate that numerical
accuracy benefits from minimizing distortion, achiev-
able by radially projecting the original icosahedron
onto the sphere. However, in the interest of unifor-
mity in mesh size, some distortion of the grid cells is
tolerated in FIM.

Many of our early experiments with FIM have
been carried out on a grid obtained by five consec-
utive subdivisions (G = 5), resulting in 10,242 grid
cells spaced approximately 240 km apart. Nine sub-
divisions, the highest number we have explored so
far, yield approximately 2.6 million cells with an ap-
proximate mesh size of 15 km.

3c. Horizontal Finite-Volume Operators

The governing equations are solved with the finite-
volume approach (van Leer 1977; Lin et al. 1994),
which defines model variables as mean quantities
over each grid cell (or control volume). The finite-
volume approach excels among the plethora of grid-
point discretization schemes because of its inte-
gral conservation properties (Lin et al. 1997). Even

on irregular grids, conservation laws for various
guantities are easily built into the finite-difference
equations by approximating terms like vorticity, di-
vergence, and gradient by line integrals along the
perimeter of each grid cell:

§:A717{V-ds;
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Here, s, n are, respectively, the unit vectors along,
and normal to, the line circumscribing the grid cell
of area A while i, j are the unit vector in z,y direc-
tion, respectively. The hexagonally and pentagonally
shaped elements of the icosahedral mesh are well-
suited for approximating such line integrals. The nu-
merical properties of the finite-volume approach on
this grid are such that the prognostic equations can
be solved in a stable manner for extended periods of
time without lateral mixing terms.

V-v:Afl%v-dn;

3d. Flux Corrected Transport (FCT)

The term Layer Model describes a class of mod-
els in which the vertical spacing of layer interfaces
is variable in space and time, with interface move-
ment controlled primarily by the convergence and di-
vergence of lateral mass fluxes in each layer. FIM
belongs to this class of vertically quasi-Lagrangian
models. To assure the numerical integrity of a layer
model, mass fluxes must be constructed with strong
emphasis on positive-definiteness and monotonic-
ity. The scheme chosen for this purpose in FIM is
known as Flux-Corrected Transport (Boris and Book
1973; Zalesak 1979). The multi-step operation is nu-
merically complex and results in a fairly large hori-
zontal stencil, as illustrated in Fig. 1 for the case of
an icosahedral grid and space-centered flux expres-
sions of 2? order accuracy.

The task at hand is to solve the continuity equa-
tion in the hexagonal cell marked by an X on the left.
This requires evaluation of six mass fluxes, one for
each edge of the hexagon. The stencil for evaluat-
ing individual fluxes is shown on the right, with an X
marking the edge segment which the computed flux
value is assigned to. Note that information from at
most four grid cells is needed to compute “raw” flux
values of 2"¢ order accuracy. It is the flux limiting



process that is responsible for extending the sten-
cil because flux limiting requires knowledge of all six
fluxes into and out of the two cells abutting a given
edge segment.

Overlaying the stencil on the right, appropriately
rotated, over the six edges of hexagon X yields the
stencil shown on the left. Note that Fig. 1 illustrates
the overall distance by which information spreads lat-
erally during a single time step. In practice, the so-
lution procedure is broken into several steps, each
one requiring a much smaller stencil.

Figure 1: Left: stencil of grid cells affecting the out-
come of thickness change calculations in the central
cell (marked by an X). Right: stencil of grid cells af-
fecting the calculation of mass fluxes across the cen-
tral hexagonal edge segment (marked by an X).

Given a transport equation of the type wu,=—F,,
where F represents the flux of the variable u in «
direction, the FCT scheme proceeds in two steps.
In step 1, the u field is advanced in time using an
upstream, forward-in-time (“low-order”) scheme for
computing F, that due to its diffusive character is
known to maintain positive-definiteness and mono-
tonicity. In step 2, antidiffusive fluxes based on more
accurate (“high-order”) approximations are added to
the diffusive fluxes. In what constitutes the essence
of FCT, these antidiffusive fluxes are locally reduced
or “limited” just enough to avoid violating the positive-
definiteness constraint and creating new extrema in
u.

In contrast to the usual practice of forming high-
order fluxes from space-centered 4" or 6! order
finite-difference expressions, high-order fluxes are
constructed in FIM in the spirit of the (at best) 2"¢
order PLM scheme (van Leer 1974; Colella and
Woodward 1984). In one spatial dimension, PLM

is monotonicity-preserving. It may be possible, with
some effort, to preserve this property even in the
present case where each cell exchanges mass with
5 or 6 neighbors. We have not yet explored this
possibility, relying instead on FCT-type flux limiting.
The spatial average of the transported variable in the
slab upstream of a cell edge is computed by assum-
ing that the variable changes linearly between cell
center and cell edge. The variable’s cell edge value
is formed by averaging the two nearest vertex val-
ues, which in turn are unweighted averages of the
3 surrounding cell values. (To preserve 2" order
accuracy of this interpolation scheme in the case of
slightly distorted hexagons or in the presence of a
pentagon, nonuniform weights would have to be in-
troduced. This is planned for the future.)

To adapt the low-order transport scheme and the
flux-limiting algorithm, both of which are inherently 2-
time level schemes, to the 4-time level scheme (8),
we proceed as follows:

1. Low-order fluxes from three consecutive time
levels are blended as shown in (8) to generate a
low-order solution at time level n+1.

