
Validating the Autonomous Science Agent
Steve Chien, Benjamin Cichy, Steve Schaffer, Danny Tran, Gregg Rabideau, Rob Shewood

Jet Propulsion Laboratory, California Institute of Technology

Firstname.LastnameQjpl.nasa.gov

Robert Bote, Dan Mandl, Stu Frye, Seth Shulman
Goddard Space Flight Center

Firstname.Lastname Qgsfc.nasa.gov

Jim Van Gaasbeck, Darrell Boyer
Interface and Control Systems

(jimv, dboyer}Qinterfacecontrol.com

ABSTRACT
This paper describes the validation process for the Autonomous
Science Agent, a software agent that will fly onboard the EO-1
spacecraft from 2003-2004. This agent will recognize science
events, retarget the spacecraft to respond to the science events,
and reduce data downlink to only the highest value science data.
The autonomous science agent has been designed using a layered
architectural approach with specific redundant safeguards to
reduce the risk of an agent malfunction to the EO-1 spacecraft.
This "safe" design is also in the process of being thoroughly
validated by informal validation methods and extensive testing.
This paper describes the analysis used to define agent safety,
elements of the design that increase the safety of the agent, and
the process being used to validate agent safety prior to the agent
software controlling the spacecraft.

Keywords
Agent Safety, Autonomous Science, Automated Planning, Robust
Execution, Agent Architectures

1. INTRODUCTION
Autonomy technologies have incredible potential to revolutionize
space exploration. In the current mode of operations, space
missions involve meticulous ground planning significantly in
advance of actual operations. In this paradigm, rapid responses to
dynamic science events can require substantial operations effort.
Artificial Intelligence technologies enable onboard software to
detect science events, replan upcoming mission operations, and
enable successful execution of re-planned responses.
Additionally, with onboard response, the spacecraft can acquire
data, analyze it onboard to estimate its science value, and only

downlink the highest priority data. For example, a spacecraft
could monitor active volcano sites and only downlink images
when the volcano is erupting. Or a spacecraft could monitor ice
shelves and downlink images when calving activities are high. Or
a spacecraft could monitor river lowlands, and downlink images
when flooding occurs. This onboard data selection can vastly
improve the science return of the mission by improving the
efficiency of the limited downlink. Thus, there is significant
motivation for onboard autonomy.

However, building autonomy software for space missions has a
number of key challenges; many of these issues increase the
importance of building a reliable, safe, agent.

1. Limited, intermittent communications to the agent. A
typical spacecraft in low earth orbit typically has 8
communications opportunities per day. This means that
the spacecraft must be able to operate for long periods
of time without supervision. For deep space missions
the spacecraft may be in communications far less
frequently. Some deep space missions only contact the
spacecraft once per week, or even once every several
weeks.

2. Spacecraft are very complex. A typical spacecraft has
thousands of components, each of which must be
carefully engineered to survive rigors of space (extreme
temperature, radiation, physical stresses). Add to this
the fact that many components are one-of-a-kind and
thus have behaviors that are hard to characterize.

3. Limited obsemability. Because processing telemetry is
expensive, onboard storage is limited, and downlink
bandwidth is limited, engineering telemetry is limited.
Thus onboard software must be able to make decisions
on limited information.

4. Limited computing power. Because of limited power
onboard, spacecraft computing resources are usually
very constrained. An average spacecraft CPUs offer 25
MIPS and 128 MB RAM -far less than a typical
personal computer.

5 . High stakcs. A typical spacc mission costs hundrcds of
m ~ l l ~ o n s of dollars, any fa~lure has s~gn~l icant economic
impact. Over tinanclal cost, many launch andfor
r n ~ s s ~ o n opponunlties are lim~ted by planetary
geometries. In these cases, i l a space mission is lost it
may be years before another similar rniss~on can hc
launched Additionally, a space memlon can take years
to plan, construct thc spacecraft, and rcach l h c ~ r targets.
This dclay can he catastrophic.

This papcr discusses our cffons to huild and vill~date a safe
autonomous space scrence agent. The prmc~pal contributions of
this papcr arc as follows:

1. Wc dcscr~bc our laycrcd q c n t architecture and how that
enables addi~ional agcnt sarcty.

2. We descr~he our knowledge englncerlng and model
revicw proccss dcsigned to enforce agent safety.

3. We describe our ground md on-orbil tcsiing process
designed to improvc a g n t safcty.

4. Wc dcscribc our incrcmcntal flight v~lidation proccss to
enhancc agcnt safcty.

We descnbc thcsc areas In thc contcxt of lthc Autclnomous
Sciencccraft Experiment (ASE), an autonomy software packagc
originally designcd for flight on thc Air Force's Tcchqat-2 1
Mission [Z] in 2006 and now being uploaded for flight on
NASA's Ncw Millcnnium Earth Ohscrvcr Onc [EO- I) spacecraft
in the summer 01 2003 [4].

In this paper wc addrcss a number of issucs From thc workshop
call.

Definition of agent safety and How to build safc agent - we dcRnc
agent safety as ensurlng the health and cont~nued operailon of thc
spacecraft. Wc design our agent to have redundanl mcans lo
enforce 1 1 known spacecraft operations constraints. Wc also
utilize declarative knowledge representations. whosc modcls are
extensively rewewed and tested, We use codc gcncration
technoIogies to automatically gcneratc rcdcrndanl chccks to
Improve software rel~ab~lity, hdd~tionally, our cxpcrirncnt is also
designed to fly in a series of increasing autonomous phascs, to
cnablc charactcri7ation of pcrforrnancc of thc a p t and to huild
con fidcncc.

Robust to environment (uncxpcctcd) - our agent must hc robus1 to
uncxpccted cnvlron~nental changcs. Our agent uses a classic
layered architecture approach 10 dealing with cxccution
uncertai ntics.

How to constrain agents - bccausc of strong agcnt salcty
concerns, our agcnt archltccture IS designed to enable redundancy,
adjustable autnnomy, and fail-safe disabling or agent capabilities.
TIie layerlng o t the agent enables lower levels of thc agcnt lo
inhibit highcr-levcl agcnt hchaviar. For cxample. the task
executive systems (SCL) docs not allow dangerous commands
from thc planncr to hc scnt on to the flight software. The Flight
Softwarc br~dge (FSW-br~dgc) can he ~nstructcd to disahlc any
commands form the autonomy SW or to shutdown components uf
or the entirc autonomy SW. Thc EO- 1 Flight Software includes n
fault protection function dcsigned to inhihit potcntiall y hafardnu~

commands form any source (including the autonomy software,
stored command loads from the ground, or rcaI-timc commands).

Validation OF aEent safcty - wc dcscribc in some detail how we
havc or l ~ a v c not ~rpplred Formal methods, informal rncthds, and
tcsting to validatc thc pcrformancc of thc ASE saflware.

Application area - wc hricfly describe some or the more sallent
fca~urcs o r tlie spacccrai't control applicat~on area for autonomous
apenrs.

The remainder of this paper is organized as follows. F ~ r s t we
describe the ASE sonware architecture, with an emphasis on how
rt enhances safe agent construction. Ncxt we discuss the
modeling process and how we developed and validated modcls.
Thcn wc describe the testing proccss, including how we have
designed test cases and the test infrastmcturc. Finally, wc
descnbc thc incrcmcntal fliphc experiment setup and how that
enables safer expcrimcnt opcralions.

2. AUTONOMY ARCHITECTURE
The autonomy sol'tware on EO-1 is organized as a traditinnal
thrcc-laycr architecture [SJ (See F~gure I.). