LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style dipole/cut command

Syntax:

pair_style dipole/cut cutoff (cutoff2) 

Examples:

pair_style dipole/cut 10.0
pair_coeff * * 1.0 1.0 
pair_coeff 2 3 1.0 1.0 2.5 4.0 

Description:

Style dipole/cut computes interactions between pairs of particles that each have a charge and/or a point dipole moment. In addition to the usual Lennard-Jones interaction between the particles (Elj) the charge-charge (Eqq), charge-dipole (Eqp), and dipole-dipole (Epp) interactions are computed by these formulas for the energy (E), force (F), and torque (T) between particles I and J.

where qi and qj are the charges on the two particles, pi and pj are the dipole moment vectors of the two particles, r is their separation distance, and the vector r = Ri - Rj is the separation vector between the two particles. Note that Eqq and Fqq are simply Coulombic energy and force, Fij = -Fji as symmetric forces, and Tij != -Tji since the torques do not act symmetrically. These formulas are discussed in (Allen) and in (Toukmaji).

If one cutoff is specified in the pair_style command, it is used for both the LJ and Coulombic (q,p) terms. If two cutoffs are specified, they are used as cutoffs for the LJ and Coulombic (q,p) terms respectively.

Use of this pair style requires the use of the fix nve/dipole command to integrate rotation of the dipole moments. Additionally, atom_style dipole should be used since it defines the point dipoles and their rotational state. The magnitude of the dipole moment for each type of particle can be defined by the dipole command or in the "Dipoles" section of the data file read in by the read_data command. Their initial orientation can be defined by the set dipole command or in the "Atoms" section of the data file.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as described below:

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and Coulombic interactions for this type pair. If both coefficients are specified, they are used as the LJ and Coulombic cutoffs for this type pair.


Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distances for this pair style can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

For atom type pairs I,J and I != J, the A, sigma, d1, and d2 coefficients and cutoff distance for this pair style can be mixed. A is an energy value mixed like a LJ epsilon. D1 and d2 are distance values and are mixed like sigma. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the Lennard-Jones portion of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the inner, middle, outer keywords.

Restrictions:

This style is part of the "dipole" package. It is only enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

Related commands:

pair_coeff, fix nve/dipole, compute temp/dipole

Default: none


(Allen) Allen and Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

(Toukmaji) Toukmaji, Sagui, Board, and Darden, J Chem Phys, 113, 10913 (2000).