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Abstract

The Lyapunov function method is the focus of this paper in proving marginal sta-

bility, asymptotical or globally asymptotical stability of discrete dynamic systems. We

show that the slightly relaxed versions of the well known su�cient conditions are also

necessary. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Stationary discrete dynamical systems can be mathematically formulated as

xt�1 � g�xt�; �1�
where xt is the state of the system at time period t, and g is the state-transition
function. If S � Rn is the state space, it is usually assumed that
D�g� � S;R�g� � S, and g is continuous. If x0 2 S is an arbitrary initial state,
then equality (1) uniquely determines the state trajectory, xt, t P 0. An equi-
librium of the system is de®ned as a state �x 2 S such that

�x � g��x�: �2�
Therefore the equilibrium-problem of system (1) is equivalent to the ®xed
point-problem of function g, and any existence theorem of ®xed-points of

Applied Mathematics and Computation 108 (2000) 85±89
www.elsevier.nl/locate/amc

* Corresponding author. Tel.: +1 520 621 6557; fax: +1 520 621 6555.

0096-3003/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S0 0 96 -3 0 03 (9 8 )1 01 4 0- 6



vector variable, vector valued functions can be used to establish the existence of
equilibria of discrete dynamic systems.

In most applications the asymptotical behavior of the state xt is investigated.
These stability concepts are usually applied: marginal stability, asymptotical
stability, and global asymptotical stability.

An equilibrium �x is called marginally stable if for arbitrary � > 0, there is a
d > 0 such that kx0 ÿ �xk < d implies that for all t P 0, kxt ÿ �xk < �. An equi-
librium �x is called asymptotically stable if it is marginally stable and there exists
a D > 0 such that kx0 ÿ �xk < D implies that xt ! �x as t!1. An equilibrium �x
is called globally asymptotically stable if it is marginally stable and xt ! �x as
t!1 with arbitrary x0 2 S.

Notice that asymptotical stability can be viewed as the local convergence of
the iteration process generated by function g, and similarly, global asymptot-
ical stability can be interpreted as the global convergence of iteration sequences
with the additional condition that the entire iteration sequence must remain
close to �x.

There are many su�cient conditions that guarantee the marginal stability,
asymptotical stability, or the global asymptotical stability of an equilibrium.
Most of such conditions belong to one of the following classes: monotone iter-
ations, conditions based on the Jacobian of g, and the use of Lyapunov func-
tions. Unfortunately, most conditions are only su�cient, and very few necessary
stability conditions are known from the literature. Recently, Zhang and Zhang
[1] have introduced a practical necessary condition based on the Jacobian of g.
However their result can be used only in very special cases. (See Ref. [2].)

In this paper we will focus on the Lyapunov function method and will in-
troduce necessary stability conditions which are only slight modi®cations of the
corresponding su�cient conditions. Based on the results of this paper the
marginal stability, asymptotical stability, or the global asymptotical stability of
an equilibrium can be analyzed for practical systems. For continuous systems,
necessary conditions involving Lyapunov functions have been earlier presented
in Ref. [3]. The results of this paper can be considered as the discrete time-scale
counterparts of the classical theorems.

2. Su�cient conditions

Introduce the notation

X � fx kxj ÿ �xk6 �0g �3�
with some �0 > 0 and assume that X � S. Let V : X 7!R be a real valued
function de®ned on X. Introduce the following function properties:

(a) V has a unique minimum at �x;
(b1) V is continuous at �x;
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(b2) V is continuous on X;
(c1) V is nonincreasing along any state sequence of system (1) which is in X;
(c2) V is quasi-strictly decreasing along state sequence of system (1) which is
in X, that is, it is nonincreasing and if xt 6� �x, then there is a t� > t such that
V �xt� � < V �xt�;
(c3) V is strictly decreasing along any state sequence of system (1) which is in
X, that is, if xt 6� �x, then V �xt�1� < V �xt�.
The following su�cient conditions are well known from system theory:

Theorem 2.1. (1) If there is a real valued function V de®ned on X which satis®es
conditions (a), (b2), and (c1), then the equilibrium �x is marginally stable; (2) If
there is a real valued function V de®ned on X with properties (a), (b2), and (c3),
then the equilibrium �x is asymptotically stable.

The proof of this theorem can be found in most books on di�erence
equations or on systems theory. For example, see Ref. [4] for details.

Assume next that the state space S is unbounded, and V : S 7!R is a real
valued function de®ned on S. Introduce the following additional function
property:

(d) V �x� ! 1 as kxk ! 1:
The following theorem, which is also well known from system theory,

guarantees the global asymptotical stability of the equilibrium.

Theorem 2.2. If there is a real valued function V de®ned on S such that it satis®es
conditions (a), (b2), (c3), and (d) with X being replaced by S, then the equilibrium
is globally asymptotically stable.

The following corollary is useful in many applications.

Corollary 2.3. If S is bounded, and there is a real valued function V de®ned on S
which satis®es conditions (a), (b2), and (c3) with X being replaced by S, then the
equilibrium is globally asymptotically stable.

These results play a fundamental role in analysing the asymptotical behavior
of discrete dynamic economic systems. For example, their applications in oli-
gopoly theory are illustrated in Ref. [5].

