# Searches for Higgs Bosons at the DØ Experiment

- Standard Model & SUSY Higgs
   boson searches
- **X** New results since Moriond '07

Wade Fisher

Fermilab

On behalf of the DØ Collaboration



**April 6<sup>th</sup> 2006** 



# Collaboration

#### 18 Countries 81 Institutions 645 Scientists



#### The DØ Detector







# The Case for the Higgs



Wine & Cheese April 6th, 2007

X Many years of work have led to our current description of matter and its interactions: Standard Model

#### ELEMENTARY PARTICLES



- X Cast of characters includes
  - Matter particles (fermions): quarks and leptons
  - ★ Force carriers (bosons): photon, gluon,  $W^{\pm}/Z^{0}$
- *X* Highly successful predictive model
  - But there's a problem!! No explanation for particle masses

# The Case for the Higgs



- *×* Electroweak model is very powerful
  - **x**  $SU(2)_{L} \times U(1)_{V}$  is well tested in collider experiments
  - \* But it is not a symmetry of our vacuum otherwise quarks, leptons, and gauge bosons would all be massless
- × Higgs mechanism provides a natural solution
  - **×** Add one complex doublet of scalar fields in a  $\Phi^4$  potential
- Symmetric solution unstable, broken EW symmetry creates non-zero VEV
  - W<sup>±</sup>/Z<sup>0</sup> longitudinal polarizations absorb three degrees of freedom, remaining one becomes neutral scalar (Higgs boson)
  - Ground state VEV parameterizes W/Z masses
  - **x** Higgs mass not predicted:  $m_{_{H}} \propto \mu$   $\Theta$



## **Cornering the Higgs**





# SM Higgs at the Tevatron



Wine & Cheese April 6th, 2007

Cross section (pb) 10 **Production** Gluon fusion dominates for hadron gg→H colliders Large backgrounds restrict useful X EP WH Higgs decay channels Excluded by Х Next largest is associated production of ZH W/Z + Higgs Leptonic decays of W/Z bosons X provide tag for trigger and analysis 100 120 140 160 180 200 Branching ratio ww Decay bb Low-mass Higgs ( $m_{\mu}$ <135 GeV) prefers to decay to bottom-quark pairs 0.1 ZZ ττ gg Need efficient ID of bottom quarks to Х reduce backgrounds CC EP At high-mass (m<sub>H</sub>>135 GeV), search for  $H \rightarrow WW^*$ 10-2 Х chuded by decays Zγ γγ Off-shell W boson allows off-resonance production  $10^{-3}$ 180 100 120 140 160 20 m.,  $(GeV/c^2)$ 

# Standard Model Search



Wine & Cheese April 6th, 2007

#### Channels



<u>Gluon Fusion Production:</u> Maximum sensitivity at high mass, also useful at low mass



# Standard Model Search



Wine & Cheese April 6th, 2007

#### Channels



\*New since mid-March + 1fb<sup>-1</sup> combined limit

<u>Gluon Fusion Production:</u> Maximum sensitivity at high mass, non-negligible at low mass



# Gluon Fusion Higgs Production



Wine & Cheese April 6th, 2007



#### **Experimental Signature**

- **\*** Two high-pT leptons from W-boson decays (e or  $\mu$ )
- $\Rightarrow$  3 final states: ee, e $\mu$ ,  $\mu\mu$
- Significant missing transverse energy from neutrinos
- X Highest sensitivity individual search channels!

# Searching for $H \rightarrow W^+W^-$ (ICHEP)





- Select high-pT leptons (pT > 15/10 GeV, electrons & muons)
  - X Use Z-peak for normalization (ee/ $\mu\mu$ ), veto region after norm
- Require large missing transverse energy signature from neutrinos (MET > 20 GeV)
- Restrict sum of MET + lepton pT (scalar and vector)



# Searching for $H \rightarrow W^+W^-$ (ICHEP)

13



- Largest background is Standard Model W<sup>+</sup>W<sup>-</sup> q production
  - ✗ Well-measured at both D∅ and CDF
- Scalar higgs (spin-0) provides natural discrimination due to spin correlation!
  - **\*** Leptons prefer to be collinear:  $\Delta \phi(l,l)$  excellent discriminant!





