
1

Implications of Application Usage Characteristics
for Collective Communication Offload

Ron Brightwell, Sue Goudy, Arun Rodrigues, and Keith D. Underwood
Sandia National Laboratories

P.O. Box 5800
MS-1110

Albuquerque, NM 87185-1110
Email:

�
rbbrigh, spgoudy, afrodri, kdunder � @sandia.gov

Abstract— The performance of collective communication oper-
ations is known to have a significant impact on the scalability
of some applications. Indeed, the global, synchronous nature of
some collective operations directly implies that they will become
the bottleneck when scaling to hundreds of thousands of nodes.
This fact has led many researchers to try to improve the efficiency
of collective operations. One popular approach improves the
implementation of MPI collective operations by using intelligent
or programmable network interfaces to offload the burden
of communication activities from the host processor(s). Such
implementations have shown significant improvement for micro-
benchmarks that isolate collective communication performance,
but these results have not been shown to translate to significant
increases in performance for real applications. In order for
collective offload implementations to benefit real applications, a
greater understanding of application behavior is needed. In this
paper, we describe several characteristics of applications and
application benchmarks that impact collective communication
performance. We analyze network resource usage data in order to
guide the design of collective offload engines and their associated
programming interfaces. In particular, we provide an analysis
of the potential benefit of non-blocking collective communication
operations for MPI.

Index Terms— MPI, non-blocking, collective, resource usage,
resource management, network interface

I. INTRODUCTION

One of the most common models for parallel scientific
codes within the Department of Energy (DOE) complex is
to compute for one time step, perform global reductions
to compute global information (e.g. the length of the next
time step), and compute the next time step. This process
repeats until the desired simulation time has completed. As
the number of nodes used for the computation grows, the best
case scenario is a �������
	��� growth in collective time (where �
is the radix of the collective) and a constant time (per node)
to compute the time step. The worst case is a superlinear
growth (or, the measured linear growth[1]) in collective time
due to such things as low-level system software effects [2]
and a decrease in the time (per node) to compute the time
step (because of a shrinking problem size per node). In either

A. Rodrigues is also with the University of Notre Dame Computer Science
and Engineering Department, 384 Fitzpatrick Hall, Notre Dame, IN 46556.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-94AL85000.

scenario, the scalability of the application is clearly limited by
the effectively serialized global operation.

The only solution to achieve scalability is to minimize this
serial fraction of the code. This quest has spurred numerous
research efforts into collective offload designs[3], [4], [5],
[6], [7], [8]. Recently, much research has focused on lever-
aging the programmable processor that has become common
on high-performance network interfaces to offload collective
operations. While these studies have considered many of the
important issues facing the use of collectives in applications,
they lack an analysis of the applications that will use the
collective offload engine. Questions that must be addressed
include: Which collectives are typically used? Do they require
floating-point? What are the resource usage characteristics?
Without answers to these types of questions, it is difficult
to design an effective collective offload engine. This research
attempts to answer many of these questions in the context of
large scale scientific applications used at Sandia.

Unfortunately, applications that run at the largest scale
are frequently unavailable to the broader research community
because of licensing or export control restrictions. Instead,
supercomputer users try to make “representative” benchmarks
available to supercomputer researchers. The most prominent
example of this is the NAS Parallel Benchmark (NPB) suite[9],
[10]. Regrettably, benchmark suites must frequently sacrifice
fidelity for simplicity and portability. Because of this, it is
often difficult to gauge whether they are representative of
real applications in any given aspect. In addition to analyzing
the way large-scale scientific applications use collectives, this
paper compares that usage to the properties of the NAS Parallel
Benchmark suite.

Finally, simply offloading collective operations is a short-
term fix. The effectively serial portion of the code that is spent
in many collectives will grow with the number of nodes. With
processor counts projected to reach past 100,000 and into the
millions, this will prove to be a fundamental limitation. Thus,
the true limitation is the blocking nature of many collective
operations (e.g. MPI Allreduce) that prevent the application
from exploiting offload and overlap capabilities provided by
the hardware. The alternative is to use “non-blocking” or
“split-phase” collective operations. For this to be practical,
however, there must be instructions that can execute between
the time that the collective could be started and the time that

2

the result of the collective is needed. This paper assesses
the feasibility of non-blocking collectives in the context of
current applications. This is a difficult property to study since
applications are not designed and written to use non-blocking
collectives; however, by using instruction tracing, we are able
to estimate the number of instructions in current codes that
could be overlapped with collective operations. The results
indicate that non-blocking collectives are indeed feasible and
that a significant amount of overlap can be achieved.

In the next section, previous work on collectives is dis-
cussed. Section III covers the approach used to collect this
data. Section IV discusses data from the NAS parallel bench-
marks and Section V presents data from scientific applications
at Sandia National Labs. Data supporting non-blocking collec-
tives is presented in Section VI, followed by conclusions in
Section VII.

II. BACKGROUND

Collective operations are well-known parallel programming
primitives that have been, and continue to be, widely studied.
A vast amount of work has been devoted to optimizing
collective algorithms (particularly synchronization) on shared
memory systems. Examples include [11], [12], [13], [14], [15].
Other works have focused on message passing architectures
[16], [17], [18], [3], [19], [4], [5], [6].

