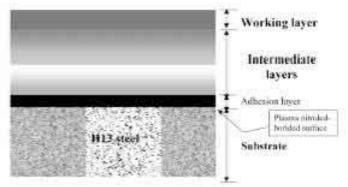


Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

Department of Energy – Industrial Technologies Industrial Materials of the Future Program Review

> Chicago, IL June 3rd, 2005

DOE Project DE-FC36-04GO14036


FGM for Industrial Tools & Dies (DE-FC36-04GO14036)

Goal: Development of functionally graded materials (FGM) for improved industrial process efficiencies and energy utilization.

Challenge: Development of robust FGM structures and fabrication processes that are reliable and economical to implement.

Benefits: A 120 trillion Btu/yr estimated reduction in energy consumption by 2020, and environmental emissions of over 2.3 million tons of CO_2 and 64 thousand tons of other emissions per year. Deploying FGM tooling is expected to have a \$4.22 billion/yr savings to U.S. manufacturing industry.

Potential End-User Applications: Manufacturing tooling for the metal casting, glass, and forging industries.

Participants: Carpenter Powder Products, Pacific Northwest National Laboratory, South Dakota School of Mines & Technology, Metaldyne, GKN, THT Presses

Pacific Northwest National Laboratory

Group	FGM Partners
Industry Participants	Carpenter Powder Products (<i>powder metallurgy</i>) Metaldyne (<i>forging & metal casting</i>) GKN Sinter Metals (<i>forging</i>) THT Presses (<i>metal casting</i>) Lancaster Glass*, Anchor Hocking* (<i>glass</i>)
University	South Dakota School of Mines & Technology
Government	Pacific Northwest National Laboratory DOE Golden Field Office

*Proposed addition in place of Techneglas

Energy Efficiency Barriers-Pathway Approach

Barriers

- Inefficient thermal management with most industrial manufacturing tools
- Historically tooling has been made from low-cost tool steels with inadequate durability

Pathways

- Development of functionally graded materials with enhanced thermal and chemical compatibility characteristics
- Prototype tooling and industry trials to validate and quantify energy savings and performance enhancements

Critical Metrics

- Durable and economical FGMs with >10x tool life enhancement
- Reduction in energy input needed for tooling and manufacturing processes

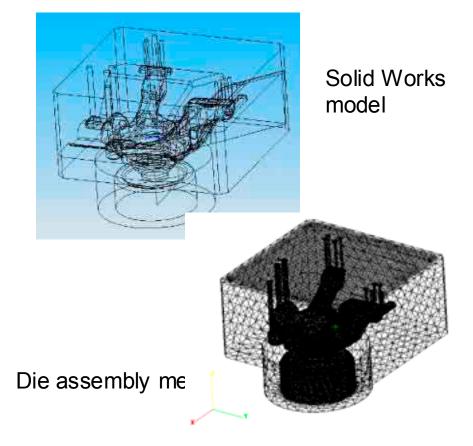
Benefits (est.)	2020		
Energy Savings	120 trillion Btu		
Cost Savings	\$4.22 billion		
Carbon Reduction	2.3 MTons		

FGM Project Tasks

- Task I Identify and Model Tooling Issues in Hot Forming Processes
 - Forging
 - Die Casting
 - Glass Forming
- Task II Optimize LPD and SSDPC Processes for Manufacturing FGM Tooling
 - SSDPC Structural Analysis
 - LPD Structural Analysis
- Task III Asses Performance of FGM Tools in an Industrial Environment
 - Manufacture FGM Tools
 - Production Trials
 - FGM Performance Assessment

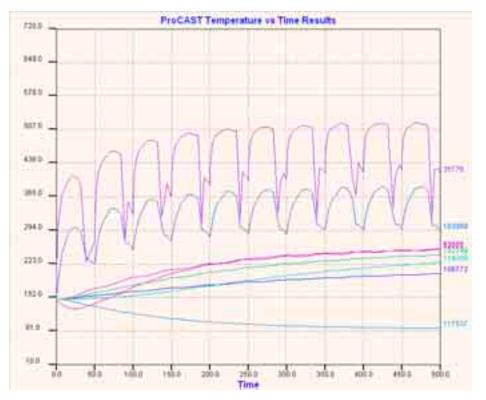
Benchmarking and Tool Failure Analysis

- Tooling Application Focus
 - Forging dies and punches
 - Die casting dies and shot-sleeves
 - Glass press forming dies
 - Extrusion die and mandrels
- Each application has its own unique modes of failure
 - Empirical analysis is necessary to benchmark performance and failures of current tools
 - Modeling is important for in-site into failure modes and prediction of FGM performance