2. The flux limiting process is based on “worst-
case” tendencies of the transported variable,
obtained by selectively bundling high-order in-
coming and outgoing fluxes. These tendencies
are computed in FIM by blending, in the man-
ner of the right-hand-side of (8), the current un-
clipped high-order flux (F) with the “final” (low-
order plus clipped antidiffusive) fluxes from the
previous two time levels (F™~1, F*—2).

3. The clipped antidiffuse fluxes are combined with
the low-order ones to form final fluxes F'™; these
are then used in (8) to compute the final value
of u™*1.

Lateral transport of 8 and other state variables,
such as moisture, is handled analogously. The pro-
totype transport term for these variables is V- (6vAp)
in (7). Antidiffusive fluxes are limited in this case
on the basis of extrema in the transported variable
0 itself, not in the product §Ap. This is to say that
we enforce monotonicity in the tracer concentration
field, not the tracer amount field.



3e. Vertical mesh

As already mentioned, FIM is a layer model, mean-
ing that the vertical spacing of grid points is al-
lowed to vary in space and time. Since the prognos-
tic equations resemble the shallow-water equations,
layer models are also referred to as stacked shallow-
water models.

The hybrid grid in FIM resembles that of RUC
(Benjamin et al. 2004; Bleck and Benjamin 1993),
but vertical staggering of variables has been
changed because the RUC scheme does not rig-
orously conserve mass field constituents (referred
to here as “tracers”). Vertical staggering in FIM
replicates the layer treatment in the hybrid-isopycnic
ocean model HYCOM (Bleck 2002) where only pres-
sure and geopotential are carried on interfaces while
all other variables are defined in layers. Coordi-
nate layers conform to isentropic layers except in
locations where the latter intersect the earth’s sur-
face. There, layers are locally redefined as terrain-
following (o coordinate) layers. An individual coordi-
nate layer can be isentropic in one geographic region
and terrain-following in another.

The hybridization concept employed here and in
RUC differs from non-ALE hybrid schemes devel-
oped elsewhere (Bleck 1978b; Konor and Arakawa
1997; Pierce et al. 1991; Webster et al. 1999; Za-
potocny et al. 1991, 1994) in that it relies on lo-
cally mandated adjustment of vertical grid spacing
rather than on a fixed formula typically consisting of
a weighted average of two or more traditional coor-
dinate choices. The present scheme adds one im-
portant element to the original Arbitrary Lagrangian-
Eulerian technique (Hirt et al. 1974): it provides
a mechanism for keeping coordinate layers aligned
with their designated target isentropes wherever
possible. The original ALE scheme (loc.cit.) only
concerned itself with the maintenance of nonzero
grid spacing in Lagrangian coordinate simulations.

While the flexibility of coordinate placement in
ALE-type schemes is disconcerting to some users
because grid point location in model space cannot
be expressed in terms of a simple analytic formula,
it allows the model designer to maximize the size of
the purely isentropic domain. The salient point here
is that ALE can set the height above ground of the o-

to-6 coordinate transition in each geographic location
separately, i.e., unencumbered by global considera-
tions. This is a major advantage.

FIM manages the vertical grid structure as fol-
lows. If a given layer is “on target” (meaning that
6 matches the target potential temperature assigned
to this layer) and if, in addition, the 2-D shallow-water
continuity equation (eq. (6) without the § terms)

0Ap

W‘FV'(VAP):O (9)

yields a layer thickness Ap that does not fall below
a predetermined minimum value, the Ap obtained
from (9) is accepted. In other words, FIM sets s = 0
in this case, meaning that it treats interfaces as ma-
terial. If one of the above conditions is not met, the
“grid generator” (see Appendix A) takes over and
changes 0Ap/dt in a way that either maintains mini-
mum thickness or, if the layer has become separated
from its target potential temperature, moves it closer
to it. In these situations, the selected Ap tendency
is inserted into the full continuity equation (6) which
at this point becomes a diagnostic equation for the
interlayer mass fluxes $0p/0s. The latter are used to
vertically advect momentum and other variables.

Hydrostatic models infer the vertical component of
motion from the vertically integrated horizontal mass
flux divergence. The grid generator in an ALE model
divides this material vertical motion into vertical mo-
tion of the coordinate surface and vertical air motion
relative to it (Bleck 1978b):

. ) vertically
vertical vertical .
_ ) integrated
motion motion .
horizontal
of through
intorf i orface mass-flux
interface interface divergence

(10)

The decision whether to accept the solution of (9)
— that is, whether to balance the right-hand side of
(10) by only the first term or by some combination of
both terms on the left — is made by the grid gener-
ator at each gid point and each time step individu-
ally. The grid generator in FIM actually performs two
tasks: it carries out the “regridding” just described,
followed by a vertical “remapping” of all prognostic
variables to the modified grid. The remapping is for-
mally equivalent to vertical advection because it is



driven by nonzero values of 5. However, since ver-
tical displacement of atmospheric constituents due
to actual air motion is already accounted for in the
heaving and slumping of coordinate layers, the eval-
uation of the s terms in the prognostic equations
is best viewed as a secondary property redistribu-
tion initiated by the migration of coordinate surfaces
through resting air. With the atmosphere conceptu-
ally remaining at rest, remapping should conserve
certain integral properties such as column integrals
of momentum, thermal energy, etc.

