On the Convergence of Asynchronous Parallel Pattern Search

TAMARA G. KOLDA
Sandia National Labs
VIRGINIA TORCZON
College of William & Mary

Research sponsored by the U.S. Department of Energy and the National Science Foundation.

Overview of Proof

Part I

 Every process has a subsequence of the step lengths converging to zero

Part II

 All the processors share a common accumulation point which has s a zero gradient

NOTATION

Processes: $\mathcal{P} = \{1, \dots, p\}$

Search Directions: $\mathcal{D} = \{d_1, \dots, d_p\}$

Global Time Index: $\mathcal{T} = \{0, 1, 2, \ldots\}$

Best Known Point: x_i^t (at time t for process i)

Step Length Control: Δ_i^t (at time t for process i)

Successful Time Steps: S_i (for process i)

Contraction Time Steps: C_i (for process i)

RATIONAL LATTICE

- The level set $\mathcal{L}(x^0) = \{x : f(x) \le f(x^0)\}$ is bounded
- The search directions satisfy $\mathcal{D} = \{d_1, \dots, d_p\} = \{Bc_1, \dots, Bc_p\} \text{ where } B \text{ is a non-singular } n \times n \text{ real matrix and } c_i \in \mathbb{Q}^n$
- The step length are updated as follows $\Delta_i^{t^+} = \Lambda^k \Delta_i^{t^0} \text{ where } \Lambda \text{ is rational and } k \text{ is a nonngative integer for expansion and a negative integer for contraction.}$

$$\Rightarrow x_i^t = x^0 + \alpha B \sum_{j \in \mathcal{P}} \zeta_j(i, t, \Gamma) c_j$$

with α constant and $\zeta_j(i,t,\Gamma) \in \mathbb{Z}$

REDUCING THE STEP LENGTH

Goal: $\liminf_{t \to +\infty} \Delta_j^t = 0$ for all $j \in \mathcal{P}$.

Lemma: If S_i is finite for some $i \in \mathcal{P}$, then

$$\lim_{t \to +\infty} \Delta_i^t = 0.$$

Lemma: If S_i is finite for some i, then S_j is finite for all $j \in \mathcal{P}$.

 \Rightarrow Finite case is trivial.

Corollary: If S_i is infinite for some $i \in \mathcal{P}$, then S_j is infinite for all $j \in \mathcal{P}$.

ONE STEP LENGTH GOES TO ZERO

Lemma: Assume the level set $\mathcal{L}(x_0)$ is bounded. Suppose \mathcal{S}_j is infinite for all $j \in \mathcal{P}$, then there exists $i \in \mathcal{P}$ such that

$$\liminf_{\substack{t \to +\infty \\ t \in S_i}} \Delta_{\omega_i(t)}^{\tau_i(t)} = 0.$$

Finite rational lattice argument — Torczon, 1997.

Corollary: Suppose S_j is infinite for all $j \in \mathcal{P}$, then there exists $i \in \mathcal{P}$ such that

$$\liminf_{t \to +\infty} \Delta_i^t = 0.$$

ALL STEP LENGTHS GO TO ZERO

We assume $\Delta_i^t \geq \Delta_{\min}$ for all $t \in \mathcal{S}_i$. Let process i be such that

$$\lim_{t \to +\infty} \inf \Delta_i^t = 0,$$

Key: The supremum of the time between successful iterates on process i goes to $+\infty$.

So, on any other process j, the supremum of the number of contractions between successful iterates is also going to $+\infty$.

Theorem 1:
$$\liminf_{t\to +\infty} \Delta_j^t = 0$$
 for all $j\in \mathcal{P}$.

ACCUMULATION POINT

Goal: There exists $\hat{x} \ni \lim_{\substack{t \to +\infty \\ t \in \hat{\mathcal{C}}_j}} x_j^t = \hat{x} \text{ for all } j \in \mathcal{P}$

Lemma: Assume the set $\mathcal{L}(x_0)$ is bounded. Then there exists $\hat{x} \in \mathbb{R}^n$ and $\hat{\mathcal{C}}_1 \subseteq \mathcal{C}_1$ such that

$$\lim_{\substack{t \to +\infty \\ t \in \hat{\mathcal{C}}_1}} \Delta_1^t = 0 \quad \text{and} \quad \lim_{\substack{t \to +\infty \\ t \in \hat{\mathcal{C}}_1}} x_1^t = \hat{x}.$$

Just use compactness of closure of $\mathcal{L}(x_0)$

 \Rightarrow We have an accumulation point for process 1.

