TOPS: ISIC Review May 13–14, 2003 Washington, D.C.

**TOPS** – **Selected Optimization Developments** 

# Steve Benson, Lois Curfman McInnes, Jorge J. Moré, Todd Munson, and Jason Sarich

Mathematics and Computer Science Division Argonne National Laboratory





$$\min\left\{f(x): x_l \le x \le x_u, \ c_l \le c(x) \le c_u\right\}$$

♦ The constraints are defined by  $c : \mathbb{R}^n \mapsto \mathbb{R}^m$ ♦ The bounds on the variables  $x \in \mathbb{R}^n$  are  $x_l \le x \le x_u$ 



Note. Image of  $(UO_2)_3(CO_3)_6$  courtesy of Wibe deJong (PNNL)



### Outline

- ♦ TAO Recent Developments
- ♦ GA and TaoSolve Components
- ♦ Performance for Grid Sequencing Stalking optimality
- ♦ Future Developments
  - Optimization of simulations with minimal quadratic models
  - Constrained optimization with augmented Lagrangians
  - Transition states



- $\diamond$  Version 1.5 (January 2003)
- ♦ TAO integration: MPQC (Sandia) and NWChem (PNNL)
- ♦ GA and TaoSolver Components
- ♦ Grid sequencing via Distributed Arrays (PETSc)
- ♦ Gradients of grid functions via ADIC
- ♦ Development of BLMVM
- $\diamond$  Source code, documentation, tutorials, example problems,  $\ldots$

Powered by PETSc and ADIC!



- NWChem (PNNL) and MPQC (SNL) electronic structure components for energy, gradient, and Hessian computations
- ◇ TAO (ANL) optimization components
- $\diamond\,$  GA (PNNL) and PETSc (ANL) linear algebra components





$$\min\left\{ \int_{\mathcal{D}} \left\{ \frac{1}{2} w_q(x) \| \nabla v(x) \|^2 - w_l(x) v(x) \right\} dx : v \ge 0 \right\}$$
$$w_q(\xi_1, \xi_2) = (1 + \epsilon \cos \xi_1)^3$$
$$w_l(\xi_1, \xi_2) = \epsilon \sin \xi_1$$
$$\mathcal{D} = (0, 2\pi) \times (0, 2b)$$

Number of active constraints depends on the choice of  $\epsilon$  in (0, 1). Nearly degenerate problem. Solution  $v \notin C^2$ .



$$\min\left\{\int_{\mathcal{D}}\sqrt{1+\|\nabla v(x)\|^2}\,dx:v\geq v_L\right\}$$



Number of active constraints depends on the height of the obstacle. The solution  $v \notin C^1$ . Almost all multipliers are zero.



#### Mesh-Sequencing Performance: Journal Bearing Problem

|                    | Number of processors |      |                |      |                |     |  |  |
|--------------------|----------------------|------|----------------|------|----------------|-----|--|--|
|                    | 16                   |      | 32             |      | 64             |     |  |  |
| Grid               | $\blacksquare$       |      | $\blacksquare$ |      | $\blacksquare$ |     |  |  |
| $769 \times 769$   | 17                   | 283  | 10             | 142  | 7              | 86  |  |  |
| $1537 \times 1537$ | 73                   | 3751 | 40             | 1861 | 22             | 938 |  |  |

|              | Grid               | 16 | 32 | 64 |
|--------------|--------------------|----|----|----|
| Improvements | $769 \times 769$   | 16 | 14 | 12 |
|              | $1537 \times 1537$ | 51 | 46 | 42 |



## Mesh-Sequencing Performance: Obstacle Problem

|                    | Number of processors |   |           |   |           |   |  |
|--------------------|----------------------|---|-----------|---|-----------|---|--|
|                    | 16                   |   | 32        |   | 64        |   |  |
| Grid               | Ħ                    |   | $\square$ |   | $\square$ |   |  |
| $769 \times 769$   | 69                   | † | 37        | † | 24        | t |  |
| $1537 \times 1537$ | 444                  | † | 235       | † | 121       | t |  |

† No convergence after 500 iterations!



Given a continuously differentiable function  $f : \mathbb{R}^n \to \mathbb{R}$  and two points  $x_a$  and  $x_b$ , determine a critical point  $x^*$  on a minimal energy path between  $x_a$  and  $x_b$ .

♦ A fundamental problem in biology, chemistry, and mathematics

$$\gamma = \inf_{p \in \Gamma} \{ \max \{ f[p(t)] : t \in [0, 1] \} \}$$
$$\Gamma = \{ p \in C[0, 1] : p(0) = x_a, \ p(1) = x_b \}$$





Compute breakpoints  $x_k \in \mathbb{R}^n$  for a piecewise linear path such that  $\min \{\max \{f(x_1), \dots, f(x_m)\} : ||x_{k+1} - x_k|| \le h_k, \ 0 \le k \le m\}.$ 







#### **Transitions States**



Henon ground-state (left) and structure of  $SiO_2$  pore (right) Note.  $SiO_2$  image courtesy of L. Curtiss and P. Zapol (ANL)

