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Moment-of-fluid interface reconstruction

Vadim Dyadechko*T Mikhail Shashkov'

Abstract

We present a new volume-conservative interface reconstruction method, of-
fering several major advantages over the traditional Volume-of-Fluid (VoF) meth-
ods. The key feature of the new Moment-of-Fluid (MoF) method is utilization
of the cell-wise material centroids for the interface reconstruction. The location
of the linear interface in each mixed cell is chosen to preserve the volumes and
provide the best possible approximation to the material centroids. The MoF con-
struction of the linear interface in a mixed cell depends only on the moment data
from within the cell and not on the data from its neighbors. Therefore, the MoF
method is able to resolve interface details as small as the cell itself, which are 2-3
times smaller than conventional VoF methods can resolve. Also, the MoF inter-
face reconstruction can be implemented as a cell-by-cell black-box routine, which
is a great technological advantage over the VOF, especially in 3D. The technique
proposed is 2nd-order accurate and is shown to be more accurate than similar
VoF methods. Since the centroid of any Lagrangian volume of fluid moves very
much like a Lagrangian particle, the cell-wise material centroids can be updated
in hydro simulations with sufficient accuracy.

1 Introduction

Accurate tracking of material interfaces is an important aspect of multi-material
hydrodynamic simulations. Methods that move the mesh with the flow (La-
grangian) automatically maintain interfaces. Unfortunately, the moving mesh
may become prohibitively distorted or tangled. Methods that keep mesh fixed
and let the material flow through it (Eulerian), on the other hand, can easily
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handle large deformations. However, the Eulerian methods require an explicit
procedure to track material interfaces.

A variety of discrete interface models has been developed for multi-material (multi-
phase) Eulerian simulations.

e In Jevel set methods [34, 33, 24] the interface is represented implicitly by the
zero level set of the discrete signed distance function, which is a constitutive
part of the system of governing equations.

e Front tracking methods [37, 11, 36] use a supplementary Lagrangian surface
grid on the interface between different phases.

e [nterface reconstruction methods calculate the interface location at each time
step from the solution data; the most popular among them are volume-of-
fluid (VoF) methods [13, 39, 29, 6], which construct the interface from the
volume fractions of different phases in each cell.

Each approach has its virtues and drawbacks. What really distinguishes VoF
methods from the other techniques is simple treatment of the interface topology
changes and rigorous enforcement of mass conservation of each fluid component.
For a wide range of applications, the discrete mass conservation is a decisive
argument for VoF employment.

Originally VoF was developed for Eulerian simulation of incompressible fluid
flows with free boundaries[13]. Excellent reviews of the VoF methods and, in
particular, interface reconstruction techniques can be found in the following pa-
pers [29, 6, 26, 31, 30]. Here we only present some observations which are im-
portant for understanding of our paper and positioning of our new method with
respect to other interface reconstruction methods.

On each time step of a hydro simulation, a typical VoF method:

e reconstructs the material interfaces in the mixed cells,

e updates the material content of the cells, usually by computing fluxes through
the cell boundaries.

The reconstruction and the update steps are tightly coupled inside the hydrocode:
the update step provides the input data for the interface reconstruction algo-
rithm, and the interface reconstruction helps the update routine to calculate the
material fluxes with higher accuracy.

To estimate the accuracy and understand the limitations of a stand-alone in-
terface reconstruction algorithm, we would like to take it out of the hydrocode
context and try it in the static reconstruction test. The test is quite simple: given
a true material layout and a computational grid, one has to find the cell-wise
material volumes and use this data to construct the interfaces with a VoF algo-



rithm. By comparing the reconstructed material layout to the true one, one can
understand how accurate the VoF interface reconstruction algorithm is.

All VoF interface reconstruction algorithms are formulated in terms of two
materials; in this paper we refer to them as materials A and B. The volume frac-
tions of two materials sharing a mixed cell are not independent but complement
each other to 1. Essentially only the volume fractions of one material (A in our
case), explicitly participate in the calculations. The most common interface ap-
proximation consists of a single linear interface in each mixed cell. This class of
interface reconstructions is commonly called Piecewise-Linear Interface Calcula-
tion (PLIC). The primary objective of the reconstruction algorithm is evaluation
of the interface normal; once the direction of the normal is known, the location of
the interface is uniquely identified by the volume of the cell fraction behind the
interface.

There is a number of ways to evaluate the direction of the normal:

e by estimating the gradient of the discrete volume fraction function [38, 39,
31Y;

¢ by finding a linear interface, which, being extended outside the mixed cell,
gives the best possible approximation to the given volume fractions in the
surrounding cells [27, 26];

¢ by finding a common linear interface for a pair of adjacent mixed cells that
satisfies the given volume fractions [8, 18, 35, 19].

Algorithms that calculate the normal as the gradient of the discrete volume
fraction function (Youngs’ [39], Green-Gauss [3], and Least Square Gradient (LSG) [3]
algorithms) allow direct implementation but are only 1st-order accurate. To get
a 2nd-order accurate approximation on an unstructured grid, one has to use an
iterative technique, like the LVIRA [27, 26] or Mosso-Swartz [35, 19] algorithms.

Neither of the VoF interface reconstruction algorithms can evaluate the di-
rection of the normal without the material volume data from the surrounding
cells. As a result, the reconstructed interfaces in adjacent mixed cells are never
quite independent. This inherent feature of VoF methods prohibits the resulting
approximation from resolving interface details smaller than a characteristic size
of the cell cluster involved in the evaluation of the normal. This statement is il-
lustrated by Figure 1, which demonstrates how the quality of the VoF interface
reconstruction varies with the scale of interface details.

D Monograph [3] is not about the interface reconstruction. The Green-Gauss and Least Square
Gradient algorithms presented there specify the means to calculate the gradient of a cell-centered
discrete function on unstructured meshes.
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Figure 1. The true material interfaces (on the left) and their reconstructions obtained
with various VoF-PLIC methods. This example demonstrates that the VoF
interface reconstruction methods tend to oversmooth the interface, which ef-
fectively prohibits them from resolving the interface details smaller than the
double mesh-step size.

In order to improve the resolution of VoF methods, we propose to use for the
interface reconstruction not only the cell-wise material volumes, but also the cell-
wise material centroids. The amount of information carried by the volume and
centroid or, equivalently, by the first two moments of the cell fraction is sufficient
to define a linear interface bounding this cell fraction even without data from the
neighboring cells. Subject to matching the prescribed volume exactly, we mini-
mize the discrepancy between the centroid of the material behind the interface
and the prescribed centroid. This approach, called the Moment-of-Fluid (MoF) in-
terface reconstruction, results in a unique, stable, volume-conservative, interface
approximation. The technique is 2nd-order accurate and reconstructs the linear
interfaces exactly. This is not the same as the exact reconstruction of linear in-
terfaces by the VoF algorithms; to capture the true interface exactly, a 2nd-order
accurate VoF method requires the interface to be linear all through the cluster of 3
cells, while the MoF algorithm requires the interface to be linear only inside one
cell. In particular, the MoF algorithm can reconstruct the “zigzag” layout (Fig-
ure 1) exactly.

The MoF construction of the linear interface in a mixed cell depends only on
the moment data from within the cell and not on the data from its neighbors.
Therefore, the MoF method is able to resolve interface details as small as the cell
itself, which are 2-3 times smaller than conventional VoF methods can resolve. Due
to its autonomous nature, the MoF interface reconstruction can be implemented
as a cell-by-cell black-box routine, which is a great technological advantage over
the VOF, especially in 3D.

Centroid involvement in interface reconstruction has a clear motivation: the
volume fraction indicates only the amount of material in the cell, while the cen-




troid specifies the average location of the material. The centroid of any volume of
incompressible fluid moves very much like a Lagrangian particle, which makes
it feasible to update in hydro applications.

The idea to utilize the centroid data in interface reconstruction is not new.
J. Saltzman and E. Puckett [28] successfully used the center of mass algorithm for
interface reconstruction; recently we have learned that similar approach is used
by D. Bailey e.a. [2]. S. Mosso and S. Clancy [20] used centroid information to
derive the material ordering for multi-component interface reconstruction. The
similar technique was independently presented by D. Benson [5]. The major
difference of the Benson’s technique from the others is that he treats the mate-
rial centroids as independent variables, rather than derives their approximations
from the volume fractions.

The rest of the paper is organized as follows. In Section 2 we give a formal
statement of the Moment-of-Fluid interface reconstruction problem and describe
its numerical solution in 2D. After that, in Section 4, we compare the MoF and
VoF algorithms by means of static test; one can find there numerous visual exam-
ples and the results of the convergence study. In section 5 we present a feasible
way to update the moment data in Eulerian simulation and show how the MoF
and VoF algorithms behave in dynamic tests. Section 6 discusses the interface
reconstruction aspects of the Arbitrary Lagrangian-Eulerian (ALE) methods.

2 Moment-of-fluid interface reconstruction

Essential definitions. Consider a polygonal mixed cell @ C R? filled with two
materials: A and B. Let w C © be the part of the cell occupied by material A. The
first two moments of w are

Mpy(w) E/dw:|w| € R

w

and
M, (w) E/de € R?%

here | - | denotes volume (area in 2D).
An equivalent description of the first two moments of such a subcell is given
by the combination of the volume fraction

Hw) = 5 0<p@) <)



and the centroid .
Xe(w) = — Mi(w) = —/xdw

w

(since |w| is strictly positive, the centroid x.(w) is always well-defined).
The part of the subcell boundary dw different from the boundary of the cell
0 represents the interface I'(w) between materials A and B:

INw) = 0w \ 9%2.

A subcell with a flat interface is called linear. To emphasize the fact that the
subcell is linear, we equip its symbol with “I” subscript: w;. The outward unit
normal on the interface of linear subcell w; is denoted by n(w;). The family of all
linear subcells is referred to as G;.

2.1 Problem formulation

Suppose w* C Q is a true subcell occupied by material A. Given the first two
moments of w* or, equivalently, the volume fraction p* = p(w*) and the centroid
x* = X.(w"), one is required to find a linear subcell w; that provides a good
approximation to the true subcell w*.

It would be natural to try to find a linear subcell w; that matches the given
moments exactly. Unfortunately, such a problem almost certainly have no solu-
tion. Each linear subcell w; is uniquely defined by two independent parameters:
the polar angle of the interface outward normal n(w;) and the subcell height mea-
sured in the normal direction; i.e. the solution space &, is two-dimensional. And
since the space of the input parameters (given volume fraction and two compo-
nents of the given centroid) is three-dimensional, the problem is overdetermined.

