Heavy-ion physics at JHF

- (1) the highest baryon density expected at JHF
- (2) QGP exists at SPS, but not at AGS ?
- (3) expansion and flow at freeze-out (4) leptonic probes

ShinIchi Esumi / Univ. of Tsukuba

ShinIchi Esumi / Univ. of Tsukuba

non-monotonic behavior of V_f

H. Appelshäuser, H. Tilsner $V_f = (2\pi)^{rac{3}{2}} \cdot R_{long} \cdot R_{side}^2$ (_€щJ) [↓]4000 dN/dy_{mid} 10 ³ <k,>=0.16 GeV/c 10 ² 2000 2(p+p)+3π 10 F E895 ο π΄ CERES p+p STAR π'π' p-p STAR π⁺π⁺ Δp 0 10² 10² √s(GeV) 10 1 10 √s(GeV) \Rightarrow non-monotonic behavior of V_f with beam energy. \Rightarrow minimum of V_f between AGS and SPS \Rightarrow monotonic evolution of particle yields \Rightarrow freeze-out not at constant particle density $\rho = \frac{V_f}{N}$

NP02 28/Sep/2002

freeze-out at critical mean free-path

NP02 28/Sep/2002

is presented in the reaction plane as a function of x and z for $t_{\rm A} = 5$ fm/c. Subplot A) A = 0.065, subplot B) A = 0.08. The QGP volume has a shape of a tilted disk and may produce a third flow component.

The wiggle (the 3rd flow component) is there at SPS.

NP02 28/Sep/2002

ShinIchi Esumi / Univ. of Tsukuba

11

low mass electron pair enhancement

larger enhancement at lower energy in SPS

NP02 28/Sep/2002

ShinIchi Esumi / Univ. of Tsukuba

ShinIchi Esumi / Univ. of Tsukuba

density effect seen in p+A collisions at KEK ps

NP02 28/Sep/2002

ShinIchi Esumi / Univ. of Tsukuba

Summary

(1) systematic study of freeze-out conditions(2) detailed study of directed and elliptic flow(3) low mass lepton pair measurements

can be done in order to understand QGP and/or high density nuclear matter and by

heavy-ion beam at JHF and/or GSI upgrade