It has been demonstrated that collectives are important to
application performance [1], [19], but it has also been demon-
strated that the performance of collectives is typically obscured
by application performance [19]. Indeed, even a thirty-fold
increase in collective performance may yield only a three-fold
increase in application performance [19]. Thus, for the sake of
clarity, it has become commonplace to investigate collective
performance outside the context of application performance.

Recent research on collective operations has continued to
follow this trend to the extent that all application context
has been lost. A tightly synchronized loop that calls a single
collective operation thousands of times is not representative of
how applications use collectives. These research efforts have
included studies of how to leverage the remote DMA (RDMA)
capabilities of modern networks [20], [21] as well as how to
offload collectives onto the network interface [7].

More realistic work has studied issues with performing
reduction operations on the NIC. These include the issues such
as slow floating-point implementations[22] and even how to
deal with unexpected messages[8] and application skew[23],
[24]. However, they lack the application data to support
selecting an optimal mechanism to deal with the issues. This
paper provides some of that essential data.

This paper provides insight into the way that applications
actually use collectives to provide appropriate data as a
baseline for future research on dedicated hardware and pro-
gramming interfaces for collectives. Furthermore, the wealth
of work on collective offload designs provides an opportunity
to consider applying “application bypass” [25], [24], [23] prin-
ciples to collective operations. Leveraging application bypass
would require a non-blocking collective interface. This paper
establishes that such an interface could be beneficial.

III. APPROACH

Two types of data were collected. First, applications were
analyzed on a parallel platform to measure timing and scale-
sensitive characteristics of applications. Second, applications
were traced on a desktop platform to measure timing and scale-
insensitive parameters.

A. MPI Profiling

In previous work, we collected and analyzed data related to
the MPI posted receive and unexpected message queues, and
measured expected versus unexpected messages [26]. We used
these measurements to characterize the amount of processing
and memory resources that are needed for offloading MPI
semantics. Our approach to measuring data for collective
operations is similar. While the previous analysis included
MPI point-to-point and collective operations together, we have
separated the two for this analysis.

In order to separate the resource usage information of
collective and point-to-point operations, we modified the
MPICH/GM implementation to have a separate posted re-
ceive and unexpected queues for collective messages. Since
collective operations are layered on the MPI point-to-point
operations in the MPICH/GM implementation, the individual
messages are tagged as being either point-to-point or collec-
tive. We use the MPI profiling interface to turn on a flag that
indicates whether the code is in a collective operation. This
flag is recognized by code at the MPI device level and is used
to distinguish between point-to-point and collective messages.

In addition to the network-level instrumentation needed to
collect MPI queue and unexpected message data, we also used
the MPI profiling interface to collect higher-level information
about collective communication characteristics. We used the
profiling interface to track the frequency of each collective
communication call and gathered various information about
the individual collective operations, such as whether reduction
operations were integer or floating point.

B. Tracing

Applications were traced using the amber instruction trace
filter for the PowerPC[27] processor. Analysis of the traced
values for the program counter allowed MPI calls to be
identified. Function call arguments were extracted from the
traced register values for each collective call. These arguments
allowed message buffers to be recognized. Any future loads
from an address in a receive buffer were recorded so that
the consumption of this buffer could be tracked. To analyze
outgoing buffers, a record was kept of when each memory
address was last written. Whenever an outgoing buffer was
recognized, this record was consulted to determine when the
buffer was constructed. The evaluation metric used was the
number of elapsed instructions that could have been over-
lapped with a non-blocking collective. In modern systems,
this approximately correlates to a metric of time, though that
metric will vary based on the system. Instructions executed
within the MPI library or system calls were not counted.

Each application or benchmark was traced for 10 billion
instructions, or until the program completed. Ideally, the

3

complete application would be traced in all cases; however, re-
alistically, time constraints were a restriction — tracing yields
an execution rate of only 0.2 MIPS. Ten billion instructions
is of a length greater than that typically used for processor
research and is considered to be representative of application
behavior. Benchmarks from the NPB used the ’S’ (sample)
data sets. Most applications were run with 2 nodes and process
0 was traced. BT and SP from the NAS Suite were run on 4
nodes. CG was omitted, as it only uses point to point and
MPI Reduce().

C. Platforms

Two different platforms were used for these experiments.
The first platform provided parallel execution for the applica-
tions at larger scales while the second platform was used to
collect instruction tracing information. The parallel execution
platform was the Vplant machine at Sandia National Labora-
tories. Vplant is a large Linux cluster with approximately 320
compute nodes composed of Intel Pentium-3 and Pentium-
4 processors. These experiments were run on a 126 node
partition of the machine containing dual-processor Pentium-
4 Xeon nodes running at 2.0 GHz. Each node has 1 GB of
main memory and a Myrinet-2000 [28] network interface. The
nodes are connected in a Clos topology. Vplant was running
a Linux 2.4.20 kernel, GM version 2.0.11, and MPICH/GM
version 1.2.5..11. The crossover point between short messages
and long messages for MPICH/GM is 16 KB. All of our runs
used only one process per node.