Therefore, one has to use a different strategy. Since the volume conservation
is of highest priority to us, our strategy will be the following:

Problem 1 (Moment-of-fluid (MoF) interface reconstruction). Among all the linear
subcells of the given volume fraction

S ={w eS| pw)=p"}
find the one, whose centroid is closest to the given centroid:

wi =arg min_||x.(w) - x|, (1)
l

where || - || is Euclidean norm.



Properties of the problem. One special case of this problem is of particular in-
terest. If the true subcell w* is linear itself, then it is automatically a member of
&; family, and for any solution w; of the MoF problem

0 < [|xc(wy) —x*[| < [[%c(w") =x*[| = 0,
i.e. the solution centroid matches the true centroid:
xc(w]) = x* = x. ().

There is one trivial solution of the MoF problem in this case w; = w*, and since
each linear subcell is uniquely identified by its centroid [10], such a solution is unique.
Therefore, the MoF reconstruction of linear subcell is always exact, which also sug-
gests that the MoF reconstruction of any twice-differentiable true interface is 2nd-order
accurate.

A detailed analysis presented in [10] shows that the MoF interface reconstruction
problem is well-posed, i.e. the solution always exists, is unique and stable (with absolute
certainty).

2.2 Implementation of the MoF reconstruction in 2D

If the mixed cell 2 is a triangle or a convex quad, the MoF interface reconstruction
problem can be solved analytically. But our objective is to design a method that
works for an arbitrary polygonal mixed cell; that is why we solve (1) numerically.

In order to make the numerical optimization feasible, one has to introduce
a suitable parameterization of the solution space &; and provide efficient algo-
rithms for calculating the objective function and its derivative(s).

Parameterization. Each linear subcell of the given volume is uniquely identified
by the polar angle ¢ of the interface outward normal n(w;) (Figure 2); we use
notation w;(¢) for the member of &}, whose interface outward normal is given

by ¢, i.e.
n(wi(#)) = ny = (cos ¢,sin g),

and notation x;(¢) for the respective centroid:
Xe(9) = xe(wi(¢))-
The value of the objective function

£(8) = |Ixi(e) — x| 2)

for an arbitrary ¢ can be calculated in three steps:
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Figure 2. Parameterization of the search space &;. © is a hexagonal mixed cell. Each
linear subcell w; of the given volume fraction p* is uniquely identified by the
polar angle ¢ of the interface normal n.

1) explicitly find w;(¢),
2) calculate the centroid of w;(¢) using (19),
3) find the squared distance between the calculated and given centroids.

The last two steps are straightforward, but the first one requires a detailed expla-
nation.

Since the direction of the interface normal is fixed (n(w;(¢)) = ny), all we
have to know to identify w;(¢) is its height in the normal direction. Let us agree
to call the direction defined by vector ny vertical. This convention allows us to
use common terms, like height and altitude, to specify the size and position of
geometrical objects along the direction ny. The direction perpendicular to the
vertical we will call horizontal.

Consider a horizontal line l moving upwards from the bottom to the top of the
cell. An instant position of the line is described by its altitude £ over the cell bot-
tom. The intersection I'(§) between the cell ©2 and the line /() is the cross section
of the cell at level £. As the line moves, the end points of the cross section I'(§)
slide along the line segments (the cell edges). Therefore, the total length of the
cell cross section |I'(€)| is a piecewise-linear function of &; the linear coefficients
may change only when the line [(£) crosses a cell vertex.

The volume fraction (&) of the region swept by the moving line (the linear



subcell bounded from above by level §) is given by the integral

3
1
W) = o 0/ T(6)] de.

It is a continuous monotone piecewise-quadratic function of &; the quadratic co-
efficients may change only when the line crosses a cell vertex (Figure 3). Or one
can say that the second derivative of y(§) is a piecewise-constant function with
potential discontinuity points given by the vertex altitudes.

To find the height £* of w;(¢), one has to solve equation
(&) =" ©)

The continuity and monotonicity of ;(¢) guarantee that the inverse is well-defined,
and the piecewise-quadratic property of p(¢) yields an efficient solution strat-
egy for (3) that requires only O(n) operations whenever the cell €2 is convex and
O(n?) operations otherwise (here n is the number of the cell vertices). We call
this strategy the Flood Algorithm, since it models the process of flooding a vessel,
represented by the cell, with fluid.

The Flood Algorithm specifies three steps to identify the “fluid level” £* in the
“vessel” 2, at which the volume of “fluid” matches p*|©] :

Algorithm 1 (Flood Algorithm).

1) sort the cell vertices by their altitudes to have all the discontinuity points of " (§)
arranged in a non-descending order;

2) find the interval of quadraticity (linearity) of (&) that includes £*;

3) calculate £ by means of polynomial interpolation.
1) Sorting the cell vertices. Let x1, X, ..., X, be the cell vertices enumerated in
counter-clockwise order, and let &1,&2,...,&, be their respective altitudes over

the cell bottom. One can find a permutation of the vertex indices (i1, iz, ..., y)
that puts the vertex altitudes in a non-descending order

OE§i1<§i2<"'<fin (4)

in O(n) operations whenever the cells is convex and in O(n logn) operations oth-
erwise.

2) Bracketing the solution. Since y(¢) is monotonically increasing, the solution
of (3) belongs to the interval [¢;,.,&,.,,], 1< k*<n-1 that satisfies condition

i S RS Py 1, 5)
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Figure 3. A convex and a non-convex polygonal cell (on the left) and the graphs of the
volume fraction u(€) of their respective linear subcells bounded from above
by level £ (on the right). The volume fraction u(§) is continuous monotone
piecewise-quadratic function of the linear subcell height &; the jumps of the
quadratic coefficients are given by the vertex altitudes. Function x(€) is also
smooth, unless the cell has an entering angle with a horizontal edge (see the
non-convex example).

where p;, = p(&;,) is the volume fraction of the linear subcell bounded from
above by level &;,, k = 1,n. Thus, k* can be found by successive evaluation of all
pie, k=1,2,....

Since () is at most quadratic on each interval [¢;,,&;, ,,], & = 1,n-1, the
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area of 2, enclosed between levels &;, and &;, . ,, can be calculated by the trapezoid
rule:

’Q’(:U’k+1_uk):%(€ik+1 —&,) (IPe+1] +[Tw]); (6)

here || is the area of the cell, and |I';| is the total length of the cell cross section
I'y =T(&,) atlevel &, , k=1,n.

We use equation (6) to evaluate all p, kK = 2,3,... and find k% We start the
search at the “bottom”

k*—1, p=0, |Ty|=0,
and go “upwards”
E* —k*+1,
Pk = k-1 + ﬁ (i = Cipo) (el +1T01]), k=2,3,...,
until the given volume fraction is bracketed, i.e. condition (5) is satisfied. To
calculate each next 1, we have to know the cross-section length at level & first,

thus we must identify the end points of the cross section I'y. This takes O(1)
operations whenever the cell is convex and O(n) operations otherwise.

3) Finding the solution. Once the given volume fraction is bracketed (5), the
solution of (3) can be found by means of polynomial interpolation:

e whenever [Ty« 1| = [Tg~
and

, the volume fraction () is linear on [&;,., &, ., |,

*

= g
£ =& + et — i (Giprr s — igs )5

e otherwise the cross-section length |T'(€)] is linear, the volume fraction /(&)
is quadratic, and

T*] = ||

€ = Gy + kL
Sie T et = T

(gik*” - ‘Sik* )7

where

M — g
IT*| = \/|Fk:*|2 + P (IPkes1]% — |Tix|?)
*+ - *

is the length of the cell cross-section at the level £*.

Concluding notes on the Flood Algorithm. If the given volume fraction p* ex-
ceeds 1/2, the subcell w;(¢) can be found faster and with higher accuracy;, if one
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will “flood” the mixed cell with material B instead, i.e. will set the vertical direc-
tion to —ny and “pour” fluid B in the amount of (1 — p*)||.

The derivative of the objective function is given by

F1(8) = ((a(e) —=x7) - (xu(¢) —=x7)) = 2 ((xu($) — x7) - x(9)) ,

where (- - -) is 2D dot product.
To complete the formula above, one needs the expression for the first deriva-
tive of x;(¢); the latter can be found by evaluating the ratio

M (wi(¢ +2a¢)) — My (wi(9))

|©2fag

= x(¢) + o(a9)

for small A¢:

e whenever the interface I'(¢) = I'(w;(¢)) consists of a single segment (which
is always the case for a convex cell),

L),

Xi(0) = ~15 o)

)

where t, = (—sin ¢, cos ¢) is counter-clockwise unit tangent on I'(¢).

e for a non-convex cell the interface I'(¢) may consist of several separate seg-
ments of the interface line (see Figure 3, non-convex cell); in this case

My (T(6))

t, (8)

where M (T'(¢)) is the second central moment of interface I'(¢
:/||x—xc(r)||2dr, xe(r) = 7 |/xdF
r

Numerical optimization of objective function (2) can be performed with any
smooth optimization routine available. For completeness we included the de-
scription of the optimization routine we used in Appendix C.

Initial guess. A safe initial guess ¢ for the optimization routine is provided
by the polar angle of vector x.(2) — x*. There is a simple explanation of such
a choice: the centroid of a linear subcell is always located behind the interface,
therefore, the outward interface normal should point out of the centroid towards
the cell center. A typical configuration shown on Figure 4 demonstrates, that such
an initial guess is a good approximation to the MoF objective function minimum.

12
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Figure 4. On the left one can see a unit square mixed cell €2, and a sample subcell w*
occupied by material A. The vector between the centroid of the true subcell
x* and the centroid of the cell x.(52) defines the initial guess ¢y for the MoF
solver. The respective MoF objective function graph on the right shows, that
such an initial guess is a good approximation to the function minimum.

3 The VoF-PLIC algorithms challenged.

To compare the MoF algorithm to the existing interface reconstruction methods,
we picked three VoF-PLIC algorithms for general polygonal grids:

o the Least Square Gradient? algorithm with reciprocal Quadratic distance
weights [3], which we refer to as LSGQ,

o the Least square Volume(-of-fluid) Interface Reconstruction Algorithm (LVIRA) [27,
26],

e and the Swartz algorithm [35, 19].

The choice of the last two algorithms is pretty obvious: they are the only 2nd-
order accurate VoF-PLIC methods that are suitable for unstructured grids.

Among the 1st-order accurate VoF-PLIC methods we picked the LSGQ algo-
rithm. Frankly, the only real alternative to LSGQ on unstructured grids is the
Green-Gauss algorithm [3]. We picked LSGQ over the Green-Gauss algorithm,
because it is less demanding with respect to the mesh data structure: unlike the

2 See the notes on the name of this algorithm in Appendix D.
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Green-Gauss algorithm, LSGQ does not require the adjacent cells to be ordered
(counter-)clockwisely. Both algorithms belong to the class of “gradient” meth-
ods, and even though they use different approaches to estimate the gradient of
the volume fraction function, the results produced on a uniform rectangular grid
are equivalent3) ; moreover, the result is exactly the same as with the Youngs’ al-
gorithm [39]. Therefore, any example of the LSGQ reconstruction on a uniform
rectangular grid, is also that of the Green-Gauss (Youngs’).

Since the behavior of the interface reconstruction algorithms varies widely
with the implementation details, we highlighted all essential details about our
implementation of these algorithms in Appendix D.

4 Static tests

The accuracy of any interface reconstruction technique can be evaluated through
the static reconstruction test: given a true shape of material A and a computational
grid, one has to

1) compute the cell-wise material moments (for this, one has to explicitly find the
intersection of each cell with the true material shape first; see Appendices B and A
on how to find the intersection and calculate its moments);

2) based on these data, construct the interfaces in the mixed cells;

3) and then compare the reconstructed shape of material A to the true one.

4.1 Visual comparison of the PLIC reconstructions.

We created six different material layouts to test the PLIC algorithms against:

o the “constellation” (Figure 5, top left),

the “A” glyph (Figure 5, top center),

the “cross” (Figure 5, top right),

the “slice of pie” (Figure 6, top left),
e the “compass rose” (Figure 6, top center),
e and the “circle” (Figure 6, top right).

Beneath each true material layout presented on Figures 5 and 6 we placed the
reconstructions obtained with different PLIC methods. Even a brief look at the
results reveals the superior quality of the MoF reconstructions over the VoF ones.

% Provided that neither of the boundary cells is mixed.
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15



circle

compass rose

slice of pie

U01IINAISU0IIL

Jmofiv] (pria3viu UO01JONAISU0IIL

U01IINAISU0IIL UO01IONAISUO0II4

Figure 6. The true material layout (top row) and their reconstructions obtained with

different PLIC methods. The MoF reconstructions (bottom row) are the most

accurate and sharp.

16



“Constellation”. The “constellation” shape consists of several “stars”; their size
and the distance between them is comparable to the size of the mesh cells, which
confuses the VoF algorithms a lot. As a result, all the VoF methods diffuse the
interface so mush, that no one can recognize the true stars behind their VoF re-
constructions. Since the MoF algorithm uses no material moment data from the
adjacent cells, it demonstrates much better results than VoF algorithms. Taking
into account extremely small size of the interface details, the quality of the MoF
reconstruction, is very impressive.

“A” glyph. The thickness of the glyph strokes is comparable to the cell size,
which creates inevitable interference between the VoF-PLIC reconstructions of
the parallel edges of the strokes.

All the VoF algorithms successfully capture the external edges of the lat-
eral strokes (the LVIRA and Swartz algorithm reconstruct these line segments
exactly), but experience difficulties resolving the internal contour of the glyph,
where the volume data interference is stronger.

The glyph poses no problem for the MoF algorithm: the only parts of the
glyph contour that are not reconstructed exactly are the vertices.

“Cross”. The “cross” layout is even less challenging than the “A” glyph. The
interference between the reconstructed interfaces is a noticeable only around the
vertices of the polygonal interface.

The strongest numerical diffusion is demonstrated by the LSGQ algorithm;
the LVIRA reconstruction is less diffused, and the Swartz reconstruction is the
sharpest among all the VoF ones.

Once again, the MoF algorithm reconstructs all the line segments of the inter-
face exactly, failing only at the vertices. Clearly, one can make a similar statement
about the 2nd-order accurate VoF algorithms, but there is a quantitative differ-
ence: the MoF algorithm fails to reconstruct the interfaces only in the mixed cells
that host the vertices, while the LVIRA and Swartz algorithms also fail to capture
the interface in all the adjacent cells.

“Slice of pie”. The round edge of the “pie” is a well isolated interface with low
curvature, therefore all the PLIC algorithms tested had no problem reconstruct-
ing it properly (one can notice that the LSGQ reconstruction of the north-east
edge is somewhat ragged).

The small gap between the “pie” and the “slice” parts of the figure tricks the
VoF algorithms into creation of artificial “bridges” between the parts, but can not

17



confuse the MoF algorithm.

“Compass rose”. The “compass rose” is yet another example of the polygon
shape with small details. Only this time all the interface vertices are located ex-
actly on the grid lines, such that the restriction of the true interface to each mixed
cell is a single line segment.

The MoF algorithm takes advantage of the special properties of the figure
and reconstructs the whole “compass rose” exactly. Neither of the VoF methods
can achieve such a result. The LSQG and the LVIRA reconstructions are too dif-
fused to be of any use, but the Swartz algorithm, due to the discrimination strategy
described in Appendix D, demonstrates a good ability to fight the volume data
interference.

“Circle”. The circular shape seems to be an easy target for the VoF-PLIC methods:
the interface has low curvature, and there is no potential source of severe interfer-
ence between the mixed cells. The tough component of this static reconstruction
problem is the grid: it is highly non-uniform, and all the cells are non-convex.
These unpleasant properties of the grid are responsible for raggedness of the VoF
reconstructions; the LVIRA algorithm turned out to be the most sensitive to the
quality of the grid. Clearly, the MoF algorithm is the most resistant to the low
quality of the grid.

Concluding remarks on visual comparison. One can hardly notice the differ-
ence between the the MoF and VoF reconstruction of an isolated interface with
low curvature. The difference becomes more and more evident, as the size of
the interface details or the distance between the interfaces approaches the size
of the mesh cells. In this case, the numerical diffusion introduced by the VoF
methods significantly degrades the quality of reconstruction. The most diffusive
among the VoF-PLIC methods is LSGQ, the LVIRA algorithm is somewhat bet-
ter in resolving polygonal interfaces, and the best results are due to the Swartz
method. The MoF algorithm, on the other side, demonstrates an excellent ability
to capture the interface details on the edge of the grid resolution.

4.2 Convergence study

Cell-wise reconstruction error. Let us consider three different interface recon-
struction errors (Figure 7):

o the defect of the first moment:

AMy = [[ My (w)) = M (w")[| = [of w7 %7 —x7|]; ©)
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Figure 7. The reconstruction errors illustrated. ¢ is a hexagonal mixed cell, T'(w*) and
I'(wj") are the true and reconstructed material interfaces respectively. AT is the
maximum deviation of the true interface I'(w*) from the line given by I'(w});
Aw is the area of the symmetric difference between the true and reconstructed
subcells (in dark grey); the defect of the first moment aM; is proportional to the
distance Ax between the true and reconstructed centroids (x* and x; respec-
tively).

e the area of the symmetric difference between the reconstructed and true sub-
cells:
Aw = | AT = o \ W' o\ wil;

o the maximum deviation of the true interface I'(w*) from the interface line [*
defining I'(w/) = @ NI*:

Al = dist(T'(w*), ") = max min ||x —y]|.
(@)1 = _max min [ y]|

First of all, all three errors above have a nice property of being independent of
the choice of material (A or B) represented by w* and w;. Among them, AM; is
the weakest, and AT is the strongest one (convergence in AT implies convergence
in Aw, and convergence in Aw implies convergence in AM;). By default, the re-
construction error is measured in terms of AT". Thus, a reconstruction is known to be
k-th-order accurate, if it results in AT = O(d") for all sufficiently small d (the diameter
of the cell). Since both the true and approximate interfaces are confined within the
cell, any interface reconstruction is at least 1st-order accurate.

Aslong as the original interface I'(w*) is known to be twice-differentiable with
the curvature radius bounded from below by a positive constant R, the following
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estimates hold true:
AM; = O(d°/R?), aAw=0O(d®/R), AT = O(d’/R), (10)

where d = diam(s2) is the cell diameter. The fact that AT scales quadratically with
the diameter of the cell confirms that the MoF interface reconstruction is 2nd-order
accurate [10].

For a non-smooth true interface all the errors above reach their respective
pessimistic upper bounds:

AM; = O(d®), aw=0(d?*), ar =O0(d). (11)

The defect of the first moments AM is interesting mostly from the theoretical
perspective: since the MoF interface reconstruction is achieved by minimizing
the centroid discrepancy || x; — x*||, then according to (9) it should result in the
minimal defect of the first moment attainable with a volume-conservative PLIC
approximation. In this sense the MoF interface reconstruction is optimal in the class
of the volume-conservative PLIC methods.

Although AT is the default choice of the reconstruction error, it may be ill-
defined in dynamic tests (Section 5). That is why we are going to use the area
of the symmetric difference Aw as a primary error indicator. J. E. Pilliod and
E. G. Puckett [26] were first to use the Aw indicator to measure the reconstruction
error in static tests, although they used an alternative definition of Aw as the L
norm of the difference between the characteristic functions of w;" and w*.

Note that Aw and AT errors are not that much different. The symmetric dif-
ference area divided by the length of the true interface gives the average deviation

AT = aw/|T(w")

of the reconstructed interface from the true one. Under pretty non-restrictive
conditions? the average AT and the maximum ATI" deviations are equivalent, i.e.
there exist positive constants 0 < ¢; < ¢g, such that

c1 AT < AT < CQE;

therefore, Aw(~ AT) and AT errors should have the same order of accuracy.

How to measure the cell-wise Aw error. Since the PLIC algorithms we examine
are volume-conservative, then in static interface reconstructions tests

2w = W Awf| = |wf \w'| + o™ \w]| = 2|w] \ '] = 2(Jw"| = lw'Nw]]). (12)

4 The angular size of the cell corners must be bounded away from 0+ ¢y and 27 — ¢ for some fixed
€0 > 0; the true interface must be piecewise-smooth and satisfy the cone condition [?].
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Therefore, in order to find Aw for a mixed cell, it is sufficient to measure the area
of the intersection between the true and reconstructed subcells (see Appendices B
and A on the numerical intersection of plane figures and the area calculation
respectively).

The global errors. To explain how the cell-wise Aw errors can be conveniently
aggregated in global error indicators, we need to change the notations. From
now on © C R? represents the entire computational domain, quasi-uniformly
partitioned into N polygonal cells {2;}¥;; w* C @ and w] C © represent the
true and the reconstructed shapes of material A; the restriction of w* and w; to
a single cell ©2;, ¢ = 1, N will be referred to as w; and w}; respectively. Without
loss of generality, we can assume that all the mixed cells are enumerated from 1
to M <N.

First of all, we would like to know the maximum of the cell-wise AT errors,
which shows the worst local error attainable:

| wi D wil
?

A" = ImaX
v S N (]

we call it the maximum deviation.
Another useful global error is the average distance between the reconstructed
and true interfaces:

M
| w* A wf| 1
Aravg: |8Cu'*| = ’8W*’;|W:szl|’

it is referred to as the average deviation.

Direct measurements of the reconstruction errors. To figure out how these er-
rors scale with mesh refinement, we conducted a series of direct error measure-
ments on a sequence of uniform rectangular grids (< =]0, 1[x]0, 1]) with the mesh
spacing h varying from 1/2 to 1/21° (hy, = 1/2%, k =1, 10).

Each PLIC algorithm was tested against two shapes:

1) the circle of radius R = 0.25 centered at (0.5 + 1/17, 0.5 + 1/41); |0w*| = 7 /2;

2) the L x L = 0.5x0.5 square centered at (0.5 + 1/17, 0.5 + 1/41) and rotated
counter-clockwise by 7/3 radians; |0w*| = 2.

The location and orientation of the true shapes were chosen to eliminate the mesh
imprint in error readings.

The errors measured are collected in tables and presented on graphs; Figure 8
shows the results for the circle, and Figure 9 shows the results for the square
shape. Note that the graph axes are logarithmic.
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2 3 4 5 6 8 9 10 1 2 3 4 5 6 8 9 10
—log, h —log, h
—log,h | 1/h LSGQ | LVIRA | Swartz | MoF —log,h| 1/h LSGQ | LVIRA | Swartz | MoF
1 2 3.81e-1 | 3.71e-1 | 3.81e-1 | 3.56e-2 1 2 2.17e-1 | 2.43e-1 | 2.17e-1 | 3.12e-2
2 4 1.53e-2 | 3.60e-2 | 1.58¢-2 | 8.18¢-3 2 4 6.90e-3 | 1.77e-2 | 9.21e-3 | 4.86e-3
3 8 2.73e-3 | 3.21e-3 | 3.31e-3 | 2.65¢e-3 3 8 1.75e-3 | 2.22e-3 | 2.12e-3 | 1.55e-3
4 16 6.97e-4 | 1.19¢-3 | 9.27e-4 | 6.91e-4 4 16 4.52e-4 | 6.36e-4 | 4.86e-4 | 3.96e-4
5 32 2.81e-4 | 2.61e-4 | 1.98e-4 | 1.71e-4 5 32 1.48e-4 | 1.31e-4 | 1.05e-4 | 9.18e-5
6 64 1.34e-4 | 7.55e-5 | 4.91e-5 | 4.26¢e-5 6 64 5.98e-5 | 3.39¢-5 | 2.61e-5 | 2.18e-5
7 128 || 6.56e-5 | 1.80e-5 | 1.34e-5 | 1.14e-5 7 128 || 2.83e-5 | 8.48e-6 | 6.60e-6 | 5.56e-6
8 256 3.27e-5 | 4.75e-6 | 3.15e-6 | 2.81e-6 8 256 1.40e-5 | 2.09e-6 | 1.65e-6 | 1.40e-6
9 512 1.63e-5 | 1.17e-6 | 8.34e-7 | 7.14e-7 9 512 6.76e-6 | 5.24e-7 | 4.10e-7 | 3.48e-7
10 1024 | 8.15e-6 | 2.96e-7 | 2.07e-7 | 1.75e-7 10 1024 || 3.39e-6 | 1.31e-7 | 1.03e-7 | 8.73e-8

Figure 8. The maximum (on the left) and the average (on the right) deviations of the
reconstructed interface from the true one as functions of the mesh spacing h.
The true interface is a circle of radius R =0.25. Due to the uniform curva-
ture of the true interface, the respective maximum and average deviations are
comparable and exhibit similar asymptotic behavior. The LSQG algorithm
shows to be 1st-order accurate, the rest (LVIRA, Swartz, and MoF algorithms)
are 2nd-order accurate. Among all the methods tested, the Moment-of-Fluid
method is the most accurate.

Circle. Due to the uniform curvature of the true interface, the maximum and av-
erage deviations behave similarly. As the asymptotics show, the LVIRA, Swartz
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2 3 4 5 6 8 9 10 1 2 3 4 5 6 8 9 10
—log, h —logy h
—logoh | 1/h LSGQ | LVIRA | Swartz | MoF —log,h | 1/h LSGQ | LVIRA | Swartz | MoF
1 2 3.23e-1 | 3.34e-1 | 3.38e-1 | 3.30e-2 1 2 1.95e-1 | 2.45e-1 | 2.02e-1 | 1.98e-2
2 4 2.94e-2 | 4.76e-2 | 4.73e-2 | 2.50e-2 2 4 1.79e-2 | 1.84e-2 | 1.62e-2 | 8.31e-3
3 8 1.79¢-2 | 2.14e-2 | 1.11e-2 | 9.21e-3 3 8 7.28e-3 | 5.70e-3 | 3.48e-3 | 1.56e-3
4 16 8.49¢-3 | 9.82¢-3 | 1.01e-2 | 7.86e-3 4 16 1.98e-3 | 1.78e-3 | 1.24e-3 | 5.25e-4
5 32 4.09e-3 | 6.33e-3 | 4.60e-3 | 3.18e-3 5 32 6.07e-4 | 4.27e-4 | 2.38e-4 | 8.47e-5
6 64 2.22¢-3 | 2.95e-3 | 1.97e-3 | 1.39%e-3 6 64 1.98e-4 | 9.47e-5 | 5.55e-5 | 3.11e-5
7 128 || 9.22e-4 | 1.71e-3 | 1.16e-3 | 8.87e-4 7 128 || 7.53e-5 | 2.68e-5 | 1.55e-5 | 8.30e-6
8 256 | 4.88e-4 | 6.27e-4 | 5.18e-4 | 4.44e-4 8 256 || 3.07e-5 | 5.64e-6 | 3.87e-6 | 2.35e-6
9 512 2.89¢-4 | 3.87e-4 | 1.87e-4 | 1.59¢-4 9 512 1.41e-5 | 1.66e-6 | 8.57e-7 | 5.64e-7
10 1024 | 1.41e-4 | 1.74e-4 | 1.35e-4 | 1.11e-4 10 1024 || 6.61e-6 | 4.01e-7 | 2.47e-7 | 1.65e-7

Figure 9. The maximum (on the left) and the average (on the right) deviations of the
reconstructed interface from the true one as functions of the mesh spacing h.
The true interface is a 0.5x0.5 square. Since the true interface is not smooth,
the maximum deviations measured are 1st-order accurate for all the meth-
ods. The average deviations, due to their aggregate nature, are less volatile
than the maximum ones. Surprisingly, the asymptotic order of convergence
of the average deviations is the same, as if the true interface were twice-
differentiable (explained in the text). The average deviation of any of the
VoF reconstructions is at least 50% higher than the average deviation of the
Moment-of-Fluid reconstruction.
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and MoF algorithms approximations of the circular interface are 2nd-order accu-
rate, while the LSGQ approximation is only 1st-order accurate.

Among all the methods tested, the MoF algorithm is the most accurate over
the full range of grid resolutions. In asymptotic regime (h < R), the average
deviation of the LVIRA and Swartz reconstructions are respectively 18% and 50%
higher the average deviation of the MoF reconstruction.

Even though the LSGQ algorithm is asymptotically less accurate than the
LVIRA and Swartz ones, on the coarse grid (R/8 < h) the 1st-order-accurate VoF
algorithm results in significantly smaller average deviation than the 2nd-order
accurate VoF algorithms (just 6% above the MoF error). The LSGQ algorithm
starts to loose the advantage over the LVIRA and Swartz algorithms only when
the cell size drops below 1/8 of the interface curvature radius.

Square. Because the interface is non-smooth, all four PLIC methods result in the
maximum deviations of order O(h).

The asymptotic average deviation due to the LSGQ algorithm is of order
O(h), as it should be for the 1st-order accurate algorithm. Surprisingly, the 2nd-
order-accurate algorithms in this test demonstrate the average deviations of or-
der O(h?), as if the interface were twice-differentiable. This behavior has an ex-
planation. All 2nd-order accurate methods are able to capture the line segments
of the true interface exactly; the error is due only to the mixed cells, surrounding
the vertices of the square. With O(1) mixed cells contributing to the average er-
ror, the global Aw is only O(h?) (see (11)), which results in the average deviation
Alqyg = Aw/(4L) = O(h?).

As with the circle, the MoF algorithm shows to be the most accurate one, only
this time the superiority of the MoF method over the VoF competitors is more
pronouncing. The LSGQ algorithm shows the worst average deviation of all the
PLIC algorithms tested: it is unable to reconstruct the line segments of the true
interface exactly, as all the 2nd-order methods do, and over-smoothes the inter-
face around the vertices. The average deviation due to the Swartz algorithm and
LVIRA are respectively 50% and 100% higher than the respective MoF error. Such
a big error difference between the MoF and 2nd-order accurate VoF algorithms
is explained by the fact that there is only one mixed cell per square vertex that
contributes to the average MoF error, while there are two to four mixed cells
per square vertex that contribute to the average VoF error (see Figure 10). We
also want to emphasize that the Swartz method resolves the corners better than
LVIRA; this is due to the novel discrimination strategy used in the Swartz algo-
rithm (described in Appendix D).

Concluding notes on the reconstruction error. The numerical experiments con-
firm that the MoF interface reconstruction is 2nd-order accurate and also show
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Figure 10. The reconstructions of the square shape obtained with various PLIC al-
gorithms. All 2nd-order accurate methods (LVIRA, Swartz, MoF) recon-
struct the line segments of the interface exactly, introducing some error only
around the vertices. The MoF reconstruction is inexact only in 4 mixed cells
that overlay the vertices. The LVIRA and Swartz reconstructions are inexact
not only in the cells that overlay the vertices, but also in their direct neigh-
bors. This explains why the MoF error is significantly lower error than the
respective VoF errors. We also want to emphasize that the Swartz method re-
solves the corners better than LVIRA; this is due to the novel discrimination
strategy used in the Swartz algorithm (described in Appendix D).

that it results in lower absolute error than the conventional VoF methods.