3f. Long-time step tracer transport

The use of the numerically complex FCT scheme
makes lateral transport costly in FIM. If the model
were to be used to simulate the evolution of O(100)
interacting chemical species, execution time would
be prohibitive. One approach to reducing the amount
of time spent in the FCT routine is to carry out tracer
transport intermittently, using a longer time step.
This is possible because the time step in FIM dynam-
ics is controlled by the speed of gravity and Lamb
waves, not by the typically much smaller wind speed
which governs transport processes. In other words,
advecting tracers using a time step geared toward
maintaining numerical stability in gravity wave trans-
mission is not very cost-effective.

Due to the fluctuating height of grid cells, tracer
conservation during long-time step transport is not
easily achieved in layer models. Since the transport
equations in layer models are formulated in flux form,
transport with a time step longer than At, say, JAt
where J > 1, must be based on a rigorously time-
integrated form of the mass continuity equation (6),

A n+J_A n

—J —J
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where the overbar denotes integration over J time
steps. To compute all terms in this equation and to
assure that it holds, the dynamically active fields in
FIM must have been stepped forward from time level
n to n+J. At that instant, both the tendency term
and the horizontal flux divergence term in (11) can
be determined, the latter by summing up the instan-
taneous fluxes over the past .J time steps. The time-

11

integrated vertical flux terms can then be obtained
by vertically summing up (11), using $ = 0 at the top
or bottom of the column as a starting point.

By combining (11) with the equation dQ/dt = 0
expressing conservation of a tracer ) during trans-
port (sources and sinks of @ can be evaluated sep-
arately), we arrive at the transport equation

A ntJ _ A n -
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which can be solved for the tracer amount QAp at
time level n+J. The meaning of the caret and the
method by which QAp is converted to mixing ratio @
are discussed in the context of (7).

Eqgn. (12) is solved by Flux Corrected Transport.
Details are as follows.

1. Vertical @ fluxes are based on the Piecewise
Parabolic Method (PPM). To avoid numerical
stability problems posed by combinations of
large vertical velocities and thin layers, integra-
tion of @ over the slab upstream of a given in-
terface may extend over multiple layers.

2. The vertical PPM-based fluxes are used in con-
junction with horizontal upstream fluxes to arrive
at a low-order solution for Q.

3. High-order horizontal fluxes are of 2nd order
accuracy, i.e., involve averages of () over two
neighboring grid cells.

4. The limiters applied to the antidiffusive (high-
minus low-order) fluxes to assure monotonicity
are based on the maxima and minima of “old” @
values in (a) the cell in question; (b) its lateral
neighbors; and (c) the upstream slab(s) above
or below the cell.

Comparisons of tracer fields advected over long and
short time steps indicate that J = 10 works well in
general, the single exception encountered so far be-
ing late-winter major stratospheric warming events
when winds in the strato- and mesosphere can reach
speeds exceeding 200 m/s. In those few cases, J
had to be reduced to 5 to yield meaningful results.



Note that (6) is solved using the 3-time level
Adams-Bashforth time differencing scheme whereas
transport in (12) is carried out in forward-in-time
mode. To achieve consistency between the thick-
ness tendency term and the horizontal mass flux di-
vergence, mass fluxes from 3 consecutive time lev-
els must therefore be combined in the manner indi-
cated in (8) before they are added to the flux time
integral.

While 3-dimensional transport is the dominant
process by which tracers are redistributed in the at-
mosphere, other processes such as subgridscale
turbulent mixing cannot be neglected — especially if
tracers advected by (12) are to evolve consistently
with the primary mass field variables which in FIM
are subjected to subgridscale vertical mixing. At
the end of each long transport step, the relevant
“physics” equations should therefore be solved for
each tracer in question, using JAt as time step.

Two issues which arise in this context and are the
subject of ongoing work shall be mentioned here:

1. Buoyancy-driven mixing in the isentropic sub-
domain generally leads to vertical mass fluxes
$0p/ds which, if used in (12), redistribute tracers
in the column in a manner closely paralleling the
mixing of potential temperature. Hence, solving
a separate diffusion equation in the isentropic
subdomain might lead to excess mixing.

2. If different time steps are used to advect chem-
ical tracers and hydrometeors, conservation is-
sues arise if the two types of tracers interact.
The problem is that during the J short time
steps, chemical tracers are “locked up” in grid
cells of thickness Ap™ whereas Ap and hydrom-
eteor mixing ratio, being part of FIM dynamics,
continue to evolve. Short of advecting hydrom-
eteors on long time steps, the issue can be re-
solved by introducing two hydrometeor popula-
tions — population 1 remaining associated with
the chemical tracers for the duration of the J
short time steps and population 2 allowed to
evolve with Ap and other dynamics-related vari-
ables. After tracers and population 1 have been
subjected to transport via (12) and all progos-
tic variables in FIM are therefore at time level
n+ J, the two hydrometeor populations must
then be merged in a way that conserves all rel-

evant properties acquired since time level n.