Instruction tracing used two node run and was performed
on Apple Macintosh G4 and G5 systems running MacOS-X
version 10.3.3. Applications were compiled with the Absoft
ProFortran compiler for MacOS (version 8.0) or gcc (version
3.3). All of the binaries were 32 bit PowerPC executables. The
LAM implementation of MPI[29] was used.

IV. BENCHMARK ANALYSIS

One of the most commonly studied set of benchmarks is the
NAS Parallel Benchmarks (NPB) suite version 2.4 [10]. These
benchmarks are a collection of MPI applications distilled from
real computational fluid dynamics applications. We omitted
the EP benchmark from our study, since it does virtually no
message passing. We chose to present the class B problems
since they run more quickly and most of the salient features
(collective types, data types, and queue usage behavior) do
not change with problem size. Class C benchmarks were also
run and deviations from the class B data presented are noted.
These benchmarks have been well-studied, and are provided
for comparison with the real application data.

A. Unexpected Messages

The first point for analysis was the behavior of the unex-
pected message queue. Previous work [26], [30] has studied
the queue behavior of various applications and benchmarks
and found that unexpected message queues could grow quite
long. Figure 1 breaks out the component of unexpected mes-
sage queue behavior that is specific to collective operations.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(c)

Fig. 1. NPB unexpected queue statistics: (a) max length, (b) max search
depth, (c) average search depth

4

Figure 1(a) shows the maximum length of the unexpected mes-
sage queue. It illustrates that the unexpected message queue
associated with collective operations can grow nearly linearly
with the number of processors for a number of the NAS
parallel benchmarks. More disturbingly, Figure 1(b), which
shows the maximum search depth of the queue, indicates that
it is possible to have to search this entire queue; however,
Figure 1(c) (the average search depth of the queue) indicates
that this is a relatively uncommon event.

The data from Figure 1 stands in contrast to what would be
expected in the standard micro-benchmark that evaluates col-
lective optimizations. At least for the NPB suite, applications
can and do enter collective operations at disparate times. A
NIC implementation of collective operations must be aware of
this fact as it may require the allocation of additional resources
and may affect the way the algorithms should be optimized.

Offload implementations must also be careful to maintain
message ordering semantics. Even though MPI mandates that
collective functions must be called in the same sequence across
all ranks in the same communicator, tree-based implementa-
tions of certain collective routines could cause messages to
arrive out of order. For example, two successive MPI Bcast
calls with different root values could cause messages to arrive
out of order at a node that is a leaf node in the first broadcast,
but is near the root in the second broadcast.

Since unexpected messages appear in the collectives for
these benchmarks, Figure 2 separates the messages in the
collectives into the percentage of each of four types: long
expected, long unexpected, short expected, and short unex-
pected. IS has (predominantly) expected messages, though
the length of the unexpected queue can be long. As the
number of nodes increases, the messages shift from long to
short (due to the small, fixed problem size). In contrast, FT
is split almost evenly between expected long messages and
unexpected long messages. Collective protocols will clearly
need to deal with long unexpected messages on a regular basis
(not a common occurrence in standard collective benchmarks).
Numerous codes (BT, CG, LU, and SP) have predominantly
short collectives with some significant fractions of the short
messages being unexpected. Again, unexpected messages must
be handled by an offloading engine. Remarkably, despite the
relatively large number of unexpected messages, the average
search depth of the unexpected queue remains low.

B. Posted Receive Queues
Figure 3 shows the statistics of the posted receive queue

usage for the NPB suite. Unlike the unexpected message
queue, the maximum posted receive queue length is generally
restrained for all but the IS benchmark. For the IS benchmark,
the max queue length, the max search depth, and the average
search depth all grow linearly with the number of processors.
This clearly indicates a limitation in the implementation of the
MPI Alltoallv call used by the IS benchmark.

The comparison of Figure 3 and Figure 2 is striking.
Collectives being used by other applications (not IS) in the
benchmark suite clearly do not pre-post a large number of
receives, but they do receive a large number of unexpected
messages.

C. Collective Counts, Sizes, and Types

Table I indicates that the majority of the NAS parallel
benchmarks make very limited use of collective operations.
Only FT, IS, and MG make significant use of collectives. FT
and IS both perform all of their communication through the use
of MPI Alltoall and MPI Alltoallv. They also make
use of MPI Reduce and MPI Allreduce, respectively.
FT uses complex, double precision floating-point operations
and performs 20 complex, double precision floating-point
operations per node (40 total floating-point operations), per
run. MG uses a significant number of MPI Allreduce calls.
Approximately half of them are integer operations and the
other half are floating-point. A wide variety of run times can
be seen in Table I. Time is shown in seconds with the range
indicating the shortest and longest run-times over all numbers
of nodes. The most interesting property of the collective
operations for the NPB suite is that the number of collectives
does not vary based on the size of the problem (class B or
class C) or the number of nodes.

