

DISC LAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

NUMERICAL DIGITAL COMPUTER METHOD FOR DETERMINING THE TRANSIENT RESPONSES OF NONLINEAR AUTOMATIC SYSTEMS
 BASED ON CALCULATION OF THE CONVOLUTION INTEGRAL

by

A. V. Vul'fson

Izvestiya Vysshikh Uchebnykh Zavedeniy, Elektromekhanika (News of Higher Educational Institutions, Electromechanics), No. 8, 1965, pp. 841-848

Translated from the Russian

NUMERICAL DIGITAL COMPUTER METHOD FOR DETERMINING THE TRANSIENT RESPONSES OF NONLINEAR AUTOMATIC SYSTEMS BASED ON CALCULATION OF THE CONVOLUTION INTEGRAL

by

A. V. Vul'fson

Discussed is a technique for the digital computer calculation of transient processes for systems with one or more nonlinear characteristics, using an extension of the convolution technique developed by Carson for systems with one nonlinearity. The method does not require formulation of a system of first-order differential equations with subsequent programing of the right-hand sides for each problem. The output data are transfer functions of the linear part of the system. The procedure for programing the solution of a specific problem is simplified, reducing essentially to the mere input of numerical data. The nonlinearities may be given tabularly, and they may be discontinuous.

Transient processes of automatic systems are usually determined by solving numerically differential equations with the aid of digital computers. However, the investigation of a system with a complex linear part containing differentiating links, and of a system with one or several nonlinearities, encounters difficulties in reducing differential equations to a normal Cauchy form, particularly when the nonlinearities have breaks or discontinuities. Similar difficulties are also encountered in determining the transient processes of electrical circuits containing one or several nonlinear components. In many cases it is possible to avoid these difficulties by using the numerical methods of solving integral equations.
J. Carson was probably the first to use a convolution integral in recording an equation for the transient process of a system with a branched linear part and one nonlinearity [1]. A numerical-graphic method of calculating the transient processes of similar systems, based on the calculation of the convolution integral, was developed by N. I. Sokolov [2].

A method is offered in this article of using a digital computer for determining the transient process of a system containing one or several nonlinear characteristics, which is based on the idea of Carson. This method requires no composing of systems of differential equations of the first order to be solved for the derivatives, and no programing for each problem of the right parts of the differential equations. The initial data consist of the transfer functions of the linear part of a system; it simplifies the programing procedure for solving a specific problem and reduces it mostly to an introduction of the
numerical material. The nonlinearities may be specified in tabular form and may have discontinuities (relay characteristics).

Numerical Determination of Transient Process of a System with One Nonlinearity

FIGURE 1. A SYSTEM WITH ARBITRARY STRUCTURE OF LINEAR PART AND WITH ONE NONLINEARITY

FIGURE 2. REDUCED STRUCTURAL PATTERN OF A SYSTEM WITH ONE NONLINEARITY

The system shown in Figure 1 consists of a linear part with an arbitrary structure and one inertialess link with a static characteristic $i=\psi(u)$ (it is shown separately on the drawing). The specified input action and the sought output response at the output of the system are, respectively, $f(t)$ and $x(t)$; $u(t)$ and $i(t)$ are, respectively, the input and output of the nonlinear link. If $f(t)$ has a Laplace representation $F(p)$ (it will be also assumed that this representation is a fractional-rational function), the following system of equations can be written to determine $x(t)[1]:$

$$
\begin{align*}
& X(p)=W_{x}(p) I(p)+W_{x f}(p) F(p), \tag{a}\\
& U(p)=W(p) I(p)+W_{f}(p) F(p), \tag{b}\\
& i(t)=\psi[u(t)] . \tag{c}
\end{align*}
$$

At $\mathrm{t}<0$, it is assumed that $\mathrm{x}=\mathrm{u}=\mathrm{i}=0$. A similar writing corresponds to a system reduced to the form shown in Figure 2. The terms $W_{x}(p)$, $W_{x f}(p), W(p)$, and $W_{f}(p)$ are determined by the structure of the linear part of the system with the aid of the known methods of transforming the structures of linear systems. Let us assume that $w_{x}(t)$ and $w(t)$ are the originals of the Laplace representations $W_{x}(p)$ and $W(p)$

$$
\begin{aligned}
& f_{x f}(t) \doteqdot W_{x f}(p) F(p) \\
& f_{f}(t) \doteqdot W_{f}(p) F(p)
\end{aligned}
$$

Using the theorem of convolution, Equations (1) are represented in the form of a system containing integral equations [1, 2]:

$$
\begin{align*}
& x(t)=\int_{0}^{t} w_{x}(t-\tau) i(\tau) d \tau+f_{x f}(t), \tag{a}\\
& u(t)=\int_{0}^{t} w(t-\tau) i(\tau) d \tau+f_{f}(t), \tag{b}\\
& i(t)=\psi[u(t)] .
\end{align*}
$$

(c)

The first stage of the numerical calculation of the transient process consists of determining the transient characteristics $w_{x}(t), f_{x f}(t), w(t)$, and $f_{f}(t)$. A numerical method is described [5] which can be used for composing a program which requires no changes for determining the transient characteristics from a fractional-rational Laplace representation of any order. This method is based on the use of interpolating expressions of Adams and provides a solution with an accuracy of the second order.

It will be assumed that this method is used to determine the transient characteristics $w_{x}(t), f_{x f}(t), w(t)$, and $f_{f}(t)$. The latticed functions obtained as a result of the numerical calculation will be designated by $w_{x}[n], f_{x f}[n]$, $w[n]$, and $f_{f}[n]$. Their quantization period is constant as is equal to the step Δt of the numerical determination of the transient characteristics. To find the numerical solution of the system (2), the integrals entering (2a) and (2b) are replaced with finite sums of the quadrature formulas which are obtained as a result of the piecewise-linear interpolation of each of the discrete sequences: $w_{x}[n], w[n]$, and $i[n]$.

$$
\begin{gather*}
x[n]=\left(\frac{w_{x}[n-1]}{6}+\frac{w_{x}[n]}{3}\right) \Delta t i[0] \\
+\sum_{m=1}^{n-1}\left(\frac{w_{x}[n-m-1]}{6}+\frac{w_{x}[n-m]}{1.5}+\frac{w_{x}[n-m+1]}{6}\right) \Delta t i[m] \\
+\left(\frac{w_{x}[0]}{3}+\frac{w_{x}[1]}{6}\right) \Delta t i[n]+f_{x f}[n], \\
 \tag{3}\\
\quad u[n]=\left(\frac{w[n-1]}{6}+\frac{w[n]}{3}\right) \Delta t i[0] \\
+\sum_{m=1}^{n-1}\left(\frac{w[n-m-1]}{6}+\frac{w[n-m]}{1.5}+\frac{w[n-m+1]}{6}\right) \Delta t i[m] \tag{b}\\
 \tag{c}\\
+\left(\frac{w[0]}{3}+\frac{w[1]}{6}\right) \Delta t i[n]+f_{f}[n], \\
i[n]=\psi(u[n]) .
\end{gather*}
$$

Using the first differences of (3a) for (3b), we reduce the system (3) to a form of:

$$
\left\{\begin{array}{l}
\Delta x[n]=R_{x}[n]+S_{x} \Delta i[n] \tag{a}\\
\Delta u[n]=R[n]+S \Delta i[n] \\
i[n]+\Delta i[n]=\psi(u[n]+\Delta u[n]) \\
n=0,1,2 \ldots
\end{array}\right.
$$

In which case,

$$
\begin{align*}
& S_{x}=\left(\frac{w_{x}[0]}{2}+\frac{\Delta w_{x}[0]}{6}\right) \Delta t \tag{5}\\
& S=\left(\frac{w[0]}{2}+\frac{\Delta w[0]}{6}\right) \Delta t: \tag{6}
\end{align*}
$$

