Engineering Assessment of a National High-Power Advanced Torus Experiment (NHTX)

C. L. Neumeyer, C. A. Gentile, S. Ramakrishnan, T. N. Stevenson, R. D. Woolley, I. J. Zatz Princeton University Plasma Physics Laboratory, USA

Abstract

- · High heat flux power handling of plasma exhaust is not adequately addressed in the currently planned world program
- · P/R, the ratio of exhaust power P to the radius R at which the divertor is located, is the crictical parameter
- · Fusion power plant designs typically require P/R in the range of 100 MW/m
- New long pulse machines (KSTAR, EAST, JT60SA will operate at P/R ~ 15 MW/m, while ITER will operate at P/R ~ 24 MW/m
- A compact device can be constructed at PPPL using existing infrastructure which could operate at P/R ~ 50
- The device could be designed with high heat flux testing as a primary objective and facilitate experiments on multiple advanced divertor concepts in a preparatory D-D environment, along with a limited DT phase at the end of the mission
- The mission for the National High-power advanced Torus Experiment (NHTX) is to study the integration of a high-power-flux
 plasma-boundary interface with high-confinement, high-beta, non-inductive plasma operation
- Parametric studies identified minimum R0 design point (R0=1m, A=1.8, Bt=2T, Ip=3.5MA) which can handle up to 50MW (P/R=50)
- · This assessment study has identified conceptual solutions to the various issues and provides a point of departure for continued development of the NHTX concept

Design Point & Cross Section

Flexibility in Shape & Divertor Geometry

2 D(m)

 Wide range of divertor Xpoint shapes obtainable Flux expansion from 3 ~ 30

Mission Elements & Design Features

Mission Element	Relevent Design Features			
High P/R	Low A, pulsed solenoid for initiation/ramp only, minimum R0			
	NBI on & off axis current drive with aiming at R0=1.0m +/-			
Non-inductive Ip sustainment	20cm			
	Water-cooled Cu magnets, NBI modifications for 1000s,			
Long (1000s) DD pulse capability, once per hour	300MW power from grid, 400kgal water tank			
Flexible x-point divertor configurations	Multiple inner PF coils			
Provision for multiple divertor & first wall test articles	Demountable TF, cylindrical outer VV with removable lid			
	Removable inner VV heated/cooled by helium, water-cooled			
	cylindrical outer VV, separated by vacuum gap and			
Provision for hot (400 ~ 600C) reactor-relevant first wall	thermally isolated mounts			
	Contamination region limited to removable inner VV,			
	shielding afforded by water jacket around outer VV plus			
DT capability (e.g. 1000 shots @ 2s, 100 shots at 20s)	TFTR Test Cell			
	Design simplicity, use of existing PPPL infrastructure:			
Low cost	buildings, electric power, AC/DC converters, NBI			

TF Current Pattern

TF Structural Support

· TF outer legs transfer vertical load between umbrella and floor beams

- Floor plug for TF leads, water lines, and gravity support of center stack
- X-braces handle out-of-plane loads on TF outer legs
- Entire top structure removable via crane
- Center stack handling via crane within Test Cell height constraint

TF Joint

· Vertical lap joint provides large area and optimized current density · In-plane magnetic forces close the joint

Out-of-plane forces minimized by alignment of J tf with Br oh

TF Bundle

Double Vacuum Vessel

Cylindrical outer VV water-cooled w/water jacket for shielding Hot (400~600C) helium heated/cooled inner VV

- Upper TF & top lid of outer VV removable by crane

· Inner VV and divertor test modules removable by crane access · Inner VV attachment features based on access from outside

Radial Build

Outer PF

Coil Cooling

 Aggressive cooling of TF turns ~ 25% water fraction · Strip wound outer PF coils with half-turn edge cooling · Conventional inner PF coils with extruded cooling hole · Edge cooling of TF outer legs

Power Supply

	Ramp			Flat Top			
	P[MW]	Q[MVAR]	S[MVA]	W[MJ]	P[MW]	Q[MVAR]	S[MVA]
	96	72	120		88	83	120
	308	71	316	59	0	0	0
	100	0	100	50	37	93	100
RF	0	0	0		166	96	191
	10	7.5	12		10	7.5	12
				Tot>	300		

- · New TF power supply, 240V/500kA OH & PF use existing power supplies
- TF & aux heating systems via grid
- · OH & PF systems via existing MG set
- 300MW from grid, approved by local utility
- · Reactive compensation to ~ unity p.f.