The maximum sizes of various collective operations (in
bytes) are shown in Table II. The maximum is shown because
it has the largest implications for requirements that are placed
on an offloading network interface. Calls which have no data
associated with them are not listed. In virtually all cases, the
collective operations are small with their size being unrelated
to the size of the problem or the number of nodes. For IS and
FT, the total size of the collectives varies with the problem
size and the size per node varies with the number of nodes.

V. APPLICATION ANALYSIS

In addition to the benchmarks studied, three scientific ap-
plications in use at Sandia National Labs were studied. These
applications were:

� LAMMPS — a classical molecular dynamics (MD) code
designed to simulate systems at the atomic or molecular
level[31], [32], [33]. A Bead-Spring Polymer Chains
input deck and a Lennard-Jones System input deck were
used for simulation.� CTH — a multi-material, large deformation, strong shock
wave, solid mechanics code developed at Sandia Na-
tional Laboratories. The 2 Gas problem was used as one
input[34] and two other examples from production runs
were used as well.� Integrated TIGER Series (ITS) — a suite of codes to
perform Monte Carlo solutions of linear time-independent
coupled electron/photon radiation transport problems.
The ITS data is from an input deck used in a production
run.

This set of applications and inputs is representative of three
distinct types of codes in use at Sandia. Further details of these
applications and input sets can be found in [30].

A. Unexpected Messages

Figure 4 indicates that the collectives in Sandia’s appli-
cations behave very differently from those in the NPB suite
(Figure 1). The growth of the maximum length of the queues is

5

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

BT
CG
FT
IS

LU
MG
SP

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(a) (b)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

BT
CG
FT
IS

LU
MG
SP

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(c) (d)

Fig. 2. NPB unexpected queue statistics breakdown, percentage of: (a) long expected messages, (b) long unexpected messages, (c) short expected messages,
and (d) short unexpected messages

TABLE I
COLLECTIVE COUNTS FOR NAS PARALLEL BENCHMARKS

Benchmark Barrier Bcast Reduce Allreduce Alltoall Alltoallv FP Ops Int Ops Time Growth
BT 2 4 1 2 0 0 3 0 37-522 none
CG 1 0 1 0 0 0 1 0 13-202 none
FT 1 2 20 0 22 0 40 0 8-111 none
IS 0 0 2 11 11 11 1 192 1-6 none
LU 1 9 0 8 0 0 8 0 19-307 none
MG 6 6 1 88 0 0 49 40 1-14 none
SP 2 3 1 2 0 0 3 0 32-444 none

TABLE II
COLLECTIVE SIZES FOR NAS PARALLEL BENCHMARKS

Benchmark Bcast Reduce Allreduce Alltoall Alltoallv Growth
BT 12 8 40 0 0 none
CG 0 8 0 0 0 none
FT 12 16 0 2097152 0 size
IS 0 8 4116 4 545900 size
LU 40 0 40 0 0 none
MG 32 8 16 0 0 none
SP 12 8 40 0 0 none

6

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(b)

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(c)

Fig. 3. NPB posted receive queue statistics: (a) max length, (b) max search
depth, (c) average search depth

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(a)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(c)

Fig. 4. Application unexpected queue statistics: (a) max length, (b) max
search depth, (c) average search depth

7

closer to ������� , rather than linear. The maximum search depth
grows in a similar pattern, but remains approximately a factor
of two below the maximum length. The average search depth
is trivially short. The primary difference from the NPB suite
is that all of the applications have queues that grow with the
number of nodes because all of the applications use collectives
extensively. This reinforces the expectation that collective
offload engines must deal with unexpected messages — likely
because of load imbalance in the application causing different
nodes to enter collectives at different times. Unlike point-to-
point operations, there is no explicit way for an application to
avoid unexpected messages from collective operations. That is,
without a non-blocking collective API, an application has no
way to pre-post receive buffers for messages associated with
a collective operation.

The difference between collective behavior in Sandia’s
applications and the NAS parallel benchmarks is further
highlighted in Figure 5. It shows that collective messaging is
dominated by short, expected messages with no applications
seeing the high number of long or unexpected messages seen
in the NPB suite (Figure 2).

B. Posted Receive Queues

Since Sandia’s applications do not use all-to-all style calls
(see Table III), Figure 6 indicates that the posted receive queue
is always short. Again, this is in contrast to the NAS parallel
benchmarks, where some benchmarks grow the posted receive
queue significantly. Combining this data with the data from
Figure 4 indicates that there are some cases where a long
posted receive queue could be created, but that this never
happens. Instead, those messages arrive unexpectedly.

C. Collective Counts, Sizes, and Types

Table III highlights how dramatically different Sandia’s
applications are from the typical benchmarks shown in Ta-
ble I. Applications tend to make much heavier use of
MPI Allreduce. They also make extensive use of both
integer and double precision floating-point operations as part
of these collectives. The common mode of operation for many
scientific applications is to simulate a time step, perform some
number of MPI Allreduce calls, and perform the next time
step. Thus, the number of collectives that are performed is
dependent on the number of time steps that are simulated.
Furthermore, Sandia’s applications are designed for a variety
of uses; thus, the number of collectives and the types of
computations performed as part of the collective varies based
on the particular problem being solved. As an additional note,
unlike the NAS parallel benchmarks, Sandia’s applications
make no use of MPI Alltoall or MPI Alltoallv. Dis-
cussions with developers indicate that codes requiring an all-
to-all communication write their own routine over point-to-
point operations. Presumably, this is to avoid the poor perfor-
mance of many all-to-all implementations, and/or possibly to
take advantage of overlap. Numbers presented here were taken
from 8 node runs but were consistent across run sizes.

