

Shear Wave Velocity Profiling Using Spectral Analysis of Surface Waves (SASW) at Williams Street Park & Coyote Creek Borehole San Jose, CA

James Bay¹, Jeff Gilbert¹, Kwangsoo Park¹ and Inthuorn Sasankul¹

This paper is an extract from

Asten, M.W., and Boore, D.M., eds., Blind comparisons of shear-wave velocities at closely spaced sites in San Jose, California: U.S. Geological Survey Open-File Report 2005-1169. [available on the World Wide Web at http://pubs.usgs.gov/of/2005/1169/].

2005

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

¹Civil & Environmental Engineering Department Utah State University Logan, UT Utah State University Shear Wave Velocity Profiling

Using

Spectral Analysis of Surface Waves (SASW)

at

Williams Street Park & Coyote Creek Borehole

San Jose, CA

Dr. James Bay Jeff Gilbert Kwangsoo Park Inthuorn Sasankul

Civil & Environmental Engineering Department Utah State University Logan, UT

- SECTION I Iterative Forward Modeling Analysis
- SECTION II Alternative Analysis Automated Inversion and IRF Filtering
- SECTION III Comparison between Analyses

Section I

Iterative Forward Modeling Analysis

Figure 1 Experimental dispersion curve measured at Coyote Creek Borehole

Figure 2 Comparison between theoretical & experimental dispersion curve measured at Coyote Creek Borehole

Figure 3 Shear wave velocity profile determined from SASW testing at Coyote Creek Borehole

Depth to	Laver	Shear Wave	Assumed P-	Assumed
I op of	Thielmoor	Valoaity	Valaaity	Unit Woight
Layer	Thickness	velocity	velocity	$\int \frac{1}{\sqrt{3}}$
(m)	(m)	(m/s)	(m/s)	(t/m ²)
0.00	0.34	114	214	1.89
0.34	0.55	149	279	1.89
0.89	1.83	186	348	1.92
2.72	3.05	194	362	1.92
5.77 ^a	4.57	197	1524	1.92
10.34	5.18	204	1524	1.92
15.5	5.18	213	1524	1.92
20.7	3.96	236	1524	1.92
24.7	30.18 ^b	549°	1524	2.00

Table 1 Tabulated shear wave velocity profile from Coyote Creek Borehole

a. Depth to water tableb. Half-space in model

c. Unresolved velocity

Figure 4 Experimental dispersion curve measured at Williams Street Park

Figure 5 Comparison between theoretical & experimental dispersion curve measured at Williams Street Park

Figure 6 Shear wave velocity profile determined from SASW testing at Williams Street Park

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	(t/m^3)
0.00	0.30	116	217	1.89
0.30	0.76	142	265	1.89
1.06	1.98	143	268	1.89
3.04	4.57	183	342	1.92
7.61 ^a	4.57	207	1524	1.92
12.18	4.57	223	1524	1.92
16.8	5.18	229	1524	1.92
21.9	5.18	236	1524	1.92
27.1	30.18 ^b	412 ^c	1524	2.00

Tabulated shear wave velocity profile from Williams Street Park Table 2

a. Depth to water tableb. Half-space in modelc. Unresolved velocity

Figure 7 Comparison of Coyote Creek Borehole & Williams Street Park shear wave velocity profiles determined from SASW testing and iterative forward modeling analysis

Section II

Alternative Analysis and IRF Filtering

Figure 8 Experimental and representative dispersion curves measured at Coyote Borehole (dimensions are in English units). Gray shadows indicate experimental dispersion curve and color-coded dots represent array representative curve.

Figure 9 Comparison between representative and theoretical dispersion curves measured at Coyote Borehole using automated inversion process

Figure 10 Shear wave velocity profile determined from SASW testing at Coyote Borehole using automated inversion process

Depth to	Layer	Shear Wave	P-Wave	Mass	Poisson's
Top Layer,	Thickness,	Velocity,	Velocity,	density,	ratio
m	m	m/s	m/s	t/m ³	iuno
0.00	0.36	125	234	1.8	0.300
0.36	0.26	121	225	1.8	0.300
0.62	0.34	185	347	1.8	0.300
0.96	0.40	209	392	1.8	0.300
1.36	0.63	135	253	1.8	0.300
1.99	0.44	195	365	1.8	0.300
2.43	0.57	277	519	1.8	0.300
2.99	0.54	257	481	1.8	0.300
3.54	0.52	198	370	1.8	0.300
4.06 ^a	0.80	207	1585	2.0	0.491
4.86	0.91	190	1585	2.0	0.493
5.77	1.15	184	1585	2.0	0.493
6.91	1.93	172	1585	2.0	0.494
8.84	1.85	186	1585	2.0	0.493
10.69	1.73	167	1585	2.0	0.494
12.43	2.56	207	1585	2.0	0.491
14.98	3.49	234	1585	2.0	0.489
18.47	3.34	260	1585	2.0	0.486
21.80	8.20	294	1585	2.0	0.482

Table 3Tabulated layer properties determined from automated inversion process at
Coyote Borehole

a. Depth to water table

Figure 11 Experimental and representative dispersion curves measured at Williams Street Park (dimensions are in English units). Gray shadows indicate experimental dispersion curve and color-coded dots represent array representative curve.

Figure 12 Comparison between representative and theoretical dispersion curves measured at Williams Street Park using automated inversion process

Figure 13 Shear wave velocity profile determined from SASW testing at Williams Street Park using automated inversion process

Depth to Top Layer, m	Layer Thickness, m	Shear Wave Velocity, m/s	P-Wave Velocity, m/s	Mass density, t/m ³	Poisson's ratio
0.00	0.30	119	223	1.8	0.300
0.30	0.30	132	247	1.8	0.300
0.61	0.30	155	290	1.8	0.300
0.91	0.30	137	257	1.8	0.300
1.22	0.61	126	235	1.8	0.300
1.83	0.61	185	347	1.8	0.300
2.44	0.61	148	277	1.8	0.300
3.05	0.61	152	284	1.8	0.300
3.66 ^a	0.91	144	1585	2.0	0.496
4.57	1.22	179	1585	2.0	0.494
5.79	1.22	190	1585	2.0	0.493
7.01	1.52	193	1585	2.0	0.492
8.53	2.44	187	1585	2.0	0.493
10.97	2.44	199	1585	2.0	0.492
13.41	2.44	216	1585	2.0	0.491
15.85	2.44	228	1585	2.0	0.489
18.29	3.05	260	1585	2.0	0.486
21.34	3.05	279	1585	2.0	0.484
24.38	3.05	294	1585	2.0	0.482
27.43	2.57	332	1585	2.0	0.477

Table 4Tabulated layer properties determined from automated inversion process at
Williams Street Park

a. Depth to water table

Figure 14 Shear wave velocity profiles of Coyote Borehole and Williams Street Park sites determined from SASW testing with automated inversion process

Section III

Comparison between Analyses

Figure 15 Comparison of automated and iterative methods at Williams Street Park

Figure 16 Comparison of automated and iterative methods at Coyote Creek Borehole