### Searching for $H \rightarrow W^+W^-$ (ICHEP)









Wine & Cheese April 6th, 2007

#### **Experimental Signature**

- ✗ Leptonic decay of W/Z bosons provides "handle" for event
- **×** Higgs decay to two bottom-quarks helps reduce SM backgrounds



#### Selecting $W \rightarrow l \nu \& Z \rightarrow l l$



- Select events by utilizing vector-boson decay signatures
  - X Require one(two) high-pT leptons: pT > 20(15) GeV)
  - Neutrinos manifest as missing transverse energy
    - × <u>WH $\rightarrow$ lvbb</u>: **MET > 20 GeV**, <u>ZH $\rightarrow$ llbb</u>: **MET should be small**!!
  - Reconstruct vector boson mass
- ★ Use "OR'ing" of muon triggers: 100% efficiency & +15% in sensitivity











#### Selecting $Z \rightarrow \nu \nu + Jets$



Wine & Cheese April 6th, 2007

- ✗ For ZH→vvbb the search is more difficult: no charged leptons!
  - ✗ Rely on large MET (neutrinos!)
  - Backgrounds

<u>"Physics":</u> Z+jets, W+jets, top-pair, ZZ, WZ

<u>"Instrumental":</u> QCD multijets with mismeasured jets





#### **×** Background reduction:

- Trigger on large missing HT (vector sum of jet ET), select large MET:>50 GeV
- × Select two high-pT jets to define final state
   (pT>20 GeV, |η|<2.5)</li>
- × Veto back-to-back jets:  $\Delta \phi < 165^{\circ}$

#### Selecting Z→vv + Jets



Wine & Cheese April 6th, 2007

**X** Reduction of Instrumental background:

Define missing energy/momentum variables:
 <u>Missing ET (MET)</u>: calculated using calorimeter cells
 <u>Missing HT (MHT)</u>: calculated using jets
 <u>Missing Trk pT:</u> calculated using tracks



- Select events based on the assymetry in these variables
  - X Asym(MET,MHT) =
     (MET-MHT)/(MET+MHT) > -0.1
  - Expected shape for real physics
     bkgds obtained from MC
- Further restrict bkgds
  - ×  $\Delta \phi$ (MET,jets) > 0.15 rad
  - ×  $\Delta \phi$ (MET,MTrkPt) <  $\pi/2$



#### B-Jet Tagging at DØ





# **Tagging B-Jets**



- V Update b-Tagging optimization (as compared to Single-Top result)
  - X Use asymmetric TIGHT + LOOSE b-Tagging thresholds for double-tagged jet sample (gain ~40% in sensitivity)
  - ✗ For WH→lvbb, separate orthogonal 2 b-tag and 1 b-tag samples to salvage lost efficiency (gain ~15% in sensitivity)



#### Selecting H→bb Events





#### Searching for H→bb



- × Interesting consideration: ZH→ $\nu\nu$ bb channel has large cross efficiency from WH signal (lost/undetected lepton + hadronic W→ $\tau\nu$ )
  - **×** Treat as separate WH channel for proper accounting:
    - **★** ZH signal  $\Rightarrow$  ZH limits, WH signal  $\Rightarrow$  WH limits
    - X Same background!! Sum signals for full combination of results

| Expected/Observed Events in 1.0fb <sup>-1</sup><br>mH=115 GeV, 70 <djmass<130 gev<="" th=""></djmass<130> |               |             |             |                  |  |  |
|-----------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|------------------|--|--|
| <u>Channel</u>                                                                                            | <u>Signal</u> | <u>Bkgd</u> | <u>Data</u> | <u>S/sqrt(B)</u> |  |  |
| WH→lvbb, 2Tag                                                                                             | 1.45          | 86.6        | 91          | 0.156            |  |  |
| WH→l∨bb, 1Tag                                                                                             | 1.48          | 365.2       | 339         | 0.077            |  |  |
| ZH/WH→MET+bb                                                                                              | 0.83/0.54     | 55.3        | 63          | 0.184            |  |  |
| ZH→llbb                                                                                                   | 0.37          | 19.8        | 17          | 0.083            |  |  |

#### **Advanced Analysis Techniques**



- ★ WH/ZH system is very rich, don't need to rely on dijet mass alone
  - **×** Multivariate analyses isolate regions of signal density in N-dimensions
  - X Under development, but Matrix Element analysis approved
    - \* Despite selection 30-40% less sensitive (optimized for single-top search & uses smaller dataset), ME analysis achieves similar final sensitivity
  - Use signal/bkgd production Matrix Elements (tree-level) to form likelihood discriminant: ~35% improvement in sensitivity! (in single b-tag channel, similar optimization point)



#### **Advanced Analyses**



- X Comparison of cut-based and ME analyses
  - **×** Despite optimization point, achieves similar sensitivity
  - **×** Steady progress in this channel



### Setting Limits



Wine & Cheese April 6th, 2007

- In the absence of signal, we set limits on Standard Model Higgs boson production
  - **\*** We calculate limits via the CLs prescription:

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}}$$

✗ Using a Log-Likelihood Ratio test statistic:

$$Q(\vec{s}, \vec{b}, \vec{d}) = \prod_{i=0}^{N_{Chan}} \prod_{j=0}^{N_{bins}} \frac{(s+b)_{ij}^{d_{ij}} e^{(s+b)_{ij}}}{d_{ij}!} / \frac{b_{ij}^{d_{ij}} e^{b_{ij}}}{d_{ij}!}$$

 $LLR = -2 \times LogQ$ 

d<sub>ii</sub> refers to "data" for model being tested

 Distributions of simulated outcomes are populated via Poisson trial with mean values given by B-only or S+B hypotheses

26

- **×** Systematics are folded in via Gaussian marginalization
- Correlations held amongst signals and backgrounds

#### Tools of the Trade



Wine & Cheese April 6th, 2007

arginalitin

- X To counteract the degrading effects of systematic uncertainties, we actually integrate over the Profile Likelihood distributions
  - **×** Obtained by fitting MC expectations to "data" for each outcome
  - Capitalizes on shape and statistics of data to constrain background fluctuations
- **×** Must define the best fit of our MC model to data

**x** Assume:  $B_i \rightarrow B_i \prod_k (1 + \sigma_i^k \rho_k)$   $\leftarrow$ Where  $\rho_k$  has a mean of 0 and width of 1

**x** Minimize Poisson estimator by varying  $S_{\mu}$  values

$$\chi^{2} = 2 \sum_{i} (B_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i}}{D_{i}}\right) + \sum_{k} \rho_{k}^{2}$$

#### **CLs in Pictures**



- X Black dashed line: Observed
   LLR value (LLR<sub>obs</sub>)
- X Green: Bkgd-only hypothesis
  - x CL<sub>b</sub> is region to right of LLR<sub>obs</sub>
  - × Equals ~50% for goodbkgd/data agreement
- X Red: Signal+bkgd hypothesis
  - x CL<sub>s+b</sub> is region to right of
    LLR<sub>obs</sub>





-1.5

DØ Preliminary, L=1.0 fb<sup>1</sup>

m<sub>H</sub> (GeV/c<sup>2</sup>)

observation

X

# Setting Limits





- Limits presented as ratios to the expected Standard Model cross section
  - ★ 95% CL exclusion when ratio=1.0
  - Facilitates flexible combination of channels, interpretation of model



#### **Combined SM Limits**











### An Emerging Path...



- Though we're not quite there, we know we're missing pieces X
  - ★ Advanced analysis selections (NN,ME) provide factor of ~1.5-1.7 in equivalent luminosity
  - × Missing channels (WH $\rightarrow$ WWW, single-tag for ZH)
  - New channels (taus,  $H \rightarrow ZZ$ , hadronic  $H \rightarrow WW$ ) in the pipeline X
  - Many systematics currently statistics limited X

| Ingredient                   | Equiv Lumi<br><u>Gain</u> | Xsec Factor<br><u>MH=115 GeV</u>                                                                      | Xsec Factor<br>MH=160 GeV |  |
|------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|---------------------------|--|
| Today with 1fb <sup>-1</sup> | -                         | 5.9                                                                                                   | 4.2                       |  |
| Lumi = 2 $\text{fb}^{-1}$    | 2                         | 4.2                                                                                                   | 3.0                       |  |
| b-Tag (Shape + LayerØ)       | 2                         | 3.0                                                                                                   | 3.0                       |  |
| Multivariate Techniques      | 1.7                       | 2.3                                                                                                   | 2.3                       |  |
| Improved mass resolution     | 1.5                       | 1.8                                                                                                   | 2.3                       |  |
| New Channels                 | 1.3/1.5                   | 1.6                                                                                                   | 1.9                       |  |
| Reduced systematics          | 1.2                       | 1.5                                                                                                   | 1.7                       |  |
| <b>DZero only</b>            | →At<br>nee                | <ul> <li>→At 115 GeV At 160 GeV</li> <li>need ~4.5 fb<sup>-1</sup> need ~6 fb<sup>-1</sup></li> </ul> |                           |  |
|                              | 33                        |                                                                                                       |                           |  |

## An Emerging Path...



- ✗ Though we're not quite there, we know we're missing pieces
  - Advanced analysis selections (NN,ME) provide factor of ~1.5-1.7 in equivalent luminosity
  - ★ Missing channels (WH→WWW, single-tag for ZH)
  - ★ New channels (taus,  $H \rightarrow ZZ$ , hadronic  $H \rightarrow WW$ ) in the pipeline

|                              | Equiv Lun   | ni Xsec Factor             | <b>Xsec Factor</b>       |
|------------------------------|-------------|----------------------------|--------------------------|
| <u>Ingredient</u>            | <u>Gain</u> | <u>MH=115 GeV</u>          | <u>MH=160 GeV</u>        |
| Today with 1fb <sup>-1</sup> | -           | 5.9                        | 4.2                      |
| Lumi = 2 $\text{fb}^{-1}$    | 2           | 4.2                        | 3.0                      |
| b-Tag (Shape + LayerØ)       | 2           | 3.0                        | 3.0                      |
| Multivariate Techniques      | 1.7         | 2.3                        | 2.3                      |
| Improved mass resolution     | 1.5         | 1.8                        | 2.3                      |
| New Channels                 | 1.3/1.5     | 1.6                        | 1.9                      |
| Reduced systematics          | 1.2         | 1.5                        | 1.7                      |
| Two Experiments              | 2           | 1.1                        | 1.2                      |
| Add another experin          | nent 🖸      | At 115 GeV                 | At 160 GeV               |
| nuu anotnei experin          |             | need ~2.5 fb <sup>-1</sup> | need ~3 fb <sup>-1</sup> |

#### What if we succeed?



- **×** What does success mean?
  - \* Exclusion? Observation?
- *×* Either way, the story does not end with the Standard Model Higgs search
- Exclusion would be great, but what do we learn?
- $\begin{array}{l} \star \quad 3 \text{-} \sigma \text{ evidence might not be} \\ \text{enough to measure properties} \end{array}$ 
  - **×** What does it **look** like?
  - **×** Does it *fit* the SM?