The variance in the size of the collectives is also different
between Sandia’s applications and the NPB suite. For CTH,

Table IV shows that the maximum size of the collectives often
depends on the problem, but in other cases (LAMMPS, ITS)
only the size of the (relatively infrequent) broadcast operations
depends on the size of the problem. Reduction operations are
of comparable size between Sandia’s applications and the NPB
suite. The broadcast operations, however, tend to be much
larger for Sandia’s applications.

VI. NON-BLOCKING COLLECTIVES

Collective offload engines provide a unique capability: the
ability to overlap collectives with computation. Traditional
MPI implementations lack this capability because the appli-
cation must remain in the MPI library to perform the messag-
ing (and often computation). With the possible exception of
handler routines such as those found in active messages[35],
a collective offload engine is necessary to offer this capability.
Unfortunately, the MPI interface to collectives is a block-
ing call. Calls such as MPI Allreduce, MPI Alltoall,
MPI Alltoallv, and MPI Barrier require that all of the
nodes enter the call and none can leave until the operation is
(mostly) complete. Even MPI Reduce and MPI Bcast can
require this on systems without a collective offload engine1. In
explanation, broadcast and reduction tend to involve tree based
communication patterns where non-leaf nodes must perform
communication, and possibly computation, as the operation
progresses through the tree. Even with an offload engine, the
root of the reduction must wait for all nodes to complete.

An alternative that would enable applications to leverage
the ability to overlap communication with computation is the
design of a non-blocking collective API. A non-blocking (or
split-phase, or two-phase) collective operation would have a
call to initiate the collective (and contribute any data the local
node might have) and a second call to block on the data. In
between, the application could execute instructions that are not
dependent on the result of the collective.

A split-phase variant of the MPI collective operations were
proposed and debated for inclusion in the MPI-2 specification,
but did not become part of the Standard. The final version of
the API that was voted down is included in Chapter 7 of the
MPI-2 Journal of Development [36]. IBM has implemented
a non-blocking version of the MPI collective operations for
their SP line of systems [37].

The question, however, is how well applications could use
such non-blocking collectives. Is there a need for it? This
section presents data which suggests that, indeed, it is possible
for applications to leverage non-blocking collectives.

A. Execution Window

The data in Figure 7 indicates that in Sandia’s applica-
tions, as they are currently written, a significant number of
instructions could be overlapped by using a non-blocking
collective operation. There are two parts to the figure. On the
left, the distribution of the number of instructions that could
be overlapped with a non-blocking collective is shown as a

1With an offload engine, leaf nodes in a reduction and the root node in a
broadcast could contribute a result and return.

8

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(a) (b)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

M
es

sa
ge

 B
re

ak
do

w
n

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(c) (d)

Fig. 5. Application unexpected queue statistics breakdown, percentage of: (a) long expected messages, (b) long unexpected messages, (c) short expected
messages, and (d) short unexpected messages

TABLE III
COLLECTIVE COUNTS FOR APPLICATIONS

Benchmark Barrier Bcast Reduce Allreduce FP Ops Int Ops Time Growth
CTH 2Gas 1473 266 3 2325 540 1788 189-387 problem
CTH EFP 76221 2574 3 100134 21708 78429 1358-3779 problem

CTH MEK 58024 4270 3 134455 56418 78040 339-1627 problem
ITS SAT 2 24 0 0 0 0 733-1283 problem

LAMMPS LJ 6 53 0 29583 20086 9497 12-18 problem
LAMMPS Bead 10 332 0 60170 99 60071 677-1317 problem

TABLE IV
COLLECTIVE SIZES FOR APPLICATIONS

Benchmark Bcast Reduce Allreduce Growth
CTH 2Gas 256 4 8 problem
CTH EFP 256 4 112 problem
CTH MEK 256 4 304 problem
ITS SAT 13730320 0 0 none

LAMMPS LJ 56000 0 40 none
LAMMPS Bead 72208 0 40 none

minimum, mean, maximum, and median for each application.
These are created by counting the number of instructions
between the last touch of the data buffer used in the collective
and the first read of that buffer after the collective. Instructions
in the MPI library are not counted. The bars are broken into

instructions before and instructions after the collective2. Most
of the window of opportunity occurs before the collective. This
is because applications tend not to call the blocking collective
until the data is needed (rather than calling it when its input has
been computed). For each of these measures, only collectives
containing data were counted (i.e. barrier was excluded since
it is unclear when the application is ready to call a barrier and
when it needs the barrier to complete).

