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KINK MODE IS STABILIZED BY IDEAL WALL
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KINK MODE GROWTH IS ONLY SLOWED BY RESISTIVE WALL
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● Resistive wall mode (RWM) is 
 unstable

— Mode structure similar to ideal 
 external kink

— Mode grows slowly:  γ ~ τ–1
w
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KINK MODE GROWTH IS SLOWED BY RESISTIVE WALL 
AND STABILIZED BY PLASMA ROTATION
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● Resistive wall mode (RWM) is 
 unstable

— Mode structure similar to ideal 
 external kink

— Mode nearly stationary while 
 plasma rotates ω ~ τw

–1 << Ωplasma

— Mode grows slowly:  γ ~ τ –1
w

● Dissipation + rotation
 stabilizes RWM
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Ideal Stability

(γ + inΩ)2 – Γ2
∞}no wall 0 = +



Plasma Rotation Stabilizes the RWM
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● The RWM becomes unstable 
 when the plasma rotation 
 decreases below a critical value

STABILIZATION OF THE RWM 
BY PLASMA ROTATION CONFIRMED EXPERIMENTALLY

— DURATION LIMITED BY ROTATION SLOWDOWN —

269–01/AMG/wj

— Consistent with 
 predictions of ideal 
 MHD with dissipation
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•	 Higher neutral beam power gives higher beta but lower rotation
•	 Angular momentum confinement time, τL, decreases rapidly with increasing neutral beam power

Plasma Rotation (ρ~0.6)
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ACTIVE FEEDBACK AND RESONANT FIELD CORRECTION 
ON DIII–D USES SIX-ELEMENT COIL SET AT THE MIDPLANE
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● n = 1 resonant fields arise from 
 inevitable small irregularities 
 in poloidal and toroidal field coils

C-Coil Sections
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External
Br LoopsInternal

Br Loops

Internal
Bp Coils

● Uncorrected, resonant fields may exert 
 drag on the plasma rotation 
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● Below a critical rotation value, 
the RWM becomes unstable

PLASMA ROTATION DECREASES MORE SLOWLY 
WITH DECREASING RESONANT FIELD AMPLITUDE
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● Below a critical rotation value, 
 RWM becomes unstable

PLASMA ROTATION DECREASES MORE SLOWLY 
WITH DECREASING ERROR FIELD AMPLITUDE
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0
2

4

6 Error Field Component at 2/1 Surface (Gauss)

Plasma Rotation (kHz) at q = 2

βN

● At βN < βN
no wall rotation is

 maintained even with large 
 error field
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AT β ABOVE THE NO-WALL LIMIT A WEAKLY DAMPED RWM
“AMPLIFIES” ANY APPLIED RESONANT FIELD

NATIONAL FUSION FACILITY
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● RWM is nearly stationary
 n = 1 mode ⇒ can resonate
 with n = 1 static resonant field
 — Predicted in A. Boozer, PRL (2001)

● Rotational stabilization gives,
 in general, only weak damping
 — RWM is strongly damped
  just above no-wall limit
 — RWM quickly becomes weakly damped
  at higher β
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CLEAR EVIDENCE OF RESONANT RWM-ERROR FIELD INTERACTION
IS FOUND IN MEASUREMENT OF HELICAL PLASMA RESPONSE
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● Applied n = 1 field pulse from C-coil has no helicity
 — Same toroidal phase at three arrays

● Three toroidal arrays of 
 saddle loops are at different 
 poloidal locations
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CLEAR EVIDENCE OF RESONANT RWM-ERROR FIELD INTERACTION
IS FOUND IN MEASUREMENT OF HELICAL PLASMA RESPONSE
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● Plasma response shows a distinct helicity
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● βN ∼ 2 βN

● βN < βN

● Feedback control of NBI 
 power keeps βN below 
 stability limit (107603)

● No other large scale 
 instabilities encountered 
 (NTM, n=2 RWM, . . . )

— β = 3.7%

— The best 
 theoretically possible

REDUCED RESONANT FIELDS ⇒ SUSTAINED ROTATION
⇒ STABILIZATION OF THE RWM  

⇒ RELIABLE OPERATION ABOVE THE NO-WALL LIMIT
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Amplifier:

Gp and Gd

Control Coils Plasma
Response Bp Sensors

V B-radial ψψψψ

RWM

Basic Feedback Control Loop for RWM Control
with Magnetic Sensors Uncoupled to Control Coils

no-coupling

Feedback Volts/Weber
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● Toroidal rotation reduced
by 50% compared to 
typical RWM discharges

● Higher feedback gain 
removes instability

● No visible effect of 
feedback field on plasma 
toroidal rotation, 
suggesting direct feedback 
stabilization of the RWM

● Power scan experiments 
yielded first data for 
quantitative comparison 
with VALEN

LOW ROTATION PLASMA RWM FEEDBACK STUDIES
SHOWS CLEAR EFFECT OF FEEDBACK LOOP GAIN
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VALEN Feedback Control Model
see  PoP 8 (5), 2170 (2001) � Bialek J., et al.

• Unstable Plasma Model ( PoP Boozer 98)
• General 3D finite element

electromagnetic code
• Arbitrary sensors, arbitrary control

coils, and most common feedback
logic (smart shell and mode control)

 

X

Y

Z



S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

INTERNAL CONTROL COILS ARE BEING TESTED IN DIII-D 
PREDICTED TO REACH IDEAL PRESSURE LIMIT w/o ROTATION

Coils Being Installed in DIII–D

● Better matching to resonant field spectrum
● Active feedback stabilization is calculated by VALEN to reach ideal wall limit

in plasmas without rotation
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