4. Model Physics

In order to facilitate comparison of FIM to existing
operational NWP models, column physics parame-
terizations are taken directly from the Global Fore-
cast System (GFS) of the NOAA National Centers for
Environmental Prediction (NCEP). Treatment of ver-
tical mixing, including the planetary boundary layer,
is based on Hong and Pan (1996) and Troen and
Mahrt (1986). The effects of short-wave radiation
are modeled by a scheme described in Chou (1992),
Chou and Lee (1996), Chou et al. (1998), while
long-wave radiation is treated by the Rapid Radia-
tive Transfer Model of Mlawer et al. (1997). Penetra-
tive convection is based on Arakawa and Schubert
(1974) as modified by Grell (1993). The effect of
nonprecipitating shallow clouds is incorporated fol-
lowing Tiedtke (1983). Cloud formation on resolved
scales is treated according to Sundqyvist et al. (1989)
as modified by Zhao and Carr (1997).

4a. Temperature diagnostics

Temperature is not a prognostic variable in FIM and
hence must be inferred from 6 and p when needed.
Since model “dynamics” in FIM is formulated in
terms of 6 while model “physics” is formulated pre-
dominantly in terms of 7', the # — T' conversion takes
place frequently and in both directions. To avoid nu-
merical degradation during this frequent back-and-
forth, we define T, like 6, as a layer variable and
solve physics equations in layers, not on interfaces.

There appears to be considerable freedom in
how to define a “layer” pressure (or Exner function),
needed for relating 6 to 7', in terms of interface pres-
sure. One particularly compelling and widely used
choice [e.g., Sela (1980), eq.10; Arakawa and Lamb
(1977), eq. 250] is based on the notion that the col-
umn integral for the sum of potential and internal en-
ergy should not depend on whether it is written in
terms of 6 or T'. The two forms of the integral are
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% [ pap = (13)
g



Equality is assured if

1+k
() ()
1+x \po Po

in each model layer. This condition is met if the
Exner function value relating 6 to T" in a model layer
is defined as a finite-difference analog of

¢y O(p/po)' "
1+x 9(p/po)

By satisfying (13), the model correctly translates
temperature changes resulting from, for example, ra-
diation or cloud physics into available potential en-
ergy changes represented in FIM in terms of p and
6.

4b. Vertical motion diagnostics

One particular parameter required by the convective
cloud parameterization scheme is the updraft veloc-
ity w = dp/dt. It is diagnosed in FIM by expanding
the material derivative dp/dt into

dp _ (0Op .Op

E - (a)s‘i‘V'VSp-F <S%
and evaluating the three terms on the right individu-
ally.

(14)

By virtue of (1), the sum of the first and third term
on the r.h.s. of (14) at a given horizontal location
x,y and level s = S is given by the horizontal mass
flux divergence at x, y integrated from the top of the
atmosphere to level S:

op op] _[° p
[at-i- as] /topvs (Vas ds.
According to (6), the finite-difference analog of this

expression, valid on the lower interface of layer &k (k
increasing upward), is

op | .0 o

p P

+ —] =— E V - (vpApy). (15)
{(% Js k—1/2 =

Completing the calculation of w on an interface
would require evaluating the second term on the
r.h.s. of (14) on that interface. This is not straight-
forward because horizontal air motion is usually dif-
ferent on opposite sides of an interface, yielding two

possible values of (v - Vp). This dilemma can be
avoided by evaluating (14) as a layer average, not
an interface value. Fortuitously, the convective pa-
rameterization scheme calls for a layer average.

Generating a layer average of (15) is straightfor-
ward owing to the fact that v does not vary within a
layer:

ktop
op  .op| 1
[aﬁ %L_ SV (vkApy) ngk;lv (VaApy).

For the same reason, the layer average of the 2nd
term on the r.h.s. of (14) is simply v - Vp, where p,,
is the mid-layer pressure. In summary,

kto
1 P
Wi = Vi - VD — EV (ViApy) — g Vs (Vilpy).
n=k+1
(16)

5. Sequence of Operations

Variables are updated during each model time step
in the following order.

1. Starting from momentum v and layer thicknes
Ap™ at time level n, preliminary values at time
level n+1 are obtained by solving (5) and (9)
under the assumption that all interfaces are ma-
terial (§ = 0). We refer to the resulting val-
ues as vt Apntl where subscript sw stands
for shallow water, a reminder that the 2-D ver-
sions of the respective prognostic equations
have been used.

2. Thermal energy (fAp) is advanced in time by
solving (7), once again with $ set to zero, and
with the r.h.s. set to zero. The outcome of this
process is (§Ap)Ht.

3. Values of #7%' are obtained by dividing

(6Ap)~rl resulting from step 2 by Apmii.
Monotonicity constraints are applied to safe-
guard against indeterminacies in the limit of
zero layer thickness.

4. Diabatic forcing due to radiation, surface fluxes,
release of latent heat, etc., are evaluated us-
ing the GFS physical parameterization module



based on 67+, Ap™!, and other state variables
at time level n+1. These calculations yield an
updated potential temperature 9;}{; where phy

stands for model physics.

Fields of 92,;;1, Ap™t1 are fed to the grid genera-
tor which decides on the magnitude of interface
fluxes $0p/0s at each grid point. These flux val-
ues are used to evaluate the missing vertical ad-

vection terms in (5), (6), (7), yielding final values
Vn-ﬁ—l’ Apn+l’ 9n+1 .

Other variables carried by the model to define the
physical state of the atmosphere (moisture, hydrom-
eteors,...) are advanced in time like the variable 6.
This is to say that transport takes place in flux form
analogously to (7); source terms are evaluated as in
step 4; and the variables are advected vertically as
part of step 5.