The right side of Figure 7 shows the distribution in another
fashion — the percentage of collectives that have windows
over a threshold size. The minimum threshold listed (1000
instructions) is a conservative estimate of the overhead that

2The minimum, maximum, and median windows were found and then those
windows were decomposed.

9

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(a)

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(b)

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70

E
nt

rie
s

Number of Processors

CTH 2gas
CTH efp

CTH mek
ITS

LAMMPS lj
LAMMPS polym

(c)

Fig. 6. Application posted receive queue statistics: (a) max length, (b) max
search depth, (c) average search depth

might be introduced by an extra function call to create a non-
blocking collective. CTH has particularly interesting charac-
teristics with a relatively small percentage of collectives that
can leverage a non-blocking interface, but massive instruction
windows for those collectives. The window size for LAMMPS
is much more dependent on the nature of the problem being
executed, but at least one type of problem can leverage non-
blocking collectives extensively.

Looking at the source code for CTH and LAMMPS reveals
an interesting limitation of the methodology. All of the data
presented in Figure 7 is extremely conservative. Two types
of coding practices are present that thwart the measurement
technique used. First, CTH abstracts the collective into a com-
munication library. Some of the calls into the communication
library immediately copy the collective result into a temporary
return variable (thus, immediately touching the result buffer),
but do not immediately use the return variable. In LAMMPS,
blocking collectives lead to code structures that call the collec-
tive long before it is needed and use the result unnecessarily
early. Further, temporary variables are used that again obscure
the true data dependencies. Finally, LAMMPS has segments of
code with long strings of independent collectives (all sharing
a temporary variable) which could be overlapped. The current
methodology does not count any of the MPI instructions,
which causes it to miss the overlap potential.

When comparing Sandia’s applications to the NAS parallel
benchmark suite, the NPB suite appears significantly more
amenable to this type of optimization. Unfortunately, the NPB
suite makes very little use of collectives (Figure I). This is
another instance where the NPB suite is shown to be less than
ideal for future studies of collective behavior.

B. Data Consumption Rate

A second metric to consider for non-blocking collectives is
the rate at which data is produced and consumed. A collective
buffer which is filled (or drained) over a large number of
instructions could be broken into several smaller collectives
if a non-blocking interface to a collective offload engine
was provided. Figure 8 examines the average production and
consumption rate for buffers over 8 bytes long that are used in
collectives. “Produce window” is the number of instructions
required to fill the buffer while “produce total” is the time
between first touching the buffer and calling the collective.
“Consume window” is the number of instructions required to
drain the buffer while “consume total” is the time between
exiting the collective and touching the buffer for the last time.

This data indicates that splitting collectives into multiple
smaller collectives could increase the size of the non-blocking
opportunity window significantly. Further analysis will be
needed to determine if breaking a single collective into multi-
ple collectives will be beneficial since it may involve increas-
ing the number of accesses to collective offload hardware.

VII. CONCLUSIONS

This paper addresses a key gap in the knowledge about
how applications use collectives. Previous work [23], [24], [8],
[22] expressed concerns over how collective operations might

10

cg.S bt.S is.S sp.S lu.S
10

0

10
2

10
4

10
6

10
8

in
st

ru
ct

io
ns

Application

Min−post
Mean−post
Max−post
Med−post
Min−pre
Mean−pre
Max−pre
Med−pre

cg.S bt.S is.S sp.S lu.S
0%

25%

50%

75%

100%

Application

>1K inst.
>5K inst.
>10K inst.
>100K inst.

(a) (b)

mg.S ft.S its.starsat lmp.lj lmp.bead
10

0

10
2

10
4

10
6

10
8

in
st

ru
ct

io
ns

Application

Min−post
Mean−post
Max−post
Med−post
Min−pre
Mean−pre
Max−pre
Med−pre

mg.S ft.S its.starsat lmp.lj lmp.bead
0%

25%

50%

75%

100%

Application

>1K inst.
>5K inst.
>10K inst.
>100K inst.

(c) (d)

cth.efp cth.mek cth.2gas NPB Sandia
10

0

10
2

10
4

10
6

10
8

in
st

ru
ct

io
ns

Application

Min−post
Mean−post
Max−post
Med−post
Min−pre
Mean−pre
Max−pre
Med−pre

cth.efp cth.mek cth.2gas NPB Sandia
0%

25%

50%

75%

100%

Application

>1K inst.
>5K inst.
>10K inst.
>100K inst.

(e) (f)

Fig. 7. (a), (c), (e): Instructions available for overlap; (b), (d), (f): percent of calls with sufficient threshold for overlap

11

cg.S bt.S is.S sp.S lu.S

10
0

10
2

10
4

10
6

in
st

ru
ct

io
ns

/w
or

d

Application

Produce−Window
Produce−Total
Consume−Window
Consume−Total

mg.S ft.S its.starsat lmp.lj lmp.bead
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

in
st

ru
ct

io
ns

/w
or

d

Application

Produce−Window
Produce−Total
Consume−Window
Consume−Total

cth.efp cth.mek cth.2gas NPB Sandia

10
0

10
2

10
4

10
6

in
st

ru
ct

io
ns

/w
or

d

Application

Produce−Window
Produce−Total
Consume−Window
Consume−Total

Fig. 8. Data consumption rate

be used. Those questions, such as the number of floating-
point operations and how often are unexpected messages
received, are answered here. Clearly, unexpected messages are
common (Figure 4), but not overwhelming (Figure 5). Appli-
cations make extensive use of MPI Allreduce and often
MPI Barrier and split their operations between floating-
point and integer (Table III). Collectives can be large, but
typically at the scale of a few hundred bytes (Table IV).

