Obscured AGN, Near and Far

Tahir Yaqoob, Kendrah Murphy (JHU/GSFC)

Collaborators: Valentina Braito (U. Leicester), James Reeves (U. Keel), Alex Markowitz (UCSD/CASS), T. J. Turner (UMBC), R. F. Mushotzky (GSFC), A. Ptak (JHU), Y. Terashima (U. Ehime), & the Suzaku Team Purpose of talk:

 \bigstar What can we learn from X-ray spectroscopy of obscured AGN and why is it important?

 \star What can we measure now in nearby obscured AGN and how well?

 \bigstar Superiority of Suzaku compared to any other previously flown combination of instruments for studying X-ray reprocessing using broadband X-ray spectroscopy.

The Fe K line in *real* Compton-thick X-ray sources. Latest modeling, some under-appreciated observational implications.

 \bigstar IXO simulations of high-redshift obscured AGN.We want to be able to routinely do the kind of detailed X-ray spectroscopy for high-redshift obscured AGN that we can now do for nearby sources.

Yaqoob, MPE IXO 2008

Some basic relationships (for X-ray reprocessing in cold, neutral matter)

EW of Fe K line relative to scattered continuum does not depend on geometry, covering factor, or column density as long as the first scattering dominates the scattered continuum.

i.e. a slab of infinite Compton thickness - or up to $N_H \sim 1.5 \times 10^{24} \text{ cm}^{-2}$ for "transmission".

$$\mathrm{EW}_{\mathrm{refl}} = 1010 \left(\frac{\omega_{\mathrm{K}}}{0.347}\right) \left(\frac{A_{\mathrm{Fe}}}{4.68 \times 10^{-5}}\right) \left(\frac{\sigma_{\mathrm{FeK}}^{0}}{3.5 \times 10^{-20} \mathrm{~cm}^{-2}}\right) \left(\frac{3.55}{\Gamma + 1.65}\right) [0.90^{\Gamma - 1.9}] \quad \mathrm{eV}$$

Higher columns than 1.5 x 10²⁴ cm⁻² can only give LARGER EW (relative to scattered continuum).

Dilution of pure scattered continuum with zeroth order or other continuum reduces the apparent EW.

Fe K edge depth in transmission (zeroth order continuum)

$$\tau_{\rm FeK \ edge} = 1.638 \left(\frac{\sigma_{\rm FeK}^0}{3.50 \times 10^{-20} \ {\rm cm}^{-2}} \right) \left(\frac{A_{\rm Fe}}{4.68 \times 10^{-5}} \right) \left(\frac{N_H}{10^{24} \ {\rm cm}^{-2}} \right)$$

Fe K edge depth in pure reflection (>zeroth order)

Fe abundance relative to solar (Anders & Grevesse)	$ au_{ m FeK}$
I	0.619
2	0.873
10	I.235

Circinus Galaxy

Yaqoob, MPE IXO 2008

Circinus Galaxy

Yaqoob, MPE IXO 2008

Unprecedented precision with Suzaku

eV; Fe abundance $\sim 1.3 \times A\&G$ solar.

HEG can measure the Fe Kα line width better but Suzaku is superior for measuring the structure around the Fe K edge, critical for constraining models.

HEG can measure the Fe Kα line width better but Suzaku is superior for measuring the structure around the Fe K edge, critical for constraining models.

Yaqoob, MPE IXO 2008

$$x \equiv \frac{\text{direct} + 0^{\text{th}} \text{order} + \text{other scattered continua}}{\text{continuum scattered in Fe K line - producing region}}$$
$$\text{EW}_{\text{observed}} \sim \text{EW}_{\text{Refl}} \left[\frac{1 - \exp\left(-0.81N_{24}\lambda_1/\lambda_{6.4}\right)}{1 + f \exp\left(0.81N_{24}\lambda_2/\lambda_{6.4}\right)} \right]$$
$$\text{where } N_{24} \equiv N_H/(10^{24} \text{ cm}^{-2})$$
$$\lambda_{6.4} \equiv \text{single scattering albedo for Fe-K line photons (~ 0.30 at 6.4 keV).}$$
$$\lambda_1 \equiv 1 - \sqrt{(1 - \lambda_{6.4})}, \lambda_2 \equiv \sqrt{(1 - \lambda_{6.4})}$$

Yaqoob, MPE IXO 2008

Yaqoob, MPE IXO 2008

Sample Green's Functions: Fe Kα Compton Shoulder

Murphy, Yaqoob, MPE IXO 2008

Yaqoob, MPE IXO 2008

Conclusions

★ Study of X-ray reprocessing in AGN comes of age with Suzaku. Robust spectroscopy of Fe K region, excellent for studying nearby obscured AGN. ★ Suzaku data demonstrate that good effective area at 7-8 keV (Fe K edge, Fe K β) is critical for reducing degeneracy of reprocessing models. Except for line widths, Suzaku wins in the 6-8 keV band over the Chandra HEG (effective area beats spectral resolution). Fe/Ni abundance ratio can be robustly measured for the brightest AGN.

★ A neutral Fe K emission line with a large EW (hundreds of eV or more) is only expected for a fairly restricted range in column density in Compton-thick sources. For N_H larger than ~ 10²⁵ cm⁻² dilution by even a tiny fraction of optically-thin scattered continuum kills the 6.4 keV Fe K line, rendering it undetectable. Lines from ionized Fe may then dominate the spectrum. This effect is already observed in ULIRGs.

★ In ~100 ks, IXO will be able to do such detailed spectroscopy of high-z obscured AGN as is possible now with nearby sources, from L(2-10 keV) down to ~ 10⁴³ ergs/s for z~1, but only down to ~10⁴⁴ ergs/s for z~2-3.5.