One can see that symmetric difference area Aw can be successfully used in-
stead of conventional AT error; both errors have similar behavior and converge at
the same rate. Between the maximum and average deviations, the latter seems to
be more convenient, since it is less volatile and reveals the correct order of accu-
racy of the reconstruction algorithms even when the interface is only piecewise-
smooth.

A word on performance. Among all the PLIC methods tested, LSGQ is the fastest
one. It is about five times faster than MoF and Swartz methods and seven times
faster than LVIRA. One have to understand that these numbers are approximate
and may vary. To make the performance comparison unbiased, we shared the
common software components among the reconstruction routines. Thus, the im-
plementation of all four PLIC algorithms used the same routine for cutting off
subcells of the given volume; the implementations of the LVIRA and MoF algo-
rithms shared the optimization routine; all the iterative methods (LVIRA, Swartz,
and MoF) were subject to termination under the same condition, namely, when
the polar angle of the interface normal stabilizes within 10 radians.

25



5 How to update the cell-wise material moments

The MoF interface reconstruction algorithm can not be used in a fluid flow simu-
lation without the consistent scheme for updating the material moments. Below
we present an example of the material transport algorithm that can be used to
update the volume and centroid data in incompressible fluid flow simulations.
The scheme is referred to as Lagrangian remap.

The solenoidal velocity field v(x, t) is assumed to be given analytically, there-
fore no explicit constraint on the Courant number CF'L = v at/his imposed (here
At is the time step, h is the local mesh spacing, and v is the local flow speed).

5.1 Updating the volumes

Given the material distribution at ¢;.; = At (k-1), one can evaluate the content
of the cells at t;, = t;,_.7 + At as follows:

for each cell ©;, i =1, N do
track ©; back in time to t = ¢;_1 to identify the Lagrangian preimage <2; j, -1
of the cell;
find the volume 9; ;,-; of material A enclosed in Lagrangian
preimage Q; ;-1;
put the volume v; j, of the material A in ©; equal to ¥; j,-1.
end do

The vertices of each polygonal cell ©;, i = 1, N are tracked back along the
streamlines by means of the 4-th order Runge-Kutta scheme and then connected
in proper order by the line segments. This results in a polygon that we consider
to be a discrete Lagrangian preimage $; 1,1 of cell ©; (see Figure 11a).

Using the polygon intersection routine (Appendix B) we find the intersections
of Q; ;-1 with all pure-material (sub)cells at ¢ = t;,_; overlayed by the preimage.
One can significantly accelerate the search of the cells overlayed with the bucket
sort: partition the bounding box of the entire computational domain in 2D array
of rectangular buckets and pre-sort all the mesh cells among these buckets, based
on the cell centroid location. If CFL <1, it is sufficient to intersect the preimage
only with the pure-material subcells of ©; and its direct neighbors. Moreover, if
CFL<1 and ©;, along with all its neighbors, at t = t;._; are filled with the same
material, then the content of ©; will not change by ¢ = t;, and there is no need to
perform any polygon intersections in this case at all.

Area defect. In a linear velocity field, which is known to preserve straight lines,
the true Lagrangian preimage of a polygonal cell is always a polygon, and the ac-
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(a) - (b)

Figure 11. The discrete (a) and true (b) Lagrangian preimages of the cell.

curacy of the remapping is limited only by the accuracy the integration scheme.
For a p-th-order accurate scheme the area defect |; -1 — || is estimated as
O(h atP+1),

In a nonlinear velocity field straight lines are not preserved, and the true La-
grangian preimage of a polygonal cell is not a polygon. Therefore, by ignoring
the curvature of the preimage edges, we introduce additional O(h3at) area de-
fect.

Even a small area defect can eventually cause the algorithm to halt. Indeed,
if the volume of material A ¥;_; enclosed in the preimage ©; ;-1 exceeds the
capacity of the cell |$2;|, we are in trouble. Another, less critical, situation occurs
when the discrete preimage, being completely filled with material A, happens
to have the volume |Q; 1| smaller than |©;|. In this case the cell ©; turns into
mixed, even though its preimage contained only one material.

Volume repair procedure. In order to fix these flaws, we use a post-remapping
volume repair procedure. For every cell ;, i = 1, N we specify the lower v, , and
the upper 7, , bounds of the material A volume v; ; allowed:

(0, 0), ifthepreimageisempty,
(Vg Dik) = (Il [2]), if the preimage is full, (13)
( 0,]0]) otherwise,

and then force each volume v; 3, i = 1, N to fit into these bounds:

foreachcell ;, i =1, N do
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if ©; is overfilled (v; j, < v; 1) then
try to redistribute the excess between the non-overfilled neighbors
while there is still some excess remained do
redistribute them among the next layer of the surrounding cells
end do
else if ©; is underfilled (v; < v, ;) then
try to compensate the shortfall by borrowing from the non-underfilled
neighbors
while there is still some shortage of material do
borrow it from the next layer of the surrounding cells
end do
end if
end do
Due to the local nature of the area defect, the redistribution usually involves
only direct neighbors of the cell. Therefore, the complexity of the whole volume
repair step is estimated as O (V).

5.2 Updating the centroids

Minimal modernization of the volume-tracking technique above allows to up-
date the cell-wise material centroids as well. Whenever a non-empty intersection
of the discrete Lagrangian preimage ©; ;,-; with any subcell from the previous
time step is found, one has to calculate not only its volume but also the first mo-
ment. After all the pieces of material A overlayed by the preimage are found, one
should calculate the centroid of material A enclosed in €; ;-7 as the moment to
volume ratio. This centroid, tracked forth along the streamlines, determines the
position of the material-A centroid in cell 2;. There is no need to track the cen-
troid, if the preimage contains only one material: the volume repair step guaran-
tees that the cell will stay pure as well.

Centroid error. Whenever the velocity field is linear in space, the actual centroid
velocity of any volume of fluid w is the same as the field velocity at the centroid

location: p
Zxe(w) = vixe(w)) (14

Therefore, in this case, the trajectory of the true centroid follows the streamline
and the centroid error is due only to approximate integration (O(at?*1) for a p-th
order scheme).

For a nonlinear velocity field the identity (14) is void. As long as v(x,1) is
twice-differentiable in x, the following estimate, given by the Taylor expansion,

28



(a) (b)

Figure 12. Two ways to improve the accuracy of the centroid advection: (a) advect the
material in pieces, (b) advect the centroid of the smaller fraction.

holds:

() = v(xe(w)) + O(d?). (15)

Here d = diam(w) is the diameter of the volume advected. The final centroid
error in this case is O(d?at).

Since the centroid error is determined by the diameter of the advected vol-
ume, some accuracy improvement can be gained by advecting the fluid in smaller
pieces. By the virtue of the method, the Lagrangian preimage is “assembled” of
smaller polygonal pieces, the intersections €; ;-7 with the pure-material subcells
from the previous time step. Therefore, instead of advecting the aggregated cen-
troid of material A, one can advect the centroids of these constitutive parts inde-
pendently, and proceed with their aggregation only after the advection step (Fig-
ure 12a).

Whenever the volume of material A in the preimage exceeds the volume of
material B, it is likely that the material-B centroid can be advected more accu-
rately than the material-A centroid. Since the choice of material, whose moments
are explicitly used in the interface reconstruction, is just a matter of convention,
one should stick with material B in this situation, i.e. advect the material-B cen-
troid and then use it to separate material B from the mixed cell (the MoF interface
reconstruction itself is more stable for smaller volume fractions).
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5.3 Numerical examples

To demonstrate the Lagrangian remap at work, we prepared two examples:
e the solid rotation of the “A” glyph and

e the evolution of the round “blot” the reversible shear deformation vortex.

Solid rotation of the “A” glyph. The “A” glyph is defined by two closed poly-
lines; the vertices of the outer contour (in counter-clockwise order) are:

(0.25 , 025 ),
(0.3125 , 0.25 ),
(0.378125, 0.38125),
(0.621875, 0.38125),
(0.6875 , 0.25 ),
(0.75 , 025 ),
(0.5 , 075 );

the vertices of the inner contour are:

(0.40859375, 0.4421875),
(0.59140625, 0.4421875),

0.5 , 0625 ).
The velocity field:
_oqT
viw,y,t) = [ ooy ] . (20, yo) = (0.5, 0.5). (16)
0

Other parameters of the numerical experiment:
computational domain |0, 1[x]0, 1],
simulation time 7T = 2,
computational grid 1024 polygonal cells,
number of the time steps Np = 144.

The snapshots of the “A” glyph rotation performed with different PLIC meth-
ods are presented on Figure 13. Ideally, after one period (¢t = T'), the glyph is
supposed to return to the initial state, but it doesn’t happen because of the dis-
cretization errors. Since the solid rotation velocity field is linear, the cell-wise
material moments are updated very accurately, and the interface reconstruction
error prevails over the advection error. One can see that all the VoF methods
diffuse the interface to much higher degree than the MoF method.
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Figure 13. The snapshots of the “A” glyph in the solid-rotation velocity field (16) at
t = 0 (left column), t = T'//2 (central column), and ¢ = T' (right column). Each
row corresponds to one of the four PLIC algorithms: LSGQ, LVIRA, Swartz,
and MoF. The least diffused results (bottom row) are due to the MoF algo-
rithm.
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T/2 (central column), and ¢ = T (right column). Each row corresponds to
one of the four PLIC algorithms: LSGQ, LVIRA, Swartz, and MoF. For easier

judgment, we also showed the true material interfaces att = 7'/2 and ¢
The most accurate results (bottom row) are due to the MoF algorithm.

Figure 14. The snapshots of the “blot” in the reversible vortex (17) at t = 0 (left column),
t
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Shear deformation test. The second test case [29] simulates the evolution of the
round “blot”

{xeR? | ||x—x0||<R}, =x0=1(05,0.75), R=0.15

in the shear deformation vortex field:

T

sin®(ma)sin (2my) 17 ooy (17)

Vi y,1) = —sin 2(7y) sin (27x)

The cosine multiplier gradually slows down the vortex until the complete stop
(v(x,t) =0) att = T'/2 and then starts to “rewind” it. Since

v(x,t)=—-v(x,T—-t), 0<t<T,

i.e. the velocity field is reversible, the exact integration of the fluid motion from
t = 0 to t = T should result in zero changes. Therefore, by comparing the final
configuration against the initial setup, one can get the idea of accuracy of the
numerical technique used for the interface tracking.