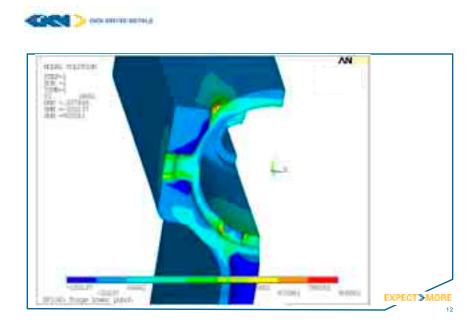


Tool Failure Analysis: Casting Die Modeling

- FEA and other models
 - Die casting simulation for thermal profile prediction in die and shot-sleeve assembly
 - FEA stress analysis
 - Die and casting alloy reaction prediction via thermodynamic and reaction mechanism calculations
- High production aluminum die casting dies from THT and Metaldyne currently being benchmarked



Die Casting Die Surface Thermal Analysis


- Thermal die heat-up analysis
- Temperature vs. time is plotted for random sampling of nodes in the molds
- Significant temperature transients result from heat up by motel metal and rapid cool down of die surface by application of mold wash each cycle

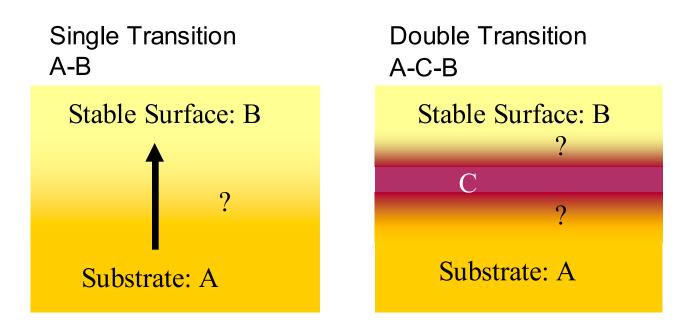
Pacific Northwest National Laboratory Control by father to the Control of the sectory

Tool Failure Analysis: Forging Die Modeling

- FEA of stresses in die
- Results are used to determine high and low stressed areas, as well as indicators of potential crack initiation points
- Over-stressed and thermal softening are the primary issues with forging tools

U.S. Department of Energy Energy Efficiency and Renewable Energy Pacific Northwest National Laboratory Operatory Handle for the US Department of Jamp

Background on FGM Structures

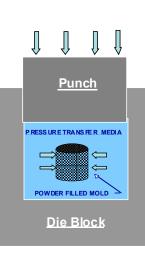

- No material has optimum properties for all tooling applications
- Monolithic materials of tool steels are typically used for most tooling applications, primarily due to low cost
- Trade-offs are typically made between, strength, hot toughness, and wear resistance
- The purpose for FGM is to create a bulk structure with optimum properties placed in localized regions where they are most needed
- Graded structure transition from one alloy or structure to another, and are selected based on operating environments

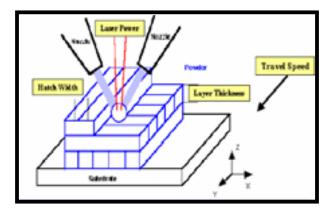
Functionally Graded Structures

- Prediction of Graded Material Structure and Behavior
 - Existing Phase Diagrams
 - Computation and prediction of phase diagrams using ThermoCalc®
 - Non-Equilibrium alloy composition kinetic predictions using DICTRA®
 - Empirical trials

FGM Material Approach

- Several material paths selected for graded structures from H13 tool steel substrate to enhanced surfaces
- Graded structures to:
 - Conventional alloys
 - Nickel based super alloys such as DM21 and Alloy 718 (High Temperature)
 - Cobalt based super alloys such as CCW & CCM+® (Chemical Resistance)
 - Individual elements and compounds, such as WC in high Ni-Cr Matrix (high surface wear resistance)





Task II: FGM Processing Methods

 Solid-State Dynamic Powder Compaction (SSDPC)

3kWNd:YAG Laser Equipment

• Laser Powder Deposition (LPD)