$$
\begin{align*}
& R_{x}[0]=\left(w_{x}[0]+\frac{\Delta w_{x}[0]}{2}\right) \Delta \operatorname{ti}[0]+\Delta f_{x f}[0], \\
& R_{x}[n]=\left(\frac{\Delta w_{x}[n-1]}{6}+\frac{\Delta w_{x}[n]}{3}\right) \Delta \operatorname{ti}[0] \tag{7}\\
& +\sum_{\epsilon=1}^{n-1}\left(\frac{\Delta w_{x}[\epsilon-1]}{6}+\frac{\Delta w_{x}[\epsilon]}{1.5}+\frac{\Delta w_{x}[\epsilon+1]}{6}\right) \Delta \operatorname{ti}[n-\epsilon] \\
& +\left(w_{x}[0]+\frac{5}{6} \Delta w_{x}[0]+\frac{\Delta w_{x}[1]}{6}\right) \Delta \operatorname{ti}[n]+\Delta f_{x f}[n] . \\
& \mathrm{n}=1,2,3 \ldots \\
& R[0]=\left(w[0]+\frac{\Delta w[0]}{2}\right) \Delta \operatorname{ti}[0]+\Delta f_{f}[0], \\
& R[n]=\left(\frac{\Delta w[n-1]}{6}+\frac{\Delta w[n]}{3}\right) \Delta \operatorname{ti}[0] \\
& +\sum_{\epsilon=1}^{n-1}\left(\frac{\Delta \mathrm{w}[\epsilon-1]}{6}+\frac{\Delta \mathrm{w}[\epsilon]}{1.5}+\frac{\Delta \mathrm{w}[\epsilon+1]}{6}\right) \Delta \operatorname{ti}[\mathrm{n}-\epsilon] \tag{8}\\
& +\left(\mathrm{w}[0]+\frac{5}{6} \Delta \mathrm{w}[0]+\frac{\Delta \mathrm{w}[1]}{6}\right) \Delta \operatorname{ti}[\mathrm{n}]+\Delta \mathrm{f}_{\mathrm{f}}[\mathrm{n}] . \\
& \mathrm{n}=1,2,3 \ldots
\end{align*}
$$

Note that for $R_{x}[n]$ and $R[n]$ the special expressions for $n=0$ are obtained only when the signal at the input of the nonlinearity or at the output of the system changes jumpwise when a perturbation is applied at the input of the system. In such a case, it is first necessary to determine:

$$
\begin{align*}
& u[0]=f_{f}[0] \tag{a}\\
& i[0]=\psi(u[0]) \tag{b}\\
& x[0]=f_{x f}[0] \tag{9}
\end{align*}
$$

Therefore, the second stage of the numerical calculation of the transient process consists of determining for the nth step ($n=0,1, \ldots$) the value of $R_{x}[n]$ and $R[n]$ and solving the system of equations (4) for the unknown $\Delta x[n]$, $\Delta u[n], \Delta i[n]$, followed by the determination of:

$$
\begin{align*}
& x[n+1]=x[n]+\Delta x[n] \tag{a}\\
& u[n+1]=u[n]+\Delta u[n] \tag{b}\\
& i[n+1]=i[n]+\Delta i[n] \tag{c}
\end{align*}
$$

The latticed function with a quantization period of $\Delta t-x[n]$ is the one which represents the sought response at the output; if necessary, it can be interpolated, in which case it is expedient to use a parabolic interpolation when taking into account the order of accuracy of the expressions for the numerical determination of the transient characteristics and the determination of the convolution.

It was stated above that the action at the input $f(t)$ should have a fractional-rational Laplace representation.

In those cases where this is not observed (for example, when $f(t)$ is specified in tabular form), $f_{x f}[n]$ and $f_{f}[n]$ can be determined by using the expressions for numerical determination of the convolution integral, as in Eq. (3). In any other respects, the pattern of the solution remains unchanged.

Conditions under Which the Method Can Be Used

1. Each individual transfer function $W_{x}(p), W(p), W_{x f}(p)$, and $W_{f}(p)$ should correspond to a stable system. In other words, the linear system formed by opening a nonlinear link should be stable. An ultimate case of still being able to use the method is the presence of an integrating factor $1 / \mathrm{p}$ in the transfer functions. In such a case, a stable system should correspond to the transfer function remaining after separation of the integrating factor.
2. The transfer functions $w_{x}(t), w(t), f_{x f}(t)$, and $f_{f}(t)$ should be finite when $t=0$. Note that, as a rule, this requirement is satisfied by automatic control systems and, by no means always, by electrical circuits with passive nonlinear components.

The subsequent determination of the numerical solution is similar to the one used for a case with one nonlinearity. The only thing to be noted is that, instead of calculating four transient characteristics in case of one nonlinearity, it is necessary to calculate $(d+1)^{2}$ of such characteristics. A system of algebraic equations similar to (4), in case of d nonlinearities, will be written as:

$$
\begin{align*}
& \Delta x[n]=R_{x}[n]+S_{x 1} \Delta i_{1}[n]+S_{x 2} \Delta i_{2}[n]+\ldots+S_{x d} \Delta i_{d}[n], \\
& \Delta u_{1}[n]=R_{1}[n]+S_{11} \Delta i_{1}[n]+S_{12} \Delta i_{2}[n]+\ldots+S_{1 d} \Delta i_{d}[n], \\
& \Delta u_{2}[n]=R_{2}[n]+S_{21} \Delta i_{1}[n]+S_{22} \Delta i_{2}[n]+\ldots+S_{2 d} \Delta i_{d}[n], \\
& \text {. } \tag{12}\\
& \Delta u_{d}[n]=R_{d}[n]+S_{d 1} \Delta i_{1}[n]+S_{d 2} \Delta i_{2}[n]+\ldots+S_{d d} \Delta i_{d}[n], \\
& \mathrm{i}_{1}[\mathrm{n}]+\Delta \mathrm{i}_{1}[\mathrm{n}]=\psi_{1}\left(\mathrm{u}_{1}[\mathrm{n}]+\Delta \mathrm{u}_{1}[\mathrm{n}]\right), \\
& \mathrm{i}_{2}[\mathrm{n}]+\Delta \mathrm{i}_{2}[\mathrm{n}]=\psi_{2}\left(\mathrm{u}_{2}[\mathrm{n}]+\Delta \mathrm{u}_{2}[\mathrm{n}]\right), \\
& i_{d}[n]+\Delta i_{d}[n]=\psi_{d}\left(u_{d}[n]+\Delta u_{d}[n]\right) . \\
& \mathrm{n}=0,1,2 \ldots
\end{align*}
$$

Here, remaining unknown, will be:

$$
\Delta x[n], \Delta u_{1}[n], \Delta u_{2}[n], \ldots, \Delta u_{d}[n], \Delta i_{1}[n], \Delta i_{2}[n], \ldots, \Delta i_{d}[n]
$$

It is obvious that the time-and-labor spent for the solution increases proportionally to the square of the number of nonlinearities.

The Experiment

This method was used for programing the "Ural-2" digital computer. The program served to determine the transient process of a system containing one nonlinearity and a linear part having an arbitrary structure. The preparation for the solution consists of composing Equations (1) for the system. This

The most practically convenient method is the well-known method of the reduced step of calculation. Since the step remains constant during the solution of a problem, the problem should be solved twice and, during the second time, the step should be reduced to one-half, for example.

In estimating the accumulated error, it should be assumed that the error is decreasing proportionally to the square of the step. It is expedient to estimate the accuracy only when the closed system is stable.

Numerical Determination of Transient Processes of Systems Containing Several Nonlinear Links

FIGURE 3. A SYSTEM
WITH A LINEAR PART HAVING AN ARBITRARY STRUCTURE AND
CONTAININ u NON LINEAF :TIES

Under consideration is a system with d nonlinearities (their static characteristics are: $\mathrm{i}_{1}=\psi_{1}\left(\mathrm{u}_{1}\right)$, $\mathrm{i}_{2}=\psi_{2}\left(\mathrm{u}_{2}\right), \ldots \mathrm{i}_{\mathrm{d}}=\psi_{\mathrm{d}}\left(\mathrm{u}_{\mathrm{d}}\right)$ and whose linear part has an arbitrary structure (Figure 3). As it was done for a case with one nonlinearity (1), let us write for the transient process of the system of equations:

$$
\begin{aligned}
X(p)= & W_{x 1}(p) I_{1}(p)+W_{x 2}(p) I_{2}(p)+\ldots \\
& +W_{x d}(p) I_{d}(p)+W_{x f}(p) F(p), \\
U_{1}(p)= & W_{11}(p) I_{1}(p)+W_{12}(p) I_{2}(p)+\ldots \\
& +W_{1 d}(p) I_{d}(p)+W_{1 f}(p) F(p), \\
U_{2}(p)= & W_{21}(p) I_{1}(p)+W_{22}(p) I_{2}(p)+\ldots \\
& +W_{2 d}(p) I_{d}(p)+W_{2 f}(p) F(p),
\end{aligned}
$$

$$
\begin{align*}
& U_{d}(p)=W_{d 1}(p) I_{1}(p)+W_{d 2}(p) I_{2}(p)+\ldots+W_{d d}(p) I_{d}(p)+W_{d f}(p) F(p) \\
& i_{1}(t)=\psi_{1}\left[u_{1}(t)\right] \\
& i_{2}(t)=\psi_{2}\left[u_{2}(t)\right] \\
& \ldots \ldots \ldots \ldots \ldots \tag{11}\\
& i_{d}(t)=\psi_{d}\left[u_{d}(t)\right]
\end{align*}
$$