Vertical advection of model variables, only neces-
sary in regions where p7t1 # p"*1 is implemented
as a vertical remapping of the stairstep profiles re-
sulting from the preliminary shallow-water integra-
tion. To remain stable in situations where layer thick-
ness approaches zero while $9p/ds remains finite,
the remapping algorithms available in FIM are for-
mulated to allow Courant numbers > 1.

6. Model Initialization

Initial conditions for FIM are based on fields provided
by NOAA's Global Forecast System. The state of the
atmosphere is represented in that system by surface
pressure and by layer averages of virtual tempera-
ture T, humidity, ozone concentration, and horizon-
tal velocity components in 64 hybrid o —p layers on
a spherical grid. These fields are processed as fol-
lows.

1. Values of geopotential ¢ on o —p interfaces! on
the spherical grid are obtained by integrating the

hydrostatic equation layerwise in the form
¢ /0Tl = —0, (7)

where 6, = T,(po/p)™/¢» is the potential virtual
temperature.

linterfaces = coordinate surfaces separating coordinate layers
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2. Terrain height, interface pressure, interface
geopotential, as well as layer averages of hu-
midity, wind, and ozone concentration are inter-
polated horizontally to the icosahedral grid.

. Virtual potential temperature in the original o—p
layers on the icosahedral grid is deduced from
pressure and geopotential, once again using
(17). Deducing 6, from ¢ minimizes the risk of
introducing hydrostatic height errors during hor-
izontal interpolation.

. In each grid column on the icosahedral grid, the
stairstep profile defined in terms of 6, and II in
the o —p system, to be referred to as 0,, (II), is
converted into a new stairstep profile 6, (II) in
which the stair “risers” are the prescribed 6 co-
ordinate values. The height values for the “land-
ings”, i.e., the horizontal sections in 6, (II), are
the unknowns in this transformation problem.

The transformation, which we refer to as
“restepping” and which is described more fully
in Appendix A, can result in the formation of one
or more zero-thickness layers at the top and bot-
tom of the column. Those at the bottom will sub-
sequently be inflated and converted into terrain-
following o layers.

In order to minimize truncation problems while
converting one stairstep profile into another, the
restepping process is broken into two steps.
First, the piecewise constant profile 6;,(II) is
converted into a continuous, piecewise lin-
ear profile using an extension of the integral-
conserving method described in Bleck (1984b).
The linear segments are then integrated piece-
wise to form a stairstep profile with “risers” in the
appropriate places.

Use of the Exner function II as opposed to p
as vertical coordinate guarantees that the height
[ 6411 of the input column is preserved during
each step of the vertical coordinate transform.
Without this constraint, large-amplitude exter-
nal gravity waves would likely be excited in the
model at the beginning of the forecast.

. The grid generator (see Appendix A) is invoked
to inflate zero-thickness layers at the surface
that may have been generated while transform-
ing the original o — p layers to isentropic lay-
ers. The piecewise linear 6 profile in the column



is then integrated over the newly formed FIM-
specific o layers.

6. Moisture, ozone concentration, and velocity
components are expanded into piecewise lin-
ear profiles and then integrated over the hybrid
o — 6 coordinate layers resulting from the previ-
ous step.

7. Fields of Montgomery potential are obtained by
integrating the hydrostatic equation (4). Integra-
tion starts with M defined in the lowest layer as
My = Tls.01 + ¢s¢c Where 6 is the lowest coor-
dinate value and s f ¢ stands for values at ground
level. (Layer 1 may be massless but must be in
contact with the ground for this formula to hold.)

7. Outlook

This document is likely to evolve as the team gains
experience with FIM and the dust settles on imple-
mentation details that are too much in flux at the time
of this writing to warrant documentation.

8. Appendix A: The Vertical Grid
Generator

8a. Background

The first-generation HYCOM grid generator, whose
design principles are described in some detail in
Bleck (2002), has been modified and tuned over the
years to address grid degeneracies that came to light
as the range of applications of HYCOM grew. This
tuning has added branches to the decision tree in
the original algorithm, creating a situation where the
underlying logic is no longer transparent to the user.
Complexity in the grid generator discourages experi-
mentation and adaptation of HYCOM/FIM to special
modeling needs, and hence should be avoided.

The algorithm described below represents an at-
tempt to get “back to basics” when moving layer in-
terfaces for the sake of maximizing the part of the
atmosphere represented by isentropic layers while

at the same time subjecting the layers to minimum-
thickness constraints. In the first-generation grid
generator, each grid point is inspected and adjusted
recursively in light of its distance to grid points above
and below, using a variety of semi-empirical crite-
ria. The algorithm proposed here is more straight-
forward in that it begins by transforming a given hy-
brid stairstep potential temperature (¢) profile into
a purely isentropic one, i.e., into a stairstep pro-
file whose 0 levels are prescribed beforehand. De-
pending on the stratification and 6 range in the origi-
nal profile, this process can produce massless (zero
thickness) layers at the top and bottom of the col-
umn. Massless layers that occur at the ground are
subsequently inflated to a prescribed minimum thick-
ness.

As outlined in Bleck (2002), differences between
the resulting hybridized layer interface pressures
and those of the input profile imply mass exchange
among layers. Model variables such as humidity and
momentum must then be exchanged between layers
as well. Any one of the standard conservative ad-
vection schemes can be used for this task.