3. Necessary conditions

In this section we will show that the slightly relaxed versions of the condi-
tions of Theorems 2.1 and 2.2 are necessary. In particular we will prove the
following result:
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Theorem 3.1. Assume that the equilibrium �x is an interior point of S.
1. If �x is marginally stable, then there is a real valued function de®ned on S which

satis®es conditions (a), (b1), and (c1), where X is replaced by S;
2. If the stability is asymptotical, then there is a real valued function de®ned on a

neighbourhood X of �x which satis®es properties (a), (b2), and (c2);
3. If the stability is globally asymptotical, then there is a real valued function de-

®ned on S, and there is a neighbourhood X of �x, that satis®es properties (a),
(b2), (c2), and (d).

Proof. Introduce the notation g1�x� � g�x�; and for k P 1; gk�1�x� � g�gk�x��.
Since D�g� � S;R�g� � S; gk is de®ned on S for all k, and R�gk� � S. De®ne
now function V as follows:

V �x� � supfkxÿ �xk; kg1�x� ÿ �xk; kg2�x� ÿ �xk; . . .g: �4�
Notice ®rst that V ��x�� 0 and if x 6� �x, then V �x� > 0 implies that property

(a) always holds. Let x0; x1; x2 . . . be a state sequence of system (1). Then the
de®nition of function V implies that

V �xt� � supfkgt�x0� ÿ �xk; kgt�1�x0� ÿ �xk; kgt�2�x0� ÿ �xk; . . .g; �5�
from which we conclude that condition (c1) is always satis®ed. The de®nition
of V also implies that condition (d) always holds.

Assume ®rst that the equilibrium �x is marginally stable. If x0 � x, then for all
t P 1, xt � gt�x�. From the de®nition of marginal stability of the equilibrium we
conclude that for all � > 0, there exists a d > 0 such that kxÿ �xk < d implies
that for all t > 0, kxt ÿ �xk < �. That is, V �x�6 � showing that V is continuous at
�x. Hence part 1 is proven.

Assume next that the stability is asymptotical. We have seen earlier that
function V always satis®es condition (a), and V is nonincreasing along any
state sequence of Eq. (1). Let xt 6� �x. Then kxt ÿ �xk > 0 and since the stability is
asymptotical, there is a t� > t such that kxt� ÿ �xk < 1

2
kxt ÿ �xk showing that V is

quasi-strictly decreasing. In order to complete the proof of the theorem, we will
show that there is a neighbourhood X of �x such that V is continuous on X.

The asymptotical stability of �x implies that there is a d1 > 0 such that if
kx0 ÿ �xk < d1, then kxt ÿ �xk ! 0 as t!1. De®ne X � fx kxj ÿ �xk < d1g \ S,
which is an open neighbourhood of �x, and let x� 6� �x be any point in X. For any
x 2 X, we de®ne an integer valued function N�x� � minftjkgt�x� ÿ �xk �
V �x�; t P 0g: N��� is well de®ned because V ��� is nonincreasing along any state
sequence. From the marginal stability of �x, there exists a d2; 0 < d2 <

1
2
kx� ÿ �xk,

such that kxÿ �xk < d2 implies kgt�x� ÿ �xk < 1
2
kx� ÿ �xk for t P 0. De®ne B1 �

fx kxj ÿ �xk < 1
2
kx� ÿ �xkg; B2 � fx kxj ÿ �xk < d2g; and B3 � fx kxj ÿ x�k < 1

2
kx�

ÿ�xkg. Since gt�x�� ! �x as t!1, there exists a t1 > 0, such that gt�x�� 2 B2

whenever t P t1. Let C be an open neighbourhood of gt1�x�� which is entirely
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included in B2. Let E � �gt1�ÿ1�C� \ B3, which is open. Obviously,
gt1�E� � C � B2. The de®nition of d2 and B2 implies that for all t P t1,
gt�E� � B1. Then gt�E� \ E � B1 \ B3 � / for t P t1. Hence for any x 2 E, we
have N�x� < t1, and thus

V �x� � maxfkxÿ �xk; kg1�x� ÿ �xk; kg2�x� ÿ �xk; . . . ; kgt1ÿ1�x� ÿ �xkg: �6�
Since the maximum of a given ®nite number of continuous functions is also
continuous, we conclude that V is continuous at x�. Therefore V is continuous
on X because x� is arbitrarily chosen in X. �

4. An alternative approach

It is well known, that if g is di�erentiable in a neighbourhood of an equi-
librium �x, and kJ��x�k < 1 with some norm, where J is the Jacobian of g, then �x
is asymptotically stable. This result is a simple consequence of the continuity of
J , the mean value theorem of derivatives, and the contraction principle (see, for
example, Ref. [6]). However, kJ��x�k < 1 is not necessary as it is shown by the
selection of the function

g�x1; x2� � x1eÿx2
1 � x2eÿx2

2

x2eÿx2
2

� �
: �7�

The details of this example are given in Ref. [7]. Further analysis of stability
conditions based on the Jacobian of the state transition function will be pre-
sented in a subsequent paper.
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