can be accomplished by using any of the methods of composing the transfer functions of linear systems (the method of directional graphs, for example). Since following the reduction to the form of system (1) the algorithm for the solution is the same for any problem, no additional programing is required and the preparation for the counting is reduced to an introduction of numerical information: the numerator and denominator coefficients of the fractionalrational representations of $W_{x}(p), W_{x f}(p) F(p), W(p), W_{f}(p) F(p)$, their order, their step, and number of steps. Additional programing of $i=\psi(u)$ is required only when a nonlinearity is specified analytically. When specified in tabular form, only the following numbers are introduced for the characteristics of the nonlinearities: the constant step u and the ordinates i. The program performs the sampling of the intermediate values by a parabolic interpolation. The system of algebraic equations (4) is solved by the method of iteration.

As a result of the performance by the program, we obtain:

$$
\mathrm{x}[\mathrm{n}], \mathrm{u}[\mathrm{n}], \mathrm{i}[\mathrm{n}], \mathrm{n}=0,1,2, \ldots
$$

The program was used to determine the transient processes of several automatic systems (including relay systems) and of electrical circuits. In cases of periodic steady-state conditions, the fluctuations (forced or natural) were obtained merely by continuing the counting of the transient process.

It was established that in case of linear parts having complex structures, only the composing of the system (1) becomes more time-consuming. The total time spent by the machine in solving the problem practically does not increase when the orders of the transfer functions in (1) increase; it is determined only by the number of steps.

Let us consider one of the solved examples. Shown in Figure 4 is a block-diagram of a primary astatic control of the absolute angle of a turbine unit connected with a high-power system, during the correction through the turbine [4]. The reduced transfer function of the regulator is:

$$
\mathrm{W}_{\mathrm{p}}(\mathrm{p})=\frac{0.00915 \mathrm{p}^{5}+0.2305 \mathrm{p}^{4}+2.4319 \mathrm{p}^{3}+14.21 \mathrm{p}^{2}+30.575 \mathrm{p}+15.03}{\left(0.00545 \mathrm{p}^{4}+0.1333 \mathrm{p}^{3}+1.581 \mathrm{p}^{2}+10.19 \mathrm{p}+22.6\right) \mathrm{p}}
$$

The transfer function of the turbine unit is

$$
\mathrm{W}_{\mathrm{o}}(\mathrm{p})=\frac{1}{0.019 \mathrm{p}^{2}+0.01 \mathrm{p}}
$$

LEGEND: $\quad \varphi=$ the deviation of the absolute angle $\mu=$ the increment of the power-exchange between the system and the unit

FIGURE 4. BLOCK-DIAGRAM OF A SYSTEM OF PRIMARY ASTATIC CONTROL OF ABSOLUTE ANGLE CF A TURBINE UNIT CONNECTED WITH A HIGH-POWER SYSTEM
$\mu=$ the increment in power of the working substance at the input of the turbine $\mu_{\mathrm{H}}=$ the load increment.

The system is nonlinear, because the relationship for the increment in powerexchange between the unit and the system and the deviation of the absolute angle is specified by the expression

$$
\mu_{o}=0.3 \sin \varphi
$$

Under investigation is the transient process in the system when a nominal load $\mu_{\mathrm{H}}=1$ is added.

FIGURE 5. CURVE OF THE TRANSIENT PROCESS $\varphi(\mathrm{t})$ WITH LOAD ADDED

The system corresponding to Equations (1) will be written for this case (in Laplace representation), as follows:

$$
\begin{align*}
\mu(p)= & -\frac{W_{o} W_{p}}{1+W_{o} W_{p}} \mu_{o}(p) \\
& +\frac{W_{o} W_{p}}{1+W_{o} W_{p}} \cdot \frac{1}{p} \tag{a}
\end{align*}
$$

$$
\varphi(\mathrm{p})=-\frac{\mathrm{W}_{\mathrm{o}}}{1+\mathrm{W}_{\mathrm{o}} \mathrm{~W}_{\mathrm{p}}} \mu_{\mathrm{o}}(\mathrm{p})
$$

$$
\begin{array}{r}
+\frac{W_{o}}{1+W_{o} W_{p}} \cdot \frac{1}{p}, \\
\mu_{o}(t)=0.3 \sin \varphi t \tag{c}
\end{array}
$$

The selected step of solution was $\Delta t=0.04$ seconds; the number of steps was 220 . The time spent in introducing the information into the machine, after it was reduced to the form of system (13), ranged from 25 to 30 minutes. The problem was solved by the machine in 16 minutes (including the control). The curve of the transient process $\varphi(t)$ is shown in Figure 5. The accuracy of the solution (in percent of maximum amplitude) was 0.65 percent.