8b. Transformation of non-isentropic stairstep 6 pro-
files to isentropic coordinates

The following is an adaptation of the ocean-oriented
scheme described in Appendix D of Bleck (2002).

Let Z be a monotonic function of p decreasing
with height, and let 6;,(Z) be a piecewise constant
(“stairstep”) vertical profile of . Both the step width
Ab;, and the step height AZ can vary from step to
step. Our task is to transform 6,,(Z) into another
stairstep profile differing from the original one in that
the location of the “risers” on the 0 axis is prescribed.
Ideally, the transformation should be accomplished
without perturbing the potential/internal energy of
the column. Another quantity worth preserving is the
geopotential height of the column, because a trans-
formation that changes the column height is likely to
set off external gravity waves.

Let 6, (k = 1,...,n, 041 > O, k increasing up-
ward) mark the points on the 6 axis where we want
the new risers to be placed. We require that the 6y,
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values span the 6 range of the input profile,

01 < 0;n(2) <0, forall Z, (18)

and that the input profile be monotonic. Denoting the
pressure? of the lower and upper interface bounding
the k-th layer by Z;,_, ;» and 2, 2, respectively, the
condition we wish to satisfy can then be stated as

n 212

291@(31@71/2 = Zry1/2) = /

k=1 Znt1/2

O dZ. (19)
The interface pressures are the unknowns in the
problem.

Integration by parts (on the left this amounts to re-
ordering the terms under the summation sign) allows
us to rewrite (19) as

n—1
hZ1/2 = O0nZpi1y2 + Z Zit1/2(0k41 — k)
k=1
05 2] 2 / e 6)do
Ent1/a Oin(Z1/2)

where Z;,,(6) is the inverse of 0,,(2).

In situations where the 6 range of the input profile
does not span the entire range 6;...6,,, we can, with-
out altering the physical appearance of the input pro-
file, lower 0;,,(Z,/2) to 6, and/or raise 0;,,(2,,+1/2) to
0,,. With these modifications, the above expression
reduces to

n—1 0.
Z Zy1/2(0k41 — Oy) = Zin(0) do. (20)
k=1 o1

Our strategy is to satisfy (20) by breaking the in-
tegral into pieces taken over intervals (6, 0;+1) and
conserving each integral individually. This immedi-

ately leads to
1 Okt
/ 2,.(0)do

—_— 21
Or+1 — Ok Jo, 1)

Zk+1/2 =
(k = 1,...,n—1). If condition (18) is violated, eval-
uation of (21) is postponed until the offending input
layer is brought into compliance by “diluting” it with
mass from adjacent layers. Persistent heating at
the model top, for example, is thereby transformed
into a gradual thickening of the uppermost coordi-
nate layer.

2While Z is a function of pressure, we will refer to it as pressure
for short.

8c. Enforcement of layer thickness constraints

Suppose the prescribed potential temperature val-
ues 61,0, .... in the output profile cover a wide
enough range to yield 6, < 6,, for some & > 1. In
this case, (21) willyield Z, /5 = Z3/5 = ... = Z}41/2,
i.e., layers 1,....k in the transformed profile will be
massless. Likewise, if 0;, < 0 for some k < n, lay-
ers k+1,...,n will be rendered massless (2,2 =

= n+1/2)'

The strategy in FIM is to accept massless layers
aloft, but to always inflate massless layers at the bot-
tom of the grid column. Layer inflation rules can be
as simple as specifying a constant minimum thick-
ness AZ,. In this case the set of isentropic inter-
face values Z;_,/, obtained from (21), to be identi-
fied here as Z, ., » to distinguish them from the final
“hybridized” values, are recursively subjected to the
constraint

Ziy1/2 = min(Zk—ﬁ-l/Qa Zp_1/2 — AZy) (22)

(k = 1,2,...). Note that AZ, can easily be made
layer-dependent or scaled by terrain height. (Scaling
by mixed layer depth, on the other hand, is problem-
atic as this will spawn large vertical displacements
of layer interfaces during day-night mixed layer tran-
sitions. Such displacements cause excessive inter-
layer mass exchange whose suppression is one of
the original motivations for isentropic modeling.)

It is advisable to smooth out large lateral varia-
tions in layer thickness that typically occur where a
hybridized coordinate layer transitions from the fixed-
depth to the isentropic subdomain. These variations
are created when, for a given k, the 2"¢ argument in
the minimum function of (22) is chosen in one grid
column, while the 1t argument is chosen in a neigh-
boring column. One way to smooth out the transi-
tion, short of exchanging information among neigh-
boring grid columns, is to increase layer thickness
in situations where the two arguments are of simi-
lar magnitude. This is the purpose of the “cushion”
function originally introduced into hybrid-coordinate
ocean modeling by Bleck and Boudra (1981) and
later adapted for atmospheric use by Bleck and Ben-
jamin (1993). Use of the cushion function entails re-
placing (22) by

Zit1/2 = min(2k+1/2, Zr—1/2
—cushn|Zy_1/5 — Zi11)2, AZ0]).
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In the two extreme cases where 2’1@71/2 — Zpq1/2 08
either large negative or large positive compared to
AZ,, the cushion function is designed to replicate
the functionality of (22). In other words, cushn(a,b)
returns a if @ >> b, and it returns b if —a >> b
(b > 0). In between the two extremes, cushn varies
smoothly, returning values as high as 2max(a,b).
In many cases, this widens a layer if its potential
temperature is close to target, thereby softening the
lateral interface height contrast between locations
where the underlying layer is isentropic and where
it is not.