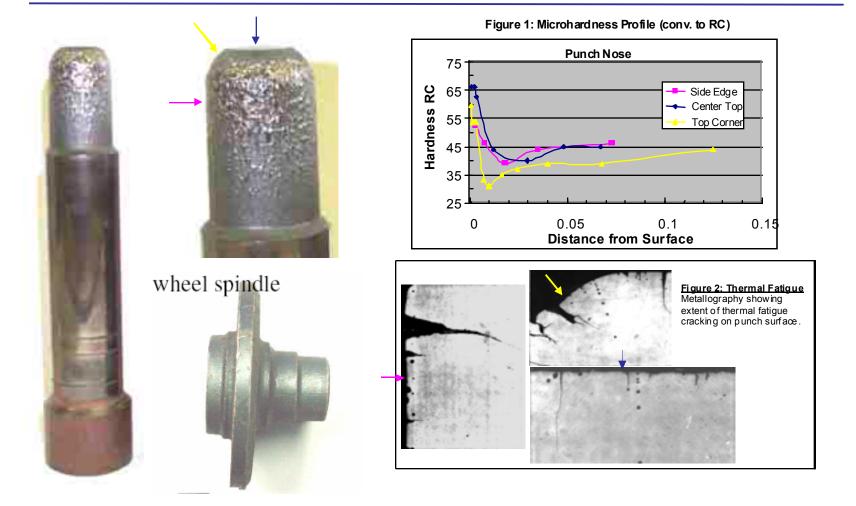
U.C.Orgaziment of Exercise Energy Efficiency and Renewable Energy Pacific Northwest National Laboratory

Benefits of FGM Processing Methods

- SSDPC Process Advantages
 - Produce fully dense components with minimal cycle time and cost
 - Increased strength over conventional PM processing
 - Powder and/or solid (discrete 2nd phases) combinations
 - Minimize potential debits of excessive diffusion between dissimilar metals as a result of short cycle time and high cooling rates
 - Near net shape capability
- LPD Process Advantages
 - Fabrication of true graded structures
 - Selective placement of unique structures, including structures with discrete insoluble 2nd phases
 - Ability to repair/convert existing tooling

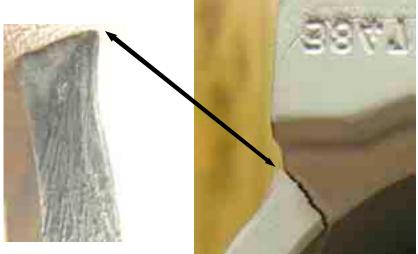
Task I: Tool Failure Analysis Outline

- Metaldyne RO: Punch Nose, Intermediate Punch, Anvil, Shear Die
- Metaldyne Twinsburg: Aluminum Die Cast Inserts
- GKN: Connecting Rod Open Die/Closed Die, Core Pin
- American Axle: Button Die, Button Die Holder, warm forging punch
- Chamberlain: Extrusion Tip
- S&J Technology: Glass forming mold



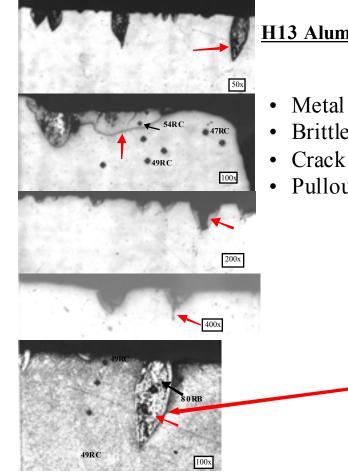
Energy Efficiency and Renewable Energy

Tool Failure Analysis: Hot Forging Punch



Tool Failure Analysis: Connecting Rod Punch

Crack Origin: OD


U.S. Department of Energy Energy Efficiency and Renewable Energy

Wear lines

Tool Failure Analysis: Al Die Cast Insert

H13 Aluminum Die Cast Insert

- Metal reaction
- Brittle intermetallic phase
- Crack propagation
- Pullout/erosion

U.S. Organitissist of Essergy Energy Efficiency and Renewable Energy

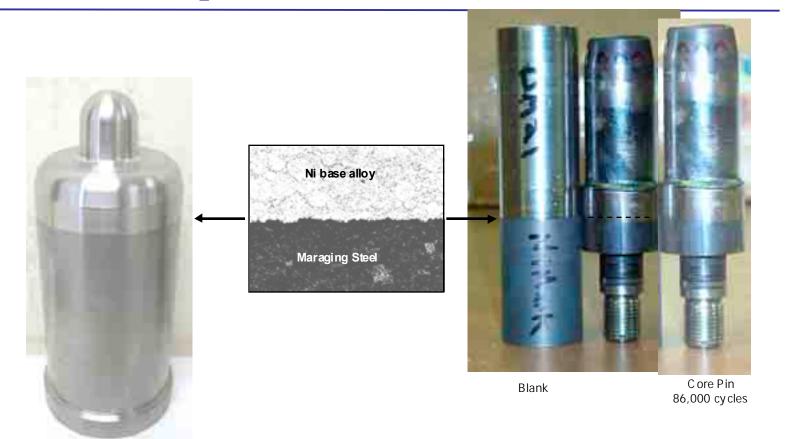
Summary: Tool Failure Analysis

Conventional tool manufacturing processes exhibit:

Low material yields Significant machining time Extensive heat treatment cycles Long lead times High energy consumption

Tooling Issues:

Heat checking Thermal Fatigue Wearing out of molds and dies Soldering Loss of hardness



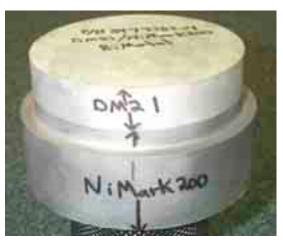
U.S.Department of Energy Energy Efficiency and Renewable Energy Pacific Northwest National Laboratory Operatory Autofusion for US Department of Long.

SSDPC Examples

Punch Nose

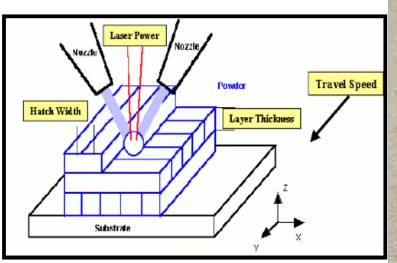
DM21 Nickel base alloy powder bonded to NiMark300 by SSDPC process

U.S. Department of Energy Energy Efficiency and Renewable Energy



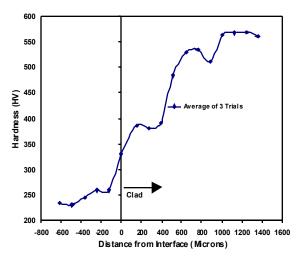
SSDPC Examples

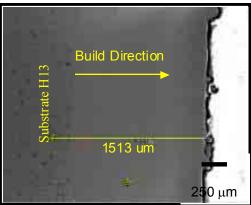
<u>Bimetal Approaches</u> DM21 -Nickel base superalloy CCM+ - Cobalt based superalloy NiMark 200,300 - Maraging steel



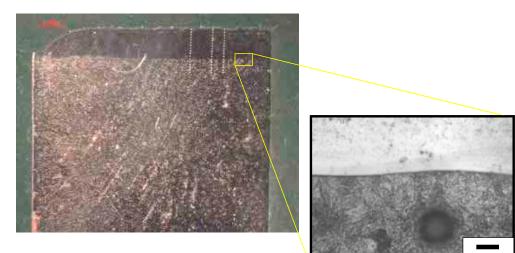
LPD Examples

Laser Clad H13 Anvils1) NiTung602) NiTung 603) DM213) CCW




U.S. Organisation of Energy Energy Efficiency and Renewable Energy Pacific Northwest National Laboratory Constant in Autoffs for the US Department of Samp

Stellite® Alloy 6 Deposited on H13


Stellite6(2 layers), Hardness vs. Distance

U.C.Organization of Energy Energy Efficiency and Renewable Energy

H13/ST 6 Interface

10 µm

Future Plans FY06

- Continue Monolithic Material Benchmarking Trials
 - Metaldyne Die Cast Inserts: CCM+ and Aermet
 - GKN Open/Closed Die: Aermet
- Manufacture and evaluate FGM tooling properties
- LDP FGM Fabricated Structures
 - Metaldyne Anvil: NiTung60, CCW+ DM21
- SSDPC Fabricated Tools
 - Bimetal Approaches:
 - DM21, CCM+, H13, NiMark300, NiTung60
 - Discontinuous reinforced dispersions NiTung60
- Integrate a glass forming company into the project