PRECEDING PAGE BLANK NOT FILAED.

LITERATURE CITED

1. J. R. Carson, THEORY AND CALCULATION OF VARIABLE ELECTRICAL SYSTEMS, Physical Review, No. 2, 1921.
2. N. I. Sokolov, ANALYTICAL METHOD OF APPROXIMATE CALCULATIGN OF TRANSIENT PROCESSES OF CERTAIN NONLINEAR AUTOMATIC CONTROL SYSTEMS, Trudy MAI (Trans. of Moscow Aviation Institute), No. 12, 1959.
3. I. S. Berezin and N. P. Zhidkov, METODY VYCHISLENIY (Methods of Computing), 1-2, Fizmatgiz, 1960.
4. Ye. I. Yurevich, DEVELOPMENT OF AUTOMATIC CONTROL SYSTEM OF SUPERPOWER COMBINED SYSTEMS BY CONTROLLING THE ANGLE, Dissertation for the Scientific Degree of Doctor of Technical Sciences, Leningrad, 1963.
5. A. V. Vul'fson, NUMERICAL METHOD OF DETERMINING THE TRANSIENT PROCESSES OF LINEAR AUTOMATIC SYSTEMS AND THEIR CALCULATION BY DIGITAL COMPUTERS.

(U) DISTRIBUTION

No. of Copies

No. of Copies

EXTERNAL

Air University Library
ATIN: AUL3T
Maxwell Air Force Base, Alabama 36112
U. S. Army Electronics Proving Ground ATTN: Technical Library
Fort Huachuca, Arizona 85613
U. S. Naval Ordnance Test Station

ATIN: Technical Library, Code 753
China Lake, California 93555
U. S. Naval Ordnance Laboratory

ATTN: Library
Corona, California 91720
Lawrence Radiation Laboratory
ATTN: Technical Information Division P. O. Box 808

Livermore, California 94550
Sandia Corporation
ATIN: Technical Library
P. O. Box 969

Livermore, California 94551
U. S. Naval Postgraduate School

ATTN: Library
Monterey, California 93940
Electronic Warfare Laboratory, USAECOM
Post Office Box 205
Mountain View, California 94042
Jet Propulsion Laboratory
ATTN: Library (TDS)
4800 Oak Grove Drive
Pasadena, California 91103
U. S. Naval Missile Center

ATTN: Technical Library, Code N3022
Point Nugu, California 93041
U. S. Army Air Defense Command

ATTN: ADSX
Ent Air Force Base, Colorado 80912
Central Intelligence Agency
ATTN: OCR/DD-Standard Distribution
Washington, D. C. 20505
Harry Diamond Laboratories
ATTN: Library
Washington, D. C. 20438
Scientific \& Tech. Information Div., NASA 1
ATTN: ATS
Washington, D. C. 20546
U. S. Atomic Energy Commission

ATTN: Reports Library, Room G-017
Washington, D. C. 20545
U. S. Naval Research Laboratory

ATTN: Code 2027
Washington, D. C. 20390
Weapons Systems Evaluation Group
Washington, D. C. 20305
John F. Kennedy Space Center, NASA
ATIN: KSC Library, Documents Section Kennedy Space Center, Florida 32899

APGC (PGBPS-12)
Eglin Air Force Base, Florida 32542
U. S. Army CDC Infantry Agency

Fort Benning, Georgia 31905
Argonne National Laboratory
ATTN: Report Section
9700 South Cass Avenue
Argonne, Illinois 60440
U. S. Anmy Weapons Conmand

ATTN: AMSWE-RDR
Rock Island, Illinois 61201
Rock Island Arsenal
ATIN: SWERI-RDI
Rock Island, Illinois 61201
U. S. Army Cond. \& General Staff College

ATTN: Acquisitions, Library Division
Fort Leavenworth, Kansas 66027
Combined Arms Group, USACIC
ATTN: Op. Res., P and P Div.
Fort Leavenworth, Kansas 66027
U. S. Army CDC Armor Agency