If more effective interface smoothing in the
o-0 transition region is deemed nececessary, a
sideways-looking smoothing algorithm may be re-
quired.

At the time of this writing, the minimum thickness
value AZ, is set as follows.

1. A default value AZ,(k) is specified for each
layer k. Typical values (stated here in pressure
units for easier reference) are 3 hPa in the bot-
tom layer, gradually increasing to 10 or 15hPa
in layers above.

2. In an attempt to mimic the vertical spacing of
conventional o coordinate layers, all AZ, (k) are
multiplied by the factor (ps, y — prop)/ (1000 hPa—
Prop) Where py, ¢ is the surface pressure and p;,,
is the pressure level (400 hPa or smaller) where
coordinate surfaces in a conventional o coordi-
nate model cease to be terrain-following.

3. Starting in the lowest layer and moving up the
column, 2./, is compared against the lesser
of (23) and Z,,5 — Y.F_, AZy(n). If it exceeds

the minimum of these two values, it is replaced

by that minimum. This is done recursively, i.e.,

altered interface values affect the inflation test in

layers above.

4. The lowest layer not in need of inflation is la-
beled k,¢; it marks the transition from the o to
the 6 subdomain.

5. The upper interface of layer k., stays fixed by
definition, but very thin isentropic layers qualify-
ing for inflation based on (23) can occur higher
up in the atmosphere. To keep these from un-
necessarily being inflated, the value AZy(k) is

reduced in layers k,¢+1, ..., k,9+4 by the factors
0.4, 0.2, 0.1, and 0.05, respectively. The factor
0.05 is also used in layers k > k,9+4.

8d. Vertical advection

The “regridding” process described in the preceding
sections must be followed by a “remapping” process
in which model variables are advected vertically in
response to changes in interface pressure. Borrow-
ing from HYCOM, vertical advection of momentum
as well as tracers such as humidity, liquid water con-
tent, etc., is currently handled by either the piece-
wise linear or the piecewise parabolic method (PLM,
PPM) (van Leer 1974; Colella and Woodward 1984).
All variables mentioned are remapped in p space to
conserve their mass-weighted column integral.

Potential temperature is a special case. The re-
gridding process described earlier yields a new 6
distribution that may be viewed as resulting from up-
stream or donor cell advection in Z space. To sup-
press the numerical diffusivity implied by this low-
order scheme, FIM actually discards the 6 field re-
sulting from the regridding exercise and replaces it
by a field advected by the same higher-order scheme
that is used for the other prognostic variables.

There is a price to be paid for inferring the amount
of mass transferred between layers from a piece-
wise constant ¢ distribution, as is done in (19)-(21),
and subsequently using a higher-order scheme to
remap 6. Neither will the slab of air arriving in a layer
have the potential temperature needed to precisely
restore that layer to target, nor will the transfer leave
6 in the donor layer unchanged. However, we find
that repetitive use of the restoring algorithm allows
layers to reach their target relatively quickly.

One advantage of using a higher-order advection
scheme for @ is that the variable Z in (19) — (23) no
longer needs to be chosen with an eye on the con-
servation properties of the regridding scheme. Any
variable monotonic in pressure, including p itself, is
acceptable. What matters now is the vertical coor-
dinate used during remapping of 4. FIM allows the
use of either (p/po)™ or (p/po)* " (where k = R/c,).
The rationale for providing these two options is given
in the following section.
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8e. Conservation alternatives

It follows from (17) that the height of an air
column can be preserved during vertical regrid-
ding/remapping by setting Z = II. Unfortunately,
this choice of Z does not allow us to satisfy an-
other important constraint: conservation of column-
integrated internal energy I = [ ¢,T'dp and column-
integrated potential energy P = [gpzdz. (In an
ideal gas, internal and potential energy are propor-
tional to one another, so conservation of one entails
conservation of the other.) The incompatibility of col-
umn height conservation with internal/potential en-
ergy conservation becomes clear if one writes P and
1 in terms of § and p and compares the resulting ex-
pressions

CyPo

1o foa(2)
P foa(2)

(k = R/cp) with the formula for column height, [ 6dII,
in which @ is integrated over a variable proportional
to (p/po)”. Itis easy to see now that conservation of
I and P can be achieved during remapping of 6 by
using (p/po)'** as vertical coordinate, but that this
can only be done at the price of violating the height
preservation constraint. The relative importance of
height versus internal/potential energy conservation
is hard to assess without practical tests.

(23)

(24)

8f. Miscellaneous refinements

Discretization of a continuous profile 8(p) in term of
a stairstep profile is not unique, because stairsteps
can be broken into smaller steps or combined into
bigger ones without violating any continuity or con-
servation principle. This ambiguity can lead to
computational modes in the vertical layer struc-
ture, leading to the gradual disappearance of, say,
odd-numbered layers accompanied by a thickening
of even-numbered ones. Initial experiments with
FIM indeed revealed a propensity for amplifying this
mode. To suppress it, a special algorithm has been
added to the grid generator.

The algorithm is still in a state of development.
Its present version scans each grid column for se-
guences of 5 Ap values, numbered Apy, ..., Aps, that

satisfy the following three conditions:

Apr < Apz
Aps < Apy
Aps < min(Aps, Apy).