A second contribution of this paper is to compare the
collective use of the NAS parallel benchmark suite to ap-
plications that Sandia is currently running. In general, the
NPB suite proves to be a completely unsuitable environment
for developing offload engines and analyzing collectives. The
number and types of calls are completely different as are
their relative importance. Even the queue behavior for the
collectives that are called differs significantly.

Finally, this paper provides concrete data on the value of
non-blocking collective operations. It can be seen (Figure 7)
that there are a significant number of instructions that can be
overlapped with collective operations. This number would be
expected to grow if application developers had the option of
designing and coding for non-blocking collectives. Even so,
current code shows the opportunity to overlap from thousands
of instructions (several microseconds) to hundreds of thou-
sands of instructions (approaching a millisecond) with many
of the collective calls. As the scale of machines continues
to grow, this will become critically important to minimize the
effectively serial portion of the code found in current blocking
collective operations.

REFERENCES

[1] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Black-
more, P. Caffrey, B. Maskell, P. Tomlinson, and M. Roberts, “Improving
the scalability of parallel jobs by adding parallel awareness to the op-
erating system,” in Proceedings of the ACM/IEEE SC2003 Conference,
November 2003.

[2] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Identifying and eliminating the perfor-
mance variability on the ASCI Q machine,” in Proceedings of the
2003 Conference on High Performance Networking and Computing,
November 2003.

[3] R. R. Hoare and H. G. Dietz, “A case for aggregate networks.”
[4] R. Hoare, H. Dietz, T. Mattox, and S. Kim, “Bitwise aggregate net-

works,” in Eigth IEEE Symposium on Parallel and Distributed Process-
ing, 1996, pp. 306–313.

[5] H. G. Dietz, T. M. Chung, and T. I. Mattox, “A parallel processing
support library based on synchronized aggregate communication,” in
1995 Workshop on Languages and Compilers for Parallel Computing,
Ohio State University, Ohio, August 1995.

[6] H. G. Dietz, R. Hoare, and T. I. Mattox, “A fine-grain parallel architec-
ture based on barrier synchronization,” in International Conference on
Parallel Processing, August 1996.

[7] D. Buntinas, D. K. Panda, and P. Sadayappan, “Fast NIC-based barrier
over Myrinet/GM,” in Proceedings of the International Parallel and
Distributed Processing Symposium, April 2001.

[8] D. Buntinas and D. K. Panda, “Nic-based reduction in myrinet clusters:
Is it beneficial?” in Proceedings of the SAN-02 Workshop (in conjunction
with HPCA), February 2002.

[9] D. H. Bailey et al., “The NAS Parallel Benchmarks,” International
Journal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, 1991.

[10] R. F. V. der Wijngaart, “NAS Parallel Benchmarks Version 2.4,” Tech.
Rep., October 2002.

[11] R. W. Wisniewski, L. I. Kontothanassis, and M. L. Scott, “High
performance synchronization algorithms for multiprogrammed multi-
processors,” in Proceedings of the fifth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming, vol. 30, August 1995.

12

[12] J. B. Carter, C.-C. Kuo, and R. Kuramkote, “A comparison of software
and hardware synchronization mechanisms for distributed shared mem-
ory multiprocessors,” University of Utah, Salt Lake City, Utah 84112,
Tech. Rep. UUCS-96-011, September 1996.

[13] E. D. Brooks III, “The butterfly barrier,” International Journal of
Parallel Programming, vol. 15, no. 4, pp. 295–307, 1986.

[14] U. Legedza and W. E. Weihl, “Reducing synchronization overhead
in parallel simulation,” in Proceedings of Parallel and Distributed
Simulation (PADS 96), 1996, pp. 160–169.

[15] A. Krishnamurthy and K. Yelick, “Optimizing parallel programs with
explicit synchronization,” in Proceedings of the conference on Program-
ming Language Design and Implementation (SIGPLAN 95), vol. 30, June
1995.

[16] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby, “Efficient algorithms
for all-to-all communications in multi-port message-passing systems,” in
Proceedings of the 6th annual ACM Symposium on Parallel Algorithms
and Architectures, Cape Cod, New Jersey, 1994.

[17] M. Barnett, S. Gupta, D. G. Payne, L. Shuler, and R. van de Geijn,
“Building a high-performance collective communication library,” in
Proceedings of Supercomputing ’94, 1994, pp. 107–116.

[18] A. D. Knies, F. R. Barriuso, W. J. Harrod, and G. B. Adams III, “SLICC:
A low latency interface for collective communications,” in Proceedings
of Supercomputing ’94, 1994, pp. 89–96.