# Higgs Bosons in the MSSM



Wine & Cheese April 6th, 2007

- Super-Symmetry (SUSY) provides a robust EWSB solution
  - X Introduces supersymmetric "partners" for all existing particles
  - Requires <u>two</u> doublets of complex scalar fields: Two Higgs-Doublet Model (2HDM)
    - <u>Fight degrees of freedom</u>: Three go to W<sup>±</sup>/Z<sup>0</sup> polarization states: this leaves *five* Higgs bosons providing all particle masses: four scalars (h, H, H<sup>±</sup>) and one pseudoscalar (A)
  - **×** The minimal description of SUSY is referred to as MSSM
    - **×** Higgs sector described by to base parameters:

**x** tan $\beta$  (ratio of VEV for h,H) & m<sub>A</sub>

- **x** Prefers a light higgs:  $m_h < 140 \text{ GeV}$
- ✗ But supersymmetric "sparticles" have not been observed
  - **×** New particle masses must be large
  - **×** This is OK, as it introduces a natural energy scale at  $\sim 1-2$  TeV **36**

# Higgs Bosons in the MSSM





- **×** In MSSM, coupling to down-type quarks enhanced as  $\tan\beta$ 
  - $\Rightarrow$  cross-section is enhanced as  $\tan^2\beta$



### Higgs Bosons in the MSSM





- For large  $\tan\beta$ , H/h and A (collectively called  $\phi$ ) are nearly mass degenerate
  - **×** Br( $\phi$ →bb) ~90% and Br( $\phi$ → $\tau\tau$ ) ~10% almost independent of tan $\beta$



#### 39

### Fermiophobic Higgs Bosons

- For certain 2HDM, coupling of light Higgs to fermions is suppressed
  - × *Fermiophobic Higgs:* decays 100%  $h_{_{F}}$ →γγ if light enough
- **x** Look for associated  $h_F H^{\pm}$ production, with  $h_F H^{\pm} W^{\pm}$  coupling
  - Decay constraint defines 3(4) y final state



$$p\bar{p} \rightarrow h_F H^{\pm} \rightarrow h_F h_F W^{\pm} \rightarrow \gamma \gamma \gamma \gamma (\gamma) + X$$

- **\*** Experimentally, look for  $3\gamma$ +X to maximize acceptance
  - × Select 3 $\gamma$  with  $E_T > 30$ , 20, 15 GeV and  $p_T(3\gamma)>25$  GeV
- X Main background: direct triple photon production
  - ✗ Estimate from MC, corrected by ratio of two photon data/MC

# Fermiophobic Higgs Bosons



Wine & Cheese April 6th, 2007

- × Upper limit on *associated* production of  $h_F^{F}$ ,  $\sigma(h_F^{H^{\pm}}) < 25.3$  fb at 95% CL
- Interpret in terms of 2HDM parameter space
  - **x** Depends strongly on  $m_{H\pm}$ , weakly on  $\tan\beta$

Expected events $1.1 \pm 0.2$ Observed0Acceptance $0.16 \pm 0.03$ 



# Associated SUSY-Higgs Production



Wine & Cheese April 6th, 2007

#### Experimental Signature

- Higgs decays to two high-pT
   b-quark jets
- One or two extra associatedb-quarks define final state
- Search for peak in dijet invariant mass spectrum

## $\phi \rightarrow bb + b[b]$ Search



- × Select at least three b-tagged jets with  $p_T$  > 40, 25, 15 GeV
  - Invariant mass of two leading jets peaks at Higgs mass
- Backgrounds estimated from data
  - Shape taken from double-tagged dijet mass spectrum
  - **×** Rate normalized outside signal window for each point in  $m_A$  and tanβ plane
- ★ Reasonable agreement between data and predicted background: proceed to set upper limits on MSSM  $\phi \rightarrow$ bb production
  - Preliminary analysis being optimized to maximize sensitivity



# Di-Tau SUSY-Higgs Decays



**Experimental Signature** 

- **×** Higgs decays to two tau leptons
- Further decays of tau leptons defines final states

### Tau Identification at DØ



Wine & Cheese April 6th, 2007

- X Neural network-based ID
- **×** 3 NNs for 3 distinct  $\tau$  types:



**Performance for p\_{T}>15 GeV** 

Agreement with  $Z \rightarrow \tau \tau$  decays





Wine & Cheese April 6th, 2007

#### $\phi \rightarrow \tau^+ \tau^-$ Search

- $x \phi \rightarrow \tau^{+} \tau^{-} \rightarrow \mu \nu + \tau_{h}$
- × Largest bkgds:  $Z \rightarrow \tau \tau$ , QCD-jet fakes
  - × NN>0.9, Δ**R**(μ,τ)>0.5
  - x  $M_{w}^{vis}$  < 20 GeV to remove W bkgd

$$M_W^{vis} = \sqrt{2 E_\mu M E_T \frac{p^\mu}{p_T^\mu} (1 - \cos(\Delta \phi))}$$





 Mass-dependent NN optimization for signal/bkgd separation (M<sup>vis</sup>, mu, tau kinematic variables)

#### $\phi \rightarrow \tau^+ \tau^-$ Search





- ✗ Similar analysis at CDF
  - X Combines e+h, μ+h, e+μ
     tau decays
  - x Best fit:  $m_{\phi} = 160$  GeV, tan $\beta \sim 50$



### $\phi \rightarrow \tau^+ \tau^-$ Search



Wine & Cheese April 6th, 2007

 $m_{h}^{max}, \mu < 0$ No-mixing,  $\mu < 0$ DØ preliminary1.0fb<sup>-1</sup> 95% CL X <u>cn\_</u>100∎ പ100 tan tan ∞ limits, interpreted in:  $\mathbf{X} \ \sigma \times \operatorname{Br}(\phi \to \tau \tau)$ **×** MSSM parameter space DØ Preliminary, 1.0 fb<sup>-1</sup> DØ Preliminary, 1.0 fb<sup>-1</sup> DØ φ→τ<sub>α</sub>τ, 1.01b<sup>-1</sup> 95% limit  $\sigma * Br(\phi \rightarrow \tau \tau)$  (pb) 85% limit  $\sigma * Br(\phi \rightarrow \tau \tau)$  $D \oslash \phi \rightarrow \tau_{\odot}^{\mu} \tau$ , 1.0 to <sup>-1</sup> expected CDF φ-+ττ, 1.0fb<sup>-1</sup> DØ Preliminary, 1.0 fb<sup>-1</sup> CDF φ→ττ, 1.0fb<sup>-1</sup> expected LEP **Observed Limit** Expected Limit M<sub>A</sub> (GeV) Expected Limit,  $\pm 1\sigma$ M<sub>4</sub> (GeV)  $m_{h}^{max}, \mu > 0$ No-mixing,  $\mu > 0$ CDF 1.0 fb<sup>-1</sup> Expected Limit ն 100 100 100 100 tan <sup>301</sup> DØ Preliminary, 1.0 fb<sup>-1</sup>  $D \oslash \phi \rightarrow \tau_{\mu}^{\mu} \tau, 1.0 \text{ tb}^{-1}$  $D \oslash \phi \rightarrow \tau_{\mu}^{\mu} \tau, 1.0 \text{ tb}^{-1}$  expected DØ Preliminary, 1.0 to<sup>-1</sup> CDF φ→ττ, 1.0fb<sup>-1</sup> CDF φ→ττ, 1.0fb<sup>-1</sup> expected LEP o Higgs Mass (GeV)  $M_A$  (GeV) M<sub>A</sub> (GeV)