Other parameters of the experiment are:

computational domain 0, 1[x]0, 1],
simulation time 7T =8,
computational grid uniform 32 x 32 cells,

number of the time steps N7 = 256.

The snapshots of the “blot” tracked with different PLIC methods are pre-
sented on Figure 14. For easier judgment, we also showed the true material
interfaces at t = T'/2 (central column) and ¢ = T (right column). The former
one was obtained by the front tracking technique described in [1].

All the PLIC reconstructions of the of the initial state (right column) are of
decent quality: the material interface is isolated an has a relatively low curvature.

The final (t = T') configuration due to the MoF method has a better overlap
with the initial shape, than the final configurations due to the VoF competitors.
From this point of view, the MoF method tracks the interface more accurately.
Also note that the MoF method misplaces only the piece of material A that corre-
sponds to the end of the tail of the stretched body. Such an error may be excused:
the thickness of the tail is way below the grid resolution. The VoF errors are less
localized. This is because all VoF methods, due to the aggregate nature of the
interface normal estimate, have a tendency to oversmooth the interface, which
diffuses the misplaced material along the interface.
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On the dynamic level, this property of the VoF methods manifests itself in
excessive artificial surface tension. This feature becomes determinative when a
VoF method is forced to work on the edge of the resolution limit. Thus, by the
moment of maximum stretch (¢ = 7'/2) the material-A shape becomes so thin,
that the VoF interface reconstruction breaks it in a series of separate blobs. The
MoF method is significantly less prone to that kind of behavior and gives much
better approximation to the true interface at t = 7'/2.

5.4 Convergence study

To quantify the accuracy of the Lagrangian remap, we use the following tech-
nique. Given a true initial shape w* of material A at moment t = 0, a computational
grid, a static velocity field, and a total time T', we

1) calculate the cell-wise material moments of the initial shape of material A and then
reconstruct it statically;

2) track the discrete material interfaces in the given velocity field fromt = 0 tot =
T2, reverse the field, and then continue to track the interfaces in the reversed
velocity field until t = T, the final reconstructed shape of material A is denoted by
wy;

3) calculate the area of the symmetric difference between w* and w; to find the average
deviation of the final interface from the true one

lwfAw*] 1

N
Ay = 5 _‘8w*’;(|w§|+|wii1—2\wjﬂw;‘ji\);

here | Ow*| is the perimeter of the true interface, w; and wj; are the restrictions of
w* and wy to the i-th cell, i = 1, N.

Common parameters. In all the experiments conducted, the computational do-
main €2 is the unit square 0, 1[x]0, 1]. The initial true shape of material A is given
by the ellipse with axes 0.3 - 1.1 = 3.3 and 0.3/1.1 ~ 0.272727; the polar angle of
the major axis is (1/2 + 1/16)w; the perimeter of such as ellipse | dw*| ~ 9.48900.
The eccentricity of our ellipse is pretty moderate e ~ 0.552771. We do not use
the circle this time, because in real computations the curvature of the interface is
highly unlikely to be uniform. The ellipse is deliberately not co-aligned with
the coordinate axes to decrease the potential mesh imprint in error readings.
Each interface tracking technique was tested at four different mesh resolutions
h € {1/16, 1/32, 1/64,1/128, 1/256}. The time step At in each experiment is deter-
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mined by the is the maximum velocity of material A: At = h/vqq, i€. the CFL is
uniformly bounded by 1. The total time 7' = At/h = 1/vpmaq.
We tested the Lagrangian remap against three different velocity fields:

e a diagonal translation,

e asolid rotation,

e and a shear deformation.

Diagonal translation. The velocity field:
v(z,y) = (1/V2,1/V2)

with vy, = 1. The initial shape of material A is given by the ellipse described
above, centered at (0.5 + 1/41, 0.75 + 1/101). The corresponding error graphs are
presented on Figures 15.

Solid rotation. The velocity field:

V(l’,y) = (yO —Y, T l'O)a (1307 yO) = (057 05)7 Ripae = 04

27 Rynax
with maximum velocity vje, = 1 (assuming that || (z, y) — (20, yo)|| < Rmaz )-
The initial shape of material A is given by the ellipse described above, centered
at (0.5+1/41, 0.75+1/101). The corresponding error graphs are presented on Fig-
ure 16.

Shear deformation. The velocity field:
v(z,y) = (+sin?(rz) sin (27y), — sin?(ry)sin (272))

with maximum velocity v,,q, = 1. The initial material distribution is the same as
for the solid rotation test. The error graphs are presented on Figure 17.

The summary of the numerical results.

As one can see from the data presented, the convergence order is completely
determined by the accuracy order of the interface reconstruction algorithm: the
1st-order algorithm (LSGQ) results in O(h) error; the 2nd-order accurate algo-
rithms (LVIRA, Swartz, and MoF) result in O(h2) error. The MoF algorithm
shows the best results in all three experiments.

The first two velocity fields are linear in space, therefore the Lagrangian remap
updates the cell-wise material moment data exactly, and the errors are due to the
approximate reconstruction only. The translation and solid rotation are also spe-
cial in that they preserve the distance between the fluid points, i.e. they do not
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Figure 15. The average deviation error accumulated in the diagonal translation velocity
field. The most accurate results are due to the MoF algorithm. The Swartz
is the only VoF algorithm that can keep pace with the MoF algorithm on the
fine grid.

-2.5
N~

-5.5
4

LSGQ
LVIRA
Swartz [

MoF

45 5 5.5 6 6.5 7 75 8
—log, h
-logoh| 1/h || LSGQ | LVIRA | Swartz | MoF
4 16 || 1.58e-3 | 4.61e-3 | 2.82e-3 | 1.26e-3
5 32 || 4.99e-4 | 1.40e-3 | 1.15e-3 | 3.54e-4
6 64 | 5.47e-4 | 2.57e-4 | 2.08e-4 | 9.45e-5
7 | 128 || 3.30e-4 | 6.01e-5 | 3.40e-5 | 2.51e-5
8 | 256 || 1.76e-4 | 1.78e-5 | 7.16e-6 | 6.88e-6
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Figure 16. The average deviation error accumulated in the solid rotation velocity field.
Since the velocity field is linear and preserves the distance between the fluid
points, the error graphs look very similar to the static errors graphs (Fig-

—2.51=

ure 8). The most accurate results are due to the MoF algorithm.

LSGQ
LVIRA

Swartz [

MoF

—log, h
-logoh| 1/h || LSGQ | LVIRA | Swartz | MoF
4 16 || 1.46e-3 | 3.27e-3 | 1.65e-3 | 1.20e-3
5 32 || 3.22e-4 | 4.71e-4 | 4.25e-4 | 3.01e-4
6 64 | 1.39e-4 | 1.02e-4 | 8.68e-5 | 6.93e-5
7 | 128 || 8.02e-5 | 2.36e-5 | 1.99e-5 | 1.73e-5
8 | 256 || 4.37e-5 | 5.81e-6 | 4.68e-6 | 4.35e-6
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Figure 17. The average deviation error accumulated in the shear deformation velocity
field. The velocity field is not linear, therefore the Lagrangian remap is only
approximate. Also, such a velocity field amplifies the interface reconstruc-
tion errors in the direction of shear. In this situation the superiority of the
MoF technique over the VoF competitors becomes more obvious: the MoF
error is at least two times lower than any of the VoF errors; in asymptotic
regime it is three times lower.

I
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“25RS o ' — —- Swartz []
~
~a —— MoF
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=45
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_5.5 | | | | | | |
4 4.5 5 55 6 6.5 7 7.5 8

-logoh| 1/h || LSGQ | LVIRA | Swartz | MoF
4 16 || 5.22e-3 | 5.88e-3 | 3.44e-3 | 3.05e-3
32 || 1.24e-3 | 1.51e-3 | 9.68e-4 | 4.57e-4
64 | 3.88e-4 | 3.59e-4 | 2.02e-4 | 1.10e-4
128 || 1.30e-4 | 7.61e-5 | 8.43e-5 | 2.48e-5
256 || 6.35e-5 | 1.65e-5 | 1.96e-5 | 5.47e-6

@ 3 o Gl
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amplify the reconstruction errors. That is why the rotation error graphs look
very much like the static error graphs (see Figure 8). The translation error graphs
exhibit less similarities with the static results, probably, because of the mesh im-
print. Diagonal translation seems to be a tough test for all VoF methods. The
Swartz is the only VoF algorithm that can keep pace with the MoF algorithm on
the fine grid.

The shear deformation velocity field is not linear, therefore the Lagrangian
remap is only approximate. Also, such a velocity field amplifies the interface
reconstruction errors in the direction of shear. In this situation the superiority
of the MoF technique over the VoF competitors becomes more obvious: the MoF
error is at least two times lower than any of the VoF errors; in asymptotic regime
it is three times lower.

6 Interface reconstruction in ALE simulations

In a pioneering paper [12] A. Hirt et al. developed the formalism for a grid,
whose motion is independent from the fluid motion, and showed that this frame-
work could be used to combine the best properties of Lagrangian and Eulerian
methods. This class of methods was called Arbitrary Lagrangian-Eulerian (ALE).
Many authors have described ALE strategies to optimize accuracy, robustness,
and computational efficiency [4, 17, 14, 15, 25, 16].

It is possible to formulate the ALE scheme as a single algorithm [9] by solving
the governing equations in a moving coordinate frame. The simulation cycle of
typical ALE scheme usually consists of three separate stages. These are: 1) a La-
grangian stage, in which the solution and grid are updated; 2) a rezoning stage,
in which the nodes of the computational grid are moved to a more optimal posi-
tion; and 3) a remapping stage, in which the Lagrangian solution is interpolated
onto the rezoned grid.

The initial mesh in multi-material flows is usually aligned with material in-
terface, that is, each mesh cell contains only one material. For simple flows, it is
possible to keep interface aligned with the mesh, that is do not move the interface
nodes at all or move them along the interface. With a strong shear deformation,
it is not possible to keep the material interfaces Lagrangian, and, therefore, the
material interfaces require special treatment. In ALE methods for multi-material
compressible flows interface reconstruction is needed in rezone/remap stage.
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Figure 18. The examples of the logically-rectangular grids obtained with map I (left)
and map I/ (right). One can also see the respective MoF reconstructions of
the circular and square interfaces.

