

Outline

FGT Physics motivation - W program

FGT Layout - Simulation results and optimization

FGT Technical Realization

- Triple-GEM detector development R&D
- Mechanical design
- O Front-End Electronics
- O DAQ

FGT Schedule / Milestones

Summary

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

FG

FGT Physics motivation - W program

What do we know about u/d anti-quark polarization?

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

FGT Physics motivation - W program

Quark / Anti-Quark Polarization - W production

- O Key signature: High p_T lepton (e⁻/e⁺ or μ^-/μ^+) (Max. $M_W/2$) - Selection of
 - $W^{\text{-}}/W^{\text{+}}$: Charge sign discrimination of high p_{T} lepton
- Required: Lepton/Hadron discrimination

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

RHICBOS W simulation at 500GeV CME

FGT Physics motivation - W program

Quark / Anti-Quark Polarization - Sensitivity in W production

- O Theoretical framework for leptonic
 - asymmetries exists (RHICBOS) \Rightarrow Basis for

input to global analysis!

- Reconstruction of W-rapidity only possible
 - in approximative way in forward direction
- Important contribution from forward and mid-rapidity region

$$A_L^{W^-} = -\frac{\Delta d(x_1)\bar{u}(x_2) - \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)}$$

 $x_1 = \frac{M_W}{\sqrt{s}} e^{y_W} \qquad x_2 =$

 $x_2 = \frac{M_W}{\sqrt{s}} e^{-y_W}$

• Large uncertainties for polarized anti-quarks reflected in leptonic asymmetries!

Layout

 FGT: 6 light-weight triple-GEM disks - WEST side of STAR

New mechanical support

structure

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

6

FGT

Quark / Anti-Quark polarization program at STAR - e/h separation

• Full PYTHIA QCD background and W signal sample including detector effects

 \circ e/h separation based on global cuts (isolation/missing E_T) and EEMC specific cuts as

• With current algorithm: E_T > 25GeV yields S/B > 1 (For E_T < 25GeV S/B ~ 1/5) used for A_L uncertainty estimates

Conclusion:

Wed Jan 10 10:24:22 2007

Charge sign reconstruction impossible beyond $\eta = \sim 1.3$

generated n

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008 6 triple-GEM disks, assumed spatial resolution 60 μ m in x and y (Fairly insensitive for 60-100 μ m)

Charge sign reconstruction probability above 90% for 30 GeV p_T over the full acceptance of the EEMC for the full vertex spread

0.2

-0.2

-0.4

-0.6

0.2

-0.2

-0.4

-0.60

20

25

Quark / Anti-Quark polarization program at STAR - Projections

Large asymmetries dominated by

quark polarization - Important

consistency check to existing DIS

data with 100pb⁻¹ (Phase I)

O Strong impact constraining unknown

antiquark polarization requires

luminosity sample at the level of

300pb⁻¹ for 70% beam polarization

(Phase II)

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

STAR projections for LT=300 pb⁻¹, Pol=0.7, including QCD background and detector effects, no vertex cut

Standard layout:

Pitch (P) 140 µm

GEM technology

Example: Triple-GEM application at COMPASS 0

Advantages: 0

Reliable (COMPASS, multi-year experience)

□ High gas amplification (Multiple GEMs: up to ~10⁶)

□ Fast (< 20 ns FWHM, rate capability up to 10⁵ Hz/mm)

Low mass (50μm Kapton + 10μm Cu; Thin low Z read-out plane)

 \Box Good spacial resolution (1D and 2D) (~60µm)

Simple construction and in-expensive

F. Sauli, Nucl Instr. and Meth. A386 (1997) 531.

C. Altunbas et al., Nucl Instr. and Meth. A490 (2002) 177.

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

Mechanical design

- FGT: 6 light-weight disks
- Each disk consists of 4 triple-GEM chambers (Quarter sections)

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

 Procurement and assembly of full quarter section prototype in preparation

Mechanical support structure (1)