#### **Summary of Results**



|                                                                                                              | CDF limit (1fb <sup>-1</sup> ) | <b>D0 limit (1fb</b> <sup>-1</sup> ) |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|--|
| Analysis                                                                                                     | factor above SM                | factor above SM                      |  |
|                                                                                                              | observed (expected)            | observed (expected)                  |  |
| Z/WH→мет+bb @ 115                                                                                            |                                |                                      |  |
| Technique: M <sub>jj</sub>                                                                                   | <b>16 (15)</b>                 | <b>14 (9.6)</b>                      |  |
| WH→l∨bb @ 115                                                                                                |                                |                                      |  |
| Technique: M <sub>jj</sub>                                                                                   | <b>26 (17)</b>                 | 11 (8.8)                             |  |
| Technique: ME                                                                                                | -                              | <b>12 (9.5)</b>                      |  |
| ZH→llbb @ 115                                                                                                |                                |                                      |  |
| Technique: M <sub>jj</sub>                                                                                   | -                              | <b>23 (22)</b>                       |  |
| <b>Technique: NN2D</b>                                                                                       | 16 (16)                        | -                                    |  |
| $\mathbf{H} \rightarrow \mathbf{W} \mathbf{W} \rightarrow \mathbf{l} \mathbf{v} \mathbf{l} \mathbf{v} @ 160$ |                                |                                      |  |
| Technique: $\Delta \phi$ (1,1)                                                                               | <b>9.2 (6.0)</b>               | <b>3.7 (4.2)</b>                     |  |
| Technique: ME                                                                                                | <b>3.4 (4.8)</b>               | _                                    |  |
| <b>Φ→ττ @ 160</b>                                                                                            |                                |                                      |  |
| μ<0, no mixing                                                                                               | $\tan\beta < 69$ (47)          | $\tan\beta < 44$ (54)                |  |

#### Conclusions



Wine & Cheese April 6th, 2007

Higgs physics in Run II of the Tevatron looks promising: *very exciting time to be working here!!* 

Great collaboration and FNAL support 45 40 40 40 40 53 40 35 40 35 DØ Preliminary, 1.0 fb<sup>-1</sup> allows us to push the boundaries of our **Observed Limit** knowledge:  $\geq 3\sigma$  Higgs is reachable if Expected Limit Higgs is light or near 160 GeV Expected Limit,  $\pm 1\sigma$ \_imit / σ(pp→WH/ZH/H)×BR(H→bb/W<sup>+</sup>W] DØ Preliminary, L=1.0 fb<sup>1</sup> 30 \* CDF 1.0 fb<sup>-1</sup> Expected Limit 6 **35% limit** 50 Observed Limit We won't stop **MSSM Higgs** Expected Limit here!! means SUSY!! 10 15 10 120 160 100 140 180 200 100 120 130 140 150 160 170 180 190 200 110 Higgs Mass (GeV)  $m_{H}$  (GeV/c<sup>2</sup>)

#### Acknowledgements



- X Thanks to all the hard work at DZero needed to deliver these results
  - X Not just the Higgs group!!!
- Accelerator division keeps our analyses well-fed
  - X Cannot find the Higgs without luminosity!
- **×** Thanks to all whose slides were robbed
  - Gregorio Bernardi, Andy Haas, Yuji Enari, Greg Landsberg (*et al*)
  - X Mark Owen & Stefan Soldner-Rembold for working on Easter break
  - Nice Feynman diagrams and figures from Ben Kilminster's Moriond QCD '07 talk



Wine & Cheese April 6th, 2007

## **Backup Slides**

#### **Di-Jet Mass Resolution**



- ✗ SHWG/HSG quoted at 10% dijet mass resolution
  - ★ <u>Bad news:</u> We're currently at 17-18%
  - ✗ <u>Good news:</u> Don't need 10% to get expected factor in lumi
- Several techniques available: energy-flow algorithms, constrained fitting of jets+MET system, ISR/FSR jet recovery



### Multivariate Analyses



Wine & Cheese April 6th, 2007

- \* Many mature techniques (ready for final vetting)
  - X Matrix Element, Neural Networks

**×** Observe 35-50% improvement in limit

- × Not limited to H→bb or low mass!!
  - $\pmb{x}$  Very large improvement possible for  $m_{_{\rm H}} \sim 135$  GeV, where

top-pair/single-top begin to dominate

