Fermilab, May, 2003

Takaaki Kajita, ICRR, U. Tokyo

The JHF-Kamioka neutrino project

Outline

- Introduction
- · JHF-Kamioka neutrino project -overview-
- · Physics in phase-I
- · Phase-II
- · Summary

Introduction

SK atmospheric neutrino data

1489day FC+PC data + 1678day upward going muon data

Oscillation parameters

Neutrino Oscillation (Δm^2 =0.003eV²)

K2K data and oscillation

CNGS (OPERA, ICARUS) (2006) : appearance.

Next²: JHF-Kamioka neutrino project

JHF-Kamioka neutrino project -overview-

Main goals

Main physics goal in JHF-II

Discovery and measurement of non-zero CP phase

JHF-Kamioka neutrino project -- overview-

Present collaboration

Primary proton beamline – Overview-

Construction Schedule & Commissioning

200

J-PARC construction

J-PARC LINAC construction (Apr.03)

Target and horns (preliminary design)

Target: Graphite (=25-30mm) w/ water cooling

Need much more detailed studies

Decay tunnel design

Decay pipe cooling and heat simulation

Far/near ratio

3.5

E

4.5

(GeV)

Near detector @1.84km

Physics in Phase-I

Reconstruction of E

For single Ch ring events: $E_{\mu}, \mu \longrightarrow E$

Super-K w/ JHF beam

Quasi-elastic and other interactions

High E non-quasi-elastic interactions cause problems. Minimize the high energy (above the max. osc. energy) neutrino flux.

Single ring (muon-like) in Super-K

Data sample: SK Monte Carlo, Fully-contained single-ring, muon-like events.

Important to run the experiment with low energy beam.

Measurement of sin²2 ₂₃

m² dependence of the sensitivity

Off-axis angle should be adjusted to about 0.1 deg.

e beam contamination

Number of signal events and BG

 $\Delta m^2 = 3x10^{-3} eV^2$, sin²2 $\theta_{13} = 0.1$

OAB 2deg., 5yrs

	νμC.C.	νμN.C.	Beam Ve	Osc'd v_e
Generated	10713.6	4080.3	292.1	301.6
1ring e-like	14.3	247.1	68.4	203.7
red. eff.	0.1%	6.1%	23.4%	67.5%
e/π^0 sep.	3.5	23.0	21.9	152.2
red.eff.	0.03%	0.6%	7.5%	50.4%
.4 <ev<1.2< td=""><td>1.8</td><td>9.3</td><td>11.1</td><td>123.2</td></ev<1.2<>	1.8	9.3	11.1	123.2
red.eff.	0.02%	0.2%	3.8%	40.8%

e/ ⁰ separation

• Shower direction w.r.t. beam

(1) $\cos\theta_{ve}$: π^0 tend to have a forward peak

- Force to find 2nd ring and...
 - (2) $E(\gamma_2)/E(\gamma_1+\gamma_2)$: Large for BG
 - (3) Likelihood diff. between 1 and 2-ring assumptions
 - (4) Invariant mass: Small for v_e

Measurement of sin²2 ₁₃

sin²2 13	μ (CC+NC)	Bean e	Osc'd e	Signal+BG
0.1	11.1	11.1	123.2	145.5
0.01	11.1	11.1	12.3	34.5

JHF Phase-II

Assumptions

Solid line: w/ matter Dashed line: w/o matter

Neutrino and anti-neutrino runs

Expected CP violation signal(1)

of e⁻ events including BG

Expected CP violation signal (2)

3 CP sensitivity

 3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

Decay Pipe Common for SK/HK

Possible site for Hyper-K

Common off-axis angle (2-3 degrees) for both Super-K and Hyper-K

Main goals of JHF-Kamioka neutrino project (Phase-I) Precise determination of neutrino oscillation parameters. Accuracy: $\sin^2 2_{23} \cdots 1\%$ $m^2 \cdots m^2$ a few % Discovery and measurement of non-zero 13 $\sin^2 2_{13} \cdots > 0.01$

Main goals of JHF-Kamioka neutrino project (Phase-II) Discovery and measurement of non-zero CP phase

Design works are in progress hoping to start the experiment by (the end of 2007 or) early 2008.