U.S. Department of Energy Energy Efficiency and Renewable Energy

FGM Project Task Status & Finance Details Supplementary Slides

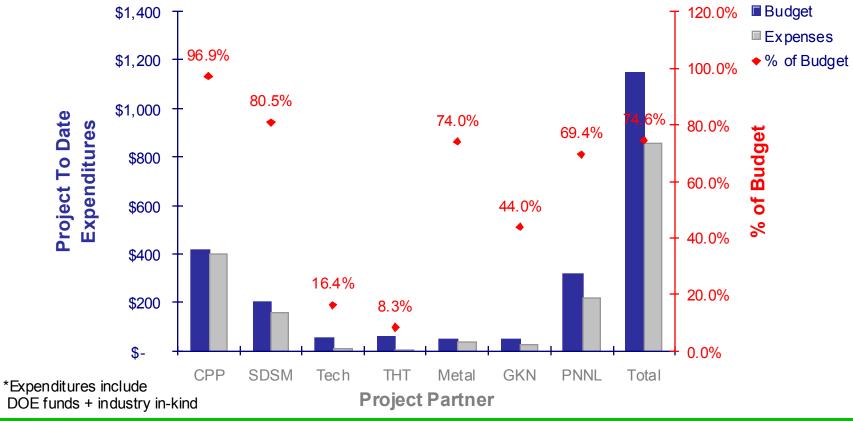
FGM Project Task Status

Task	Milestones	Start Date	Completion Date	Status
I	Identify and Model Tooling Issues in Hot Forming Processes	3/1/04	6/30/05	60%
	1) Identify Tool Problems		-	
	a) Review hot forming tooling requirements	3/1/04	8/31/04	100%
Ì	b) Identify FGM systems opportunities	5/31/04	3/31/05	65%
	2) Model Hot Forming Operations			
	a) Forging & Die Casting	5/31/04	6/30/05	30%
	b) Glass Press Forming	7/30/04	6/30/05	0%
II	Optimize LPD and SSDPC Processes for Manufacturing FGM Tooling	4/30/04	6/30/06	5%
	1) LPD			
	a) Use LPD to produce FGM tooling	7/30/04	8/31/05	15%
	2) SSDPC			
	a) Optimize key variables of process	4/30/04	12/31/05	15%
	b) Characterize SSDPC FGM properties and structures	2/28/05	6/30/06	0%
		-		-
ш	Assess Performance of FGM Tools in an Industrial Environment	7/31/04	2/28/07	2%
ļ	1) Evaluate FGM materials			
	a) Establish robustness of LPD and SSDPC Processes	6/30/05	6/30/06	0%
	2) Industry Prototyping			
	a) Manufacture Prototype tools			
	b) Assess FGM materials performance for economic and	7/31/04	12/31/06	10%
ļ	energy savings	6/30/05	2/28/07	0%

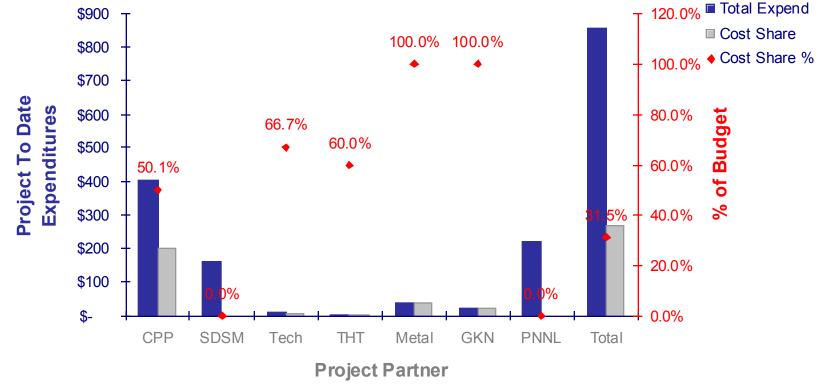
FGM Project Financial Review – DOE Funds

Year	Requested* Budget	Approved* Funding	Project Spending
3/1/04 to 2/28/05	\$760k	\$591k	\$616k
3/1/05 to 2/28/06	\$910k	\$705k	
3/1/06 to 2/28/07	\$780k		
Totals	\$2450k	\$1296k	\$616k

*Fiscal Year (Oct.-Sept.)



FGM Project Financial Review


U.S.Orgazining of Exercity Energy Efficiency and Renewable Energy

FGM Project Financial Review

Cost Share Analysis Project to 2/28/05