[19] R. S. Hyder and D. A. Wood, “Synchronization hardware for networks
of workstations: Performance vs. Cost,” in Proceedings of the 1996 In-
ternational Conference on Supercomputing, Philadelphia, Pennsylvania,
1996.

[20] R. Gupta, P. Balaji, D. K. Panda, and J. Nieplocha, “Efficient collective
operations using remote memory operations on VIA-based clusters,” in
Proceedings of the International Parallel and Distributed Processing
Symposium, April 2003.

[21] V. Tipparaju, J. Nieplocha, and D. K. Panda, “Fast collective operations
using shared and remote memory access protocols on clusters,” in
Proceedings of the International Parallel and Distributed Processing
Symposium, April 2003.

[22] A. Moody, J. Fernandez, F. Petrini, and D. K. Panda, “Scalable
NIC-based reduction on large-scale clusters,” in Proceedings of the
ACM/IEEE SC2003 Conference, November 2003.

[23] A. Wagner, D. Buntinas, R. Brightwell, and D. K. Panda, “Application-
bypass reduction for large-scale clusters,” in Proceedings 2003 IEEE
Conference on Cluster Computing, December 2003.

[24] D. Buntinas, D. K. Panda, and R. Brightwell, “Application-bypass
broadcast in MPICH over GM,” in Proceedings of The 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid
2003), May 2003.

[25] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen, “Portals
3.0: Protocol building blocks for low overhead communication,” in
Proceedings of the 2002 Workshop on Communication Architecture for
Clusters, April 2002.

[26] R. Brightwell and K. D. Underwood, “An analysis of NIC resource
usage for offloading MPI,” in Proceedings of the 2002 Workshop on
Communication Architecture for Clusters, Santa Fe, NM, April 2004.

[27] Apple Architecture Performance Groups, Computer Hardware Under-
standing Development Tools 2.0 Referenc e Guide for MacOS X, Apple
Computer Inc, July 2002.

[28] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz, J. N.
Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-second local area
network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, Feb. 1995. [Online].
Available: m10029.pdf

[29] G. Burns, R. Daoud, and J. Vaigl, “LAM: An
Open Cluster Environment for MPI,” in Proceedings of
Supercomputing Symposium, 1994, pp. 379–386. [Online].
Available: http://www.lam-mpi.org/download/files/
lam-papers.tar.gz

[30] R. Brightwell, S. Goudy, and K. D. Underwood, “On characterizing the
network resource usage of mpi applications,” submitted, May 2004.

[31] S. J. Plimpton, “Lammps web page,” July 2003,
http://www.cs.sandia.gov/ sjplimp/lammps.html.

[32] ——, “Fast parallel algorithms for short-range molecular dynamics,”
Journal Computation Physics, vol. 117, pp. 1–19, 1995.

[33] S. J. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh ewald and
rRESPA for parallel molecular dynamics,” in Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing,
Minneapolis, MN, Mar. 1997.

[34] R. Brightwell, H. E. Fang, and L. Ward, “Scalability and performance
of CTH on the Computational Plant,” in Proceedings of the Second
International Workshop on Cluster-Based Computing, May 2000.

[35] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: a mechanism for integrated communication and computation,”
in Proceedings of the 19th annual International Symposium on Computer
Architecture, May 1992, pp. 256–266.

[36] MPI Forum, “MPI-2 journal of development,” http://www.mpi-
forum.org/docs/mpi-20-jod.ps, July 1997.

[37] IBM, Parallel Environment for AIX 5L V4.1 - MPI Programming Guide,
SA22-7945-00.

Ron Brightwell received the BS degree in mathe-
matics in 1991 and the MS degree in computer sci-
ence in 1994 from Mississippi State University. He
is currently a principal member of technical staff at
Sandia National Laboratories. His research interests
include high-performance, scalable communication
interfaces and protocols for system area networks,
operating systems for massively parallel processing
machines, and parallel program performance analy-
sis libraries and tools. He is a member of the IEEE
Computer Society and the ACM.

Sue P. Goudy is employed at Sandia National Lab-
oratories, where she is an applications generalist for
Scalable Systems Test and Integration Department.
Ms. Goudy’s current research interest is analytic
model methodology for performance of large-scale
parallel applications.

Arun Rodrigues received the Master’s Degree from
the University of Notre Dame in 2003 and the BS
degree from the University of Notre Dame in 2001.
He is currently a PhD candidate at the University of
Notre Dame in Computer Engineering. His research
concentrates on programming models for novel ar-
chitectures, with a focus on large scale processing-
in-memory systems for scientific computing. Aside
from this, he works on low power microarchitec-
tures, non-silicon architectures, and efficient archi-
tectural simulation.

Keith D. Underwood received the BS and PhD
degrees in computer engineering from Clemson
University in 1995 and 2002, respectively. He is
currently a senior member of the technical staff at
Sandia National Laboratories. His research interests
include cluster computing, programmable network
interfaces, and the role of reconfigurable computing
in high performance computing systems. He is a
member of the IEEE, IEEE Computer Society, and
the ACM.