Fort Knox, Kentucky 40121
Michoud Assembly Facility, NASA
ATTN: Library, I-MICH-OSD
P. O. Box 29300

New Orleans, Louisiana 70129
Aberdeen Proving Ground
ATTN: Technical Library, B1dg. 313
Aberdeen Proving Ground, Maryland 21005
NASA Sci. \& Tech. Information Facility
ATTN: Acquisitions Branch (S-AK/DL)
P. O. Box 33

College Park, Maryland 20740
U. S. Army Edgewood Arsenal

ATIN: Librarian, Tech. Info. Div. Edgewood Arsenal, Maryland 21010 1

No. of Copies

No. of Copies

1

Holloman Air Force Base, New Mexico 88330
Los Alamos Scientific Laboratory
ATIN: Report Library
P. O. Box 1663

Los Alamos, New Mexico 87544
White Sands Missile Range
ATTN: Technical Library
White Sands, New Mexico 88002
Rome Air Development Center (EMLAL-1)
ATTN: Documents Library
Griffiss Air Force Base, New York 13440

Brookhaven National Laboratory
Technical Information Division
ATIN: Classified Documents Group
Upton, Long Island, New York 11973
Watervliet Arsenal
ATTN: SWEWV-RD
Waterv1iet, New York 12189
U. S. Army Research Office (ARO-D)

ATIN: CRD-AA-IP
Box CM, Duke Station
Durham, North Carolina 27706
Lewis Research Center, NASA
ATTN: Library
21000 Brookpark Road
Cleveland, Ohio `44135
Systems Engineering Group (RTD)
ATIN: SEPIR
Wright-Patterson Air Force Base, Ohio 45433
U. S. Army Artillery \& Missile School

ATTN: Guided Missile Department
Fort Sill, Oklahoma 73503
U. S. Army CDC Artillery Agency

ATTN: Library
Fort Sill, Oklahoma 73504
U. S. Army War College

ATTN: Library
Carlisle Barracks, Pennsylvania 17013
U. S. Naval Air Development Center

ATTN: Technical Library
Johnsville, Warminster, Pennsylvania 18974
Frankford Arsenal
ATTN: C-2500-Library
Philadelphia, Pennsylvania 19137
Div. of Technical Information Ext., USAEC 1 P. O. Box 62

Oak Ridge, Tennessee 37830
Oak Ridge National Laboratory
ATTN: Central Files
P. O. Box X

Oak Ridge, Tennessee 37830
Air Defense Agency, USACDC
1.

ATTN: Library
Fort Bliss, Texas 79916
U. S. Army Air Defense School

1
ATTN: AKBAAS-DR-R
Fort Bliss, Texas 79906

U. S. Army CDC Nuclear Group	
Fort Bliss, Texas 79916	
Manned Spacecraft Center, NASA	1
ATIN: Technical Library, Code BM6	
Houston, Texas 77058	
Defense Documentation Center	20
Cameron Station	
Alexandria, Virginia 22314	
U. S. Army Research Office	
ATTN: STINFO Division	
3045 Columbia Pike	
Arlington, Virginia 22204	
U. S. Naval Weapons Laboratory	1
ATTN: Technical Library	
Dahlgren, Virginia 22448	
U. S. Army Engineer Res. \& Dev. Labs. ATTN: Scientific \& Technical Info Br	
Fort Belvoir, Virginia 22060	
Langley Research Center, NASA	
ATTN: Library, MS-185	
Hampton, Virginia 23365	
Research Analysis Corporation	1
ATTN: Library	
McLean, Virginia 22101	
U. S. Anmy Tank Automotive Center	1
ATIN: SMOTA-RTS. 1	
Warren, Michigan 48090	
Hughes Aircraft CompanyElectronic Properties Information Center	
Florence Ave. \& Teale St.	
Culver City, California 90230	
Atomics International, Div. of NAA	1
Liquid Metals Information Center	
P. O. Box 309	
Canoga Park, Califormia 91305	
Foreign Technology Division	1
ATTN: Library	
Wright-Patterson Air Force Base, Ohio 45400	
Clearinghouse for Federal Scientific and Technical Information	
U. S. Department of Commerce	
Springfield, Virginia 22151	
Foreign Science $\&$ Technology Center, USAMC 3 ATTN: Mr. Shapiro	
National Aeronautics \& Space Administration Code USS-T (Translation Section) Washington, D. C. 20546	

1

1

20
Cameron Station
Alexandria, Virginia 22314
U. S. Army Research Office

1
sion
Arlington, Virginia 22204
U. S. Naval Weapons Laboratory 1

ATTN: Technical Library
Dahlgren, Virginia 22448
U. S. Army Engineer Res. \& Dev. Labs.

