

Forward GEM Tracker (FGT) Technical implementation, Cost, R&D plan, Schedule

Bernd Surrow

Massachusetts Institute of Technology

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007 Bernd Surrow

Technical realization

Requirements

R&D plan

Cost estimate

Schedule

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007

FGT group

Institution list

- O Argonne National Laboratory
- O Indiana University Cyclotron Facility
- Lawrence Berkeley National Laboratory
- Massachusetts Institute of Technology
- O Valparasio University

• Yale University

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007

• e^{-}/e^{+} separation for high-p_T tracks in STAR EEMC acceptance (1 < η < 2)

Material budget: <10% (1 < η < 2)</p>

Rate capability: Handle RHICII peak luminosities for p+p

Sampling speed: Resolve individual beam bunches (107ns - bunch crossing time)

Mechanical design - Support structure

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007

R&D plan

R&D items - 2007

- The following R&D activities are foreseen in 2007
 - Prototype and test FGT hybrid chip readout system
 - Feasibility study on the usage of light-weight carbon foam material to design a triple-GEM prototype chamber including support structure
 - Feasibility study on the usage of laser-etched readout board optimized for hit resolution requirement and STAR conditions
 - Explore the usage of air cooling
 - Stability of carbon foam material
- O Requested funds: \$120k
 - R&D Engineering research: \$75k
 - Readout components (APV25-S1 chip, cables, hybrids): \$15k
 - Carbon foam material, air cooling and readout board: \$30k and larger GEM foils (SBIR effort)

R&D plan

R&D items - 2008

- The following R&D activities are foreseen in 2008
 - Test hybrid chip readout system and STAR DAQ integration
 - Investigate performance of triple-GEM light-weight prototypes on the bench
 - Investigate performance of triple-GEM light-weight prototypes chamber inside STAR under

beam conditions

- O Requested funds: \$125k
 - R&D engineering research: \$100k
 - □ STAR beam test: \$25k

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007

FGT cost estimate assumptions

• Estimate is based on baseline design

O The readout system is based on the APV25-S1 chip which is already part of a

prototype readout system (PHOBOS expertise at LNS on chip readout systems)

O Current estimate relies heavily on the collaboration with Tech-Etch Inc. as part of the

ongoing SBIR program

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007

Cost estimate

Material

Item	Amount	\mathbf{k}
GEM chamber mechanics	36	51
Readout board	36	51
GEM foils	150	42
APV25-S1 chips	828	29
Flex cable/hybrid	75	21
Control Units	15	8.4
Ribbon cables	15	2.8
LV power supplies	2	20
HV power supplies	2	11
DAQ		200
Air cooling		35
Mechanics		250
Misc. items (Incl. gas system)		70
Total		791
Grand total		862

Spares:

- GEM foils (42/150)
- GEM chamber mechanics (12/36)
- 50% spares: Readout chips, flex cables/hybrids, control units and ribbon cables

Contingency:

• 20% on catalogue items and 40% on non-standard items

Allocation:

• 9% of Total

- Mechanical engineering
 - O MIT-Bates mechanical engineering division: MIT
- Electronics engineering
 - O ANL and MIT-Bates electronics engineering division: ANL / MIT
- GEM lab
 - O LNS and Yale laboratory: MIT / Yale
- Assembly and integration: MIT / BNL
- Computing / Software: IUCF / LBL / MIT
- DAQ integration: ANL / MIT

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007

Labor

Institute (6)	MIT (4)	BNL (2)	
Mechanical FTE (3) (Engineer / Technician)	1 (\$200k) / 1 (\$100k)	0.5 (\$100k) / 0.5 (\$50k)	
Electrical FTE (3) (Engineer / Technician)	1 (\$200k) / 1 (\$100k)	0.5 (\$100k) / 0.5 (\$50k)	
Total:	\$400k / \$200k	\$200k / \$100k	

(1 FTE: 1 Full-Time Employee per year including overhead)

Total: \$1170k (With 30% contingency)

Total FGT project cost: Material (\$862k) + Labor (\$1170k) = \$2032k

(Estimated contributed labor (Not subtracted): 0.5 FTE (Technician)

Schedule

FGT work flow (In weeks)

- O Design phase (Support structure / Triple-GEM chambers): 12 weeks
- O Procurement of material: 6 weeks
- O Construction of detector quarter sections: 18 weeks
 - Delivery of 10 GEM foils from Tech-Etch per week
 - Test of GEM foils (Electrical tests, optical scan on flatbed scanner): 0.5 week
 - Test of readout board (Parallel to GEM foil tests): 0.5 week
 - Construction of GEM detectors: Mechanical assembly, foil mounting, testing between each gluing step: 2 weeks
 - Test of assembled chamber: Gas tightness, X-ray test, Gain map: 2 weeks
 - Estimated total construction of one quarter section: 5 weeks
 - Assume: 2 detectors in parallel starting every week

O Construction of full system: 10 weeks

- Assemble 6 disks on support frame from 4 quarter sections each: 1 week
- Assemble electrons and test: 2 weeks
- Test disk electrons and detectors and full system test (Cosmic ray test): 7 weeks

O Installation: 3 weeks

O Integration: 5 weeks

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007

Total: 12 + 42 = 54 weeks

Bernd Surrow

Realization

• If FGT project is >2M\$ DOE line item, construction may begin in October 2008 (FY09) -

Installation only in summer 2010

• If FGT project is <2M\$, explore with BNL and DOE if there is any way to accelerate the

schedule - Potential for installation before summer 2010

• RHIC schedule and Beam-Use request is still subject to ongoing discussion - Strong push

to start before summer 2010 with 500 GeV CME polarized pp program

• Ideally: Complete installation of FGT with beginning of 500 GeV CME polarized pp

program

BNL Detector Advisory Committee Meeting BNL, Upton, NY, January 30-31, 2007