6.1 Convergence study

To simulate an ALE environment, we consider a sequence of computational grids,
obtained by deformation of initial uniform rectangular grid. Namely, given a
uniform rectangular grid €, in the unit-square domain @ =0, 1[x]0, 1], and
a uniparametric family {F;}, ., ., of plane transformations with positive Jaco-
bian

Fi:0—Q, J(Fy) > 0, 0<t<l,

the n+1 logically rectangular meshes generated are
Qi = Frn(2n), k=0,n,

where h = 1/n is the mesh spacing of the uniform grid 2;,. We successively
remap the material moments from grid ©, 1 to grid @, , k¥ = 1,n, performing
the interface reconstruction after each remap. To estimate the quality of the suc-
cessive reconstructions, we measure the average deviations of the final material
interface from the initial one.

We conducted the experiments with the same two test shapes used the in
static tests: the circle and the square. The two types of the plane transformations
used are:

F (@, y) = (1 + au(a® = 1)z, (1+arly — 1)),

where
oy = sin (27t) /2;
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and
Ft(II)(l‘, y) = (z + aysin (27z) sin (27y), y + oy sin (27x) sin (27y)),

where
[ /5, t<1/2,
TV a-1)/5 t>1/2.

Figure 18 shows the deformation patterns due to such maps.

The average deviations measured for different mesh resolutions are collected
in tables and put on the graphs. The results for the circular shape are presented
on Figure 19, and the results for the square shape are presented on Figure 20.

As one can see, the circular-shape results are similar to those measured in the
respective static tests. The MoF algorithm shows the best results, except for the
sequence of sufficiently fine grids under deformation /7, where it looses to the
Swartz algorithm. We attribute this fact to the uniform curvature of the true in-
terface, which creates certain preferences to the VoF algorithms; at the same time
the interface diffusion introduced by the remap step alleviates the advantage of
the MoF algorithm.

The results of the square-shape test show definite superiority of the MoF algo-
rithm. Note that the 2nd-order algorithms are unable to demonstrate 2nd-order
convergence with a non-smooth interface; the reason for this is the inevitable
diffusion of the sharp interface features due to successive remapping.

7 Conclusions

We developed a new Moment-of-Fluid interface reconstruction method, which is
a generalization of the Volume-of-Fluid technique, presented a detailed descrip-
tion of the MoF algorithm in 2D, and conducted an extensive numerical testing
of the method. Compared to traditional VoF methods, the MoF reconstruction
shows higher accuracy and resolution of the interface details. Beyond being su-
perior in terms of accuracy, the MoF approach to the interface reconstruction has
a number of indisputable technological advances:

e its variational formulation is dimension-independent, therefore a 3D imple-
mentation is just a technical issue;

e itis completely autonomous, i.e. does not require any information from the
adjacent cells, which means that

o the algorithm can be efficiently implemented as a black-box routine;
o internal and boundary mixed cells can be processed uniformly.
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Figure 19. The average deviations between the true interface and its final reconstruc-
tion measured in a series of remap-reconstruction steps. The true interface
is given by a circle of radius R =0.25. The graph and table on the left cor-
respond to the sequence of the logically rectangular meshes generated with
map I, those on the right correspond to the sequence obtained with map 1.
As one can see, the MoF algorithm shows the best results, except for the se-
quence of sufficiently fine grids under deformation 71, where it looses to the
Swartz algorithm. We attribute this fact to the uniform curvature of the true
interface, which creates certain preferences to the VoF algorithms; the inter-
face diffusion introduced by the remap step alleviates the advantage of the
MOoF algorithm.

map I

map 11

LSGQ

LVIRA
——- Swartz
—— MoF

——- Swartz
—— MoF |

T1SGQ
LVIRA

—logy b
-log,h| 1/h || LSGQ | LVIRA | Swartz | MoF
2 4 | 1.17e-2 | 3.02e-2 | 2.48e-2 | 1.12e-2
3 8 || 2.70e-3 | 6.40e-3 | 5.57e-3 | 2.63e-3
4 16 || 9.17e-4 | 1.69e-3 | 1.97e-3 | 7.51e-4
5 | 32 | 4.98e-4 | 3.54e-4 | 4.06e-4 | 1.92e-4
6 64 | 3.48e-4 | 7.63e-5 | 6.82e-5 | 4.56e-5
7 | 128 || 1.84e-4 | 1.65e-5 | 1.42e-5 | 1.15e-5
8 | 256 || 9.21e-5 | 3.98e-6 | 3.22e-6 | 2.8%e-6
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B 4 5 B 7 8
—logy b
-log,h| 1/h || LSGQ | LVIRA | Swartz | MoF
2 4 | 121e-2 | 1.97e-2 | 1.8%-2 | 8.88e-3
3 8 || 4.00e-3 | 9.38e-3 | 4.19e-3 | 2.90e-3
4 16 || 1.59e-3 | 2.47e-3 | 1.04e-3 | 9.32e-4
5 | 32 | 5.64e-4 | 4.77e-4 | 2.64e-4 | 2.08e-4
6 64 | 2.60e-4 | 1.07e-4 | 6.01e-5 | 5.35e-5
7 | 128 || 1.42e-4 | 2.57e-5 | 1.40e-5 | 1.46e-5
8 | 256 || 7.98e-5 | 7.65e-6 | 3.78e-6 | 4.26e-6
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Figure 20. The average deviations between the true interface and its final reconstruc-
tion measured in a series of remap-reconstruction steps. The true interface is
given by a 0.5 x 0.5 square. The graph and table on the left correspond to the
sequence of the logically rectangular meshes generated with map I, those on
the right correspond to the sequence obtained with map /1. The results of the
square-shape test show definite superiority of the MoF algorithm. Note that
the 2nd-order algorithms are unable to demonstrate 2nd-order convergence
with a non-smooth interface; the reason for this is the inevitable diffusion of
the sharp interface features due to successive remapping.

map 1

map 11

LSGQ
LVIRA

——- Swartz
—— MoF

LSGQ
LVIRA

——- Swartz

—— MoF

—log, h
-logyh| 1/h || LSGQ | LVIRA | Swartz | MoF
2 4 |/ 2.38e-2 | 3.07e-2 | 2.90e-2 | 1.94e-2
3 8 | 1.98e-2 | 1.75e-2 | 1.07e-2 | 5.02e-3
4 16 | 6.17e-3 | 6.17e-3 | 3.46e-3 | 2.21e-3
5 32 || 2.48e-3 | 2.32e-3 | 1.33e-3 | 7.02e-4
6 64 || 9.70e-4 | 8.53e-4 | 5.91e-4 | 2.50e-4
7 | 128 || 3.71e-4 | 2.99e-4 | 2.19¢e-4 | 9.15e-5
8 | 256 || 1.47e-4 | 1.05e-4 | 8.02e-5 | 3.31e-5
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—log, h
-logyoh| 1/h | LSGQ | LVIRA | Swartz | MoF
2 4 | 2.19e-2 | 2.34e-2 | 1.71e-2 | 9.03e-3
3 8 | 1.28e-2 | 1.28e-2 | 9.84e-3 | 4.12e-3
4 16 | 4.56e-3 | 4.87e-3 | 3.72e-3 | 1.83e-3
5 32 || 1.62e-3 | 1.38e-3 | 9.23e-4 | 4.48e-4
6 64 || 6.83e-4 | 5.08e-4 | 3.65e-4 | 1.69¢e-4
7 | 128 || 2.77e-4 | 1.79¢e-4 | 1.25e-4 | 5.21e-5
8 | 256 || 1.17e-4 | 6.66e-5 | 5.07e-5 | 1.93e-5




In terms of performance, MoF method is at least as fast as a typical 2nd-order
accurate VoF method.

We also presented a feasible way to update the cell-wise material moment
data in Eulerian simulations by means of the Lagrangian remap. Experiments
with analytical solenoidal velocity fields confirm the high quality of the interface
tracking attained with the MoF method.
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A Calculating the polygon moments

The area and centroid of the polygon P, with vertices x;,%a,...,%, € R? (in
counter-clockwise order) can be evaluated by formulas

Pal = 5 S0~ x0) X (xi1 — x0)],

=1

xe(Pa) = x0 + %P, ;uxi ~x0) % (%i 41 — %0) ] (% — %0) + (Xis1 — X0),

where [- x -] is 2D vector product, x,, .1 = x1, and xo € R? is some point of the
plane explained below.

The presence of parameter xo € R? in the formulas above may seem redun-
dant, since in exact arithmetic the formulas are true for an arbitrary x. The sole
purpose of introducing x is to improve the accuracy of the floating point calcu-
lations; i.e. the right choice of x¢ helps to minimize the round-off errors. It is un-
wise to set xg = (0, 0), since it leads to high round-off errors for remote polygons.
For stable results xo should be local to the polygon; if the polygon P, is of regu-
lar shape (convex or moderately non-convex and also not highly anisotropic), it
is safe to set x to one of the vertices, say xi:

1 n-1
[Pl = 52[(Xi—x1)x(xz+1—x1)}7 (18)

=2

=

n-

1
6| Py 4

XC(Pn) =x1 + [(Xl —Xl)X(X“_] —xl)}((xi —Xl) + (X“.] —Xl)). (19)

@
Il
V)

B Numerical intersection of plane figures

The most common class of the plane figures, we have to deal with in the
context of the VoF/MoF context, are convex polygons. Indeed, if a mesh cells
are convex (which is very typical), its linear subcells are also convex, and its
Lagrangian preimage for a small At is highly likely to be convex too.

Each convex polygon is the intersection of a finite number of half-planes.
Most straightforward way to intersect two polygons is successive clipping of one
of them against all the constitutive half-planes of the other. This strategy has
quadratic complexity in the number of the polygon vertices.
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It is possible to find the intersection of two convex polygons in linear time
with the Chasing Algorithm [23, 22]. Although it is asymptotically faster than
the straightforward Clipping Algorithm, the Chasing Algorithm works only with
integer coordinates (the floating point coordinates has to be affine-transformed
and casted to integers first) and is not competitive for polygons with a small
number of vertices. We find that a properly implemented Clipping Algorithm
is more suitable for our purposes. In our numerical experiments we used the
convex-polygon-intersection routine from the COnservative REmapper (CORE)
library by M. Staley [32].