COMMON ACCUMULATION POINT

Theorem 2: There exists \hat{x} and, for each $j \in \mathcal{P}$, \hat{C}_j such that

$$\lim_{\substack{t \to +\infty \\ t \in \hat{\mathcal{C}}_j}} x_j^t = \hat{x} \text{ for all } j \in \mathcal{P}$$

Key: Forcing $\Delta_i^t \geq \Delta_{\min}$ for every success.

Then for each $\hat{t} \in \hat{\mathcal{C}}_1$ with $\hat{t} > t^*$, there is a corresponding time interval devoid of successful points on each of the other processes, so that they must all eventually accept $x_1^{\hat{t}}$ as the best known point and have a number of contractions.

SEARCH DIRECTIONS

The pattern must be chosen so that it nonnegatively spans \Re^n . See Lewis and Torczon, 1996.

Defn: A set of vectors $\{d_1, \ldots, d_p\}$ nonnegatively spans \mathbb{R}^n if any vector $x \in \mathbb{R}^n$ can be written as

$$x = \alpha_1 d_1 + \dots + \alpha_p d_p, \quad \alpha_i \ge 0 \quad \forall i.$$

That is, any vector can be written as a *nonnegative* linear combination of the basis vectors.

Fact: If $\{d_1, \ldots, d_p\}$ positively spans \Re^n , then $d_i^T v \geq 0$ for all $i \in \mathcal{P}$ iff v = 0.

FINAL RESULT

Theorem 3: Assume f is continuously differentiable. Then

$$\lim_{\substack{t \to +\infty \\ t \in \hat{\mathcal{C}}_i}} \nabla f(x_i^t) = 0.$$

Dates back to Wen-Ci, 1979...

For all $t \in \tau_i(\hat{C}_i)$, $\exists \alpha_i^t \in [0, 1]$ such that :

$$f(x_i^t) \le f(x_i^t + \Delta_i^t d_i) = f(x_i^t) + \Delta_i^t \nabla f(x_i^t + \alpha_i^t \Delta_i^t d_i)^T d_i,$$

$$\Rightarrow 0 \le \nabla f(x_i^t + \alpha_i^t \Delta_i^t d_i)^T d_i.$$

$$\Rightarrow 0 \le \nabla f(\hat{x})^T d_i \text{ for all } i \in \mathcal{P}.$$

Since the d-vectors form a positive basis, that implies that $\nabla f(\hat{x}) = 0$.

SUMMARY

Fundamentals haven't changed.

Theorem 1: $\liminf_{t\to+\infty} \Delta_j^t = 0$ for all $j\in\mathcal{P}$.

Theorem 2: Assume $\mathcal{L}(x^0)$ is bounded. Then there exists \hat{x} and, for each $j \in \mathcal{P}$, $\hat{\mathcal{C}}_j$ such that

$$\lim_{\substack{t \to +\infty \\ t \in \hat{\mathcal{C}}_j}} x_j^t = \hat{x} \quad \text{for all } j \in \mathcal{P}$$

Theorem 3: Assume f is continuously differentiable. Then

$$\lim_{\substack{t \to +\infty \\ t \in \hat{\mathcal{C}}_j}} \nabla f(x_j^t) = \nabla f(\hat{x}) = 0 \quad \text{for all } j \in \mathcal{P}.$$

REFERENCE

K & T, On the convergence of asynchronous parallel pattern search, 2001. Submitted to SIOPT.

APPSPACK SOFTWARE

- PVM/MPI/serial
- Unconstrained or bound constrained
- Lattice or sufficient decrease

WEB PAGES

http://csmr.ca.sandia.gov/~tgkolda/ http://www.cs.wm.edu/~va/research/