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

Mechanical support structure (2)

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

Mechanical support structure (3)

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

- Triple-GEM detectors Quarter section (1)
 - Single disk
 - O 5mm Nomex honeycomb
 - O 0.25mm FR4 skins
 - Pins used as part of assembly and alignment
 - GEM quadrant
 - O Pins define position
 - O Pins preserve shape
 - Gas manifolds and rails

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

Triple-GEM detectors - Quarter section (2)

Component	Material	Radiation Length [%]
Support plate	5 mm Nomex	0.040
	2x250 µm FR4	0.257
HV layer	5 μm Cu	0.035
AND Y ANY	50 µm Kapton	0.017
GEM foils	6x5 μm Cu (70%)	0.147
	3x50 µm Kapton (70%)	0.036
Readout	5 µm Cu (20%)	0.007
	50 µm Kapton (20%)	0.003
	5 µm Cu (88%)	0.031
	50 µm Kapton	0.017
-	5 μm Cu (10%)	0.004
	0.125 mm FR4	0.064
	5 µm Cu (10%)	0.004
Drift gas	10 mm CO ₂ (30%)	0.002
	10 mm Ar (70%)	0.006
Total		0.670

Triple-GEM detectors - Assembly

- 50 μ m Kapton
 - O Copper both sides
 - O Laser etching exposes bottom layer
- Top layer
 - O Φ -readout layer
 - O Alternate lines end at 18.8cm
 - O Pitch: 300-600 μ m
 - O Line width: 80-120 μ m
- Bottom layer
 - O R-readout layer
 - O Pitch: $800 \,\mu$ m
 - O Line width: $700 \,\mu$ m

Front-End Electronics (1)

• Developed for CMS (75000 in CMS tracker)

and also used by COMPASS for triple-GEM

detector readout

- 0.25μm CMOS
- 128 channels
- 40 MHz sampling rate
- 4µs analogue pipeline
- 11:1 Signal / Noise
- 0.25Watt/chip
- Radiation hard

O Used for STAR IST and FGT (1 readout system)!

20

AGS-RHIC Users Meeting, Workshop Session 3 - Upgrades Upton, NY, May 27, 2008

FGT Schedule / Milestones

- Overview Planing
 - Goal: Installation in summer 2010 ⇒ Ready for anticipated first long 500GeV polarized pp run in FY11 consistent with STAR 5-year Beam Use Request
 - O Review: Successful review January 2008 / Beginning of construction funds FY08
 - Cost estimate and planing relies on the R&D and pre-design work:
 - Triple-GEM Detector: Complete prototype tested on the bench and during FNAL testbeam experiment with extensive experience in mechanical design work (MIT-Bates) and assembly including previous experience at COMPASS
 - Front-End Electronics (FEE) System: Complete prototype tested on the bench and during FNAL testbeam experiment based on existing APV25-S1 readout chip (MIT-Bates)
 - Data Acquisition (DAQ) System: Conceptual layout is based on similar DAQ sub-detector systems with extensive experience (ANL/IUCF)
 - GEM foil development: Successful development of industrially produced GEM foils through SBIR proposal in collaboration with Tech-Etch Inc. (BNL, MIT, Yale University)

Summary and Outlook

Summary

- Exciting program of W production in polarized proton-proton collisions at RHIC constraining unknown u/d anti-quark distributions
 Clear sensitivity in particular at forward rapidity
- STAR experiment requires upgrade of forward tracking system for charge sign discrimination of electrons/positrons
- Triple-GEM technology provides a cost effective way for a forward tracking upgrade solution
- Successful development of industrial production of GEM foils (SBIR proposal with Tech-Etch Inc.) Test of large GEM foils this summer
- Successful beam test at FNAL demonstrates that performance meets requirements
- Design work being finalized Pre-production underway
- Goal: Installation summer 2010 to be ready for Run 11