Occasionally we have to intersect the figures that are not convex polygons.
Since

e each plane figure can be approximated with arbitrary accuracy by a poly-
gon, and

e a non-convex polygon can always be represented as a union of non-over-
lapping convex polygons (be triangulated, for example),

then, using a convex-polygon-intersection routine, one can always find a set of
non-overlapping convex polygons, union of which constitute the intersection of
the figures. For us, the sole purpose of finding the intersection is evaluation of its
moments, therefore the strategy above works just fine.

C Smooth univariate optimization routine

The smooth univariate optimization procedure we use is based on the recom-
mendations from [21] and [7] and is a cut version of the line search presented
in [?]. It takes four input parameters:

1) an initial guess ¢y,

2) atrial step increment A¢ > 0,

3) an argument tolerance toly >0,

4) afirst derivative tolerance tol s > 0;

and returns the iterate ¢; that is considered to be a good approximation to the
local minimum ¢* of the objective function f(¢), namely, the first ¢; that satisfies
either of two conditions:

’f/((m)’ < tOlf/ or ’¢z — (25*’ < tOld). (20)

Clearly, if |f'(¢o)| < toly, then
no search is required, and ¢, is returned;
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otherwise,

1y

2)

3a)

we proceed with the following logical steps:

First, we identify the descending direction of f(¢).

If f'(¢o) >0, then
the positive direction of the polar angle is altered from counter-clockwise
to clockwise to ensure that f(¢) is decreasing at ¢ = ¢y.

Second, we bracket the local minimum.
For this we generate a monotonically increasing arithmetic progression

¢j:¢O+A¢]’ jzl)i7

until either a good approximation to the local minimum is found:

’f/(qbz)‘ < tOlf/v

or the objective function growth is detected:

f(#5) = f(¢i-1) or f'(¢)=0.

If the former condition terminates the loop, then

the search is over, and ¢; is returned.
The latter conditions guarantees that the last interval [¢;_1, ¢;] contains a
local minimum.

Finally, we find the local minimum inside [¢; -1, ¢;]. The minimum is local-
ized with recursive subdivisions, effectively conducted by the Zoom Algo-
rithm [21]. The Zoom Algorithm introduces a new iterate inside the given
interval; if the new iterate provides a good approximation to the local min-
imum, the search is over; otherwise the algorithm is recursively applied to
the subinterval known to contain a local minimum.

It is convenient to order the end points of the local minimum interval by the
value of the objective function; they are labeled ¢;, and ¢5; such that

f(D10) < f(éni) and  f'(d10)(dni — o) < 0; (21)

for the start, ¢;, and ¢y,; are set as follows:

(Pi-1, ¢i), if f(di-1) < f(s),
(¢i, ¢i-1), otherwise.

(D10 Dhi) {
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3b) If [pni —io| < toly, then the second termination condition (20) is satisfied,
the search is over, and ¢;, is returned.
A new iterate ¢; . 1 is defined as a local minimum of the cubic polynomial
interpolating the values and the first derivatives of the objective function at
the end points. As long as conditions (21) hold true, such a local minimum
exists and is located between ¢;, and ¢y,;:

f'(Oni) +do — dy
f(oni) — f(bio) + 2do’

Giv1 = Oni — (Ohi — d10)

where

f(¢10) — f(¢ni)
¢lo - (bh'i ’

dy = sign(¢n; — ¢lo)\/d% — f'(®10) f' (Dhi)-
If the new iterate ¢, 1 is too close to ¢;,, there is a potential danger for the

iterations to fall into stagnation loop [7]; to avoid this, we use the corrected
iterate

di = f'(d10) + f'(Sni) — 3

Giv1 < Pio + (Pri — P1o) toly,
whenever
(Piv1 = G10)/ (Phi — P1o) < tolg,,;
we find that the value of tol,,, = 0.05 serves the purpose quite well.
If |f'(¢is1)| <tols, then
the search is over, and ¢, , 7 is returned.

The new iterate ¢, , ; partitions the interval in two subintervals. Which one
should we pick to continue the recursion? We have to guarantee that the
next subinterval contains a local minimum, i.e. satisfies invariants (21), and
also ensure that the new ¢;,, among all the iterates generated so far, gives
the smallest value to the objective function:

F(bo) < fley), j=0,i+1
Therefore, if f(¢1,) < f(¢i+1), then ¢;.,1 replaces ¢p;:
(D10, Phi)  (Dros Piv1);
else if f'(¢s+1)(ni — d10) <0, then ¢;, 1 replaces ¢,
(P10, Dni) — (Di+v1, Pni);

otherwise we put
(D10, ni) — (Di+1, Puo)-
Update the iterate counter i «<— 7 + 1 and repeat the step 3b.
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The default input parameters of the optimization routine are
2) a¢ = m/(2n), where n is the number of the mixed cell vertices,
3) toly, = 10, and
4) toly = 0.

We deliberately set toly = 0 to ensure that the iterations stop only when the
polar angle of the interface normal stabilizes within tol, = 10, so that the MoF
and LVIRA algorithms, relying on this optimization routine, terminate under the
same condition as the Swartz iterations.

D Implementation details of the VoF-PLIC interface re-
construction algorithms

It is true to say that the behavior of the interface reconstruction algorithms
varies widely with the implementation details, many of which are left behind the
general descriptions. In order to make our results meaningful and reproducible,
we decided to highlight the important details about our implementations of the
VoF-PLIC algorithms.

All VoF-PLIC algorithms need the material volume data from the adjacent
cells to evaluate the interface normal. We consider two cells to be adjacent if they
share either an edge or a vertex.

LSGQ algorithm. In [3] T. J. Barth presents the Linear Least Square algorithm for
evaluating the gradient of discrete cell-centered function. This algorithm is trans-
parently usable for evaluating the mixed-cell-interface normals from the material
volume fractions. Since the original name of the algorithm (Linear Least Squares)
is too general, and there is yet another VoF-PLIC algorithm based on the least
square technique (LVIRA), we took the liberty to rename the Barth’s algorithm to
the Least Square Gradient (LSG) algorithm to avoid confusion. The LSGQ is just
a variation of the LSG algorithm that uses reciprocal Quadratic distance weights.
See [3] for details.

LVIRA algorithm. Our implementation of LVIRA algorithm follows the descrip-
tion from [26]. Let ©; be a mixed cell of interest surrounded by K neighbors
Q,, k = 1, K; the volume fractions of material A inside these cells are u} and
wi.» k = 1, K respectively. By w;(¢) we denote the linear subcell of ;, whose
volume matches the true one:

|wi(@)| = p| <l
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and whose interface normal is given by the polar angle ¢:

n(wi(6)) = (cos ,sin o).
The normal of LVIRA interface reconstruction in ©; is given by the minimizer of
the objective function
K

X 2
k=1
where w;, (¢), k = 1, K are the linear subcells cut off from the neighbors by the
linear extension of the interface I'(w;(¢)).
The first derivative of LVIRA objective function (22) is given by:

K
F1(@) = Y (wi (@) = 1i 20 )03, (9)] (b5 - (xi(9) — %4, (0))) (23)

k=1
where T, (¢) = I'(w;,.(¢)) is the interface of w;, (¢), |, (¢)| is its length, and
x;,(¢) is its centroid; x;(¢) is the centroids of I'j(¢) = TI'(wi(¢)), and

ty = (—sin ¢, cos ¢) is counter-clockwise unit tangent on I';(¢).

To get an unbiased performance comparison, we minimized the LVIRA objec-
tive function (22) with the same smooth univariate optimization routine we used
for the MoF algorithm (see Appendix C); for the initial guess we used the polar
angle of the normal given by the LSGQ reconstruction.

Swartz algorithm. If two cells are separable by a line (which is always true for the
non-overlapping convex cells), then for any given pair of volume fractions there
exists a common linear interface that cuts off the subcells of the specified volume
fractions from the respective cells. Whenever the volume fractions are given by
a twice-differentiable true interface, such a common linear interface is 2nd-order
accurate [35], which makes it a very useful tool in material interface reconstruc-
tion.

If the computational grid is rectangular, a common linear interface for a pair
of adjacent mixed cell can be found analytically [8]; even if the grid is not rectan-
gular, a common linear interface can be identified by means of the quadratically
convergent iterative procedure [35]:

Algorithm 2 (Swartz iterations). Given initial VoF-PLIC interface approximations in
two mixed cells,

1) connect the centroids of the interfaces with a line segment®; the normal to this
“bridge” segment will serve as a new iterate of the common linear interface normal;

% If the linear interface consists of a single segment, which is always the case for a convex cell, the
interface centroid is given by its median.
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Figure 21. The effect of the discrimination strategy on the quality of Swartz reconstruction.

2) build the new VoF-PLIC interfaces in both cells using the “bridge” normal;

3) repeat steps 1) and 2) until the “bridge” normal stabilizes within some small toler-

ance (we used toly = 10 -0),

The Swartz interface reconstruction routine we implemented, consists of three
steps:

1)

2)

First we perform the LSGQ reconstruction to get the initial VoF-PLIC ap-
proximation.

Next we use the Swartz iterations to find the common linear interface for
each pair of adjacent mixed cells. There is an important technical detail
about the implementation of the Swartz iterations we would like to point
out here.

With two choices of the normal on the “bridge” segment, we use the one
that has a positive projection on the previous iterate; for the very first itera-
tion we use the one that has positive projections on both initial normals.

Clearly, if the initial normals differ significantly, then the true interface is
unlikely to have low curvature in this region, and the common linear inter-
face is unlikely to approximate the true interface better than the initial ones;
so there is no need to go for it. Therefore, we do not try to find the common
linear interface for a pair of adjacent mixed cells at all, unless the initial out-
ward normals differ by less than 45 degrees. This way the common linear
interface is determined only for those pairs of mixed cells that cover the
low-curvature segments of the true interface. Such a discrimination strategy
significantly improves the ability of the algorithm to resolve small interface
details (see the example on Figure 21).
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3) Finally, we update the mixed cell interfaces. The new interface normal in
each mixed cell is defined as the arithmetic average of the unit normals due
to the all direct mixed neighbors.

The algorithm above is different from the Mosso-Swartz algorithm presented
in [19]. The original Mosso-Swartz algorithm prescribes to loop through the list
of mixed cells, updating the interface normals by the average of the “bridge”
unit normals due to all mixed neighbors. The loop is terminated, when all the
interface normals are stabilized within a given tolerance. By means of numerical
experiment we established that the Mosso-Swartz algorithm tends to oversmooth
the material interfaces and lacks the sharpness of the Swartz algorithm.
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