If all three conditions are met, layer 3 is inflated
by drawing mass from both layers 2 and 4 such
that (a) the column integral of 6 is conserved and
(b) ApZe® = min(Ap5e®, Apye?). Requirement (a)
leads to the constraint

Apy — Apye? _ 04— 03
Apy — Apye” 03— 02

which may put a limit on the mass transfer stipu-
lated by (b). The resulting interface displacements
are added to those associated with the primary re-
gridding process.

Suppression of the layer thickness computational
mode improves the performance of the GFS column
physics parameterization scheme which has been
found to be sensitive to large variations in layer thick-
ness.

9. Appendix B: Turbulent Vertical
Mixing

9a. Background

The following is a simplified version of a numerical
scheme developed by McDougall and Dewar (1998)
for carrying out vertical mixing in fluid models whose
vertical coordinate is a function of the diffused vari-
able(s). They deal with the specific problem of mix-
ing temperature and salinity in ocean models whose
vertical coordinate is potential density (a function of
both temperature and salinity), constrained to re-
main constant in each coordinate layer during mix-

ing.

Here we deal with the much simpler problem of
solving the diffusion equation in an atmospheric col-
umn where there is only one diffused variable (po-
tential temperature #) doing double duty as vertical
coordinate. The only variable capable of capturing
the effects of thermal diffusion in this case is the
thickness of coordinate layers.
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9b. The mixing scheme

The equations expressing conservation of mass and
heat in a column, basically 1-D versions of the equa-
tions listed in the beginning, are

9 (0z\ [ 9 (,02) _,
ot\os) " 9s\"9s)

00\ (02\ 96 _ R
ot ) 835 8z 0z
The turbulent heat flux F, = /6’ is usually param-
eterized as Fy = —K9060/0z where § is the resolved-

scale potential temperature and K is a thermal diffu-
sivity coefficient.

(25)

(26)

The flux form of (26), obtained by combining (25)

and (26), is
0z 0 (.0z _ 0Fy
a_) * 35 (3—9) = o

0
a(e

The task at hand is to discretize the above equa-
tions for use in a model framework where stratifica-
tion is represented by a piecewise constant, stairstep
0 profile. The discretization will be done by formally
integrating the equations over individual stairsteps.

(27)

If 6 is to remain constant in each layer during the
mixing process, Fy must be vertically constant in
each layer. If this were not the case, integrating (26)
over an individual layer would yield a nonzero right-
hand side. Of the two terms on the left, the second
one integrates to zero since 99/0z = 0 inside the
layer. (The vertical mass flux (s0z/ds) remains fi-
nite.) Hence, a nonzero r.h.s. implies a nonzero
tendency term 96/0t which clashes with the stated
requirement.

We conclude: for diffusion to leave a mark on the
profile under the constraint Fy = const in individual
layers, Fy must be allowed to vary from layer to layer.
The implied infinite heat flux divergence at layer in-
terfaces is consistent with the notion that air crossing
an interface undergoes an instantaneous change in
6.

A simple centered finite-difference expression for
the heat flux in layer n is

. Kn 9n+1 _ 9n—1
Iy = Y9 Lntl/2 _ on—1/2 (28)

where fractional superscripts indicate quantities de-
fined on interfaces.

The central task is to determine the mass flux
across layer interfaces, (s0z/0s). For this we inte-
grate (27) over an s interval representing an infinites-
imal slab bracketing a layer interface. Since the ten-
dency term drops out as 0z approaches zero and the
mass flux ($0z/0s) is continuous in the vertical, we
obtain in the limit of zero slab thickness
( &)"*”2 Fpt - Fp

559 = gl —gn (29)

Expressions (28) and (29) encompass the sought-
after solution to the problem of diffusing heat in a
stairstep 6 profile while maintaining ¢ in individual
layers. Note that, in the absence of externally im-
posed heat fluxes, the column integral [6dz is con-
served regardless of the physical and numerical ap-
proximations made in evaluating the heat flux (28).

The heat flux as approximated by (28) becomes
infinite in massless layers. To avoid division by zero,
the denominator in (28) must therefore be bounded
away from zero. The parameter representing mini-
mum layer thickness, together with K and the time
step used in solving (27), can be tuned to concen-
trate the effect of vertical diffusion almost entirely on
very thin layers. We use the scheme in this mode as
an alternative to the grid generator to avoid generat-
ing zero-thickness layers in the isentropic subdomain
that may result from strongly layer-dependent dia-
batic forcing. The advantage of the present scheme
over the grid generator is that it does not produce lo-
cal deviations from target 6. Suitable parameter val-
ues are: 1 m? for the product of time step and mixing
coefficient, and 2 x 10~3m for the minimum thickness.

Ideally, vertical mixing should conserve the total
heat content of the column, [ ¢, T'dp. From (23) we
note that in order to conserve total heat, the vari-
able z in (25) — (29) must be replaced by a variable
proportional to p'**. No other changes are required
in the solution procedure, except that the mixing co-
efficient K in (28) must be rendered dimensionally
compatible with the new vertical coordinate.

In a similar vein, preservation of the total height
/6411 of the column during mixing can be achieved
by using a variable proportional to p* in place of z.
Note that height preservation is incompatible with
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heat conservation.
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