ATTN: Scientific $\&$ Technical Info. Br.
Fort Belvoir, Virginia 22060
Langley Research Center, NASA
1
ATTN: Library, MS-185
Hampton, Virginia 23365
Research Analysis Corporation 1
ATTN: Library
McLean, Virginia 22101
U. S. Arny Tank Automotive Center

1
ATIN: SMOTA-KTS. 1

Hughes Aircraft Company
1

Florence Ave. \& Teale St.
Culver City, Califormia 90230
Atomics International, Div. of NAA
Liquid Metals Information Center
Canoga Park, Califormia 91305
Foreign Technology Division 1
ATTN: Library
Wright-Patterson Air Force Base, Ohio 45400
Clearinghouse for Federal Scientific and 1 Technical Information
U. S. Department of Commerce

Springfield, Virginia 22151
Foreign Science $\&$ Technology Center, USAMC 3
ATTN: Mr. Shapiro
Washington, D. C. 20315
Code USS-T (Translation Section)
Washington, D. C. 20546

INTERNAL

Headquarters

U. S. Army Missile Command

Redstone Arsenal, Alabama 35809
ATTN: AMSMI-D AMSMI-XE, Mr. Lowers 1 AMSMI-XS, Dr. Carter AMSMI-Y

```
AMSMI - R, Mr. McDaniel
```

AMSMI - RAP
AMSMI -RBLD 10
USACDC-LnO 1
AMSMI-RBT $\quad 8$
AMSMI-RB, Mr. Croxton 1
National Aeronautics $\&$ Space Administration Marshall Space Flight Center
Redstone Arsenal, Alabama 35809
ATTN: MS-T, Mr. Wiggins
(Security classification of titte, body of abstract and indexing annotation muat be entered when the overall raport is clasalfied)

1. ORIGINATING ACTIVITY (COIporate euthor)

Redstone Scientific Information Center
Research and Development Directorate
U. S. Army Missile Command

2a. REPORT SECURITY CLASSIFICATION

Redstone Arsenal, Alabama 35809 Unclassified
2b. GROUP
3. REPOAT TITLE

NUMERICAL DIGITAL COMPUTER METHOD FOR DETERMINING THE TRANSIENT RESPONSES OF NONLINEAR AUTOMATIC SYSTEMS BASED ON CALCULATION OF THE CONVOLUTION INTEGRAL
Izvestiya Vysshikh Uchebnykh Zavedeniy, Elektromekhanika, No. 8, 841-848 (1965)
4. Descriptive notes (Type of report and incluaive dates)

Translated from the Russian
5. AUTHOA(S) (Firet name, middle inltial, leat namo)
A. V. Vul'fson

6. REPORT DATE	70. TOTAL NO. Of PAGES	7b. NO. OF REFS
9 August 1967	19	5
©. Contract or grant no.	Pa. ORIGINATOR'S REPORT NUMEER(S)	
N/A		
b. PROJECT No.	RSIC-697	
c. N / A		
c.	9b. OTHER REPORT NO(S) (AnY other numbere that may be achitnod thie roport)	
d.	AD	

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited.
11. SUPPLEMENTARY NOTES
NOne
13. ABSTRACT
Discussed is a technique for the digital computer calculation of transient processes
Sas No. 1
for systems with one or more nonlinear characteristics, using an extension of the convolution
technique developed by Carson for systems with one nonlinearity. The method does not require
formulation of a system of first-order differential equations with subsequent programing of
the right-hand sides for each problem. The output data are transfer functions of the linear
part of the system. The procedure for programing the solution of a specific problem is
simplified, reducing essentially to the mere input of numerical data. The nonlinearities may
be given tabularly, and they may be discontinuous.

KEY words		LINKA		Link		Link C	
		nole	${ }^{\text {w }}$	nole	${ }_{W}{ }^{T}$	ROLE	$w{ }^{T}$
Transient process Theorem of convolution "Ural" digital computer Fractional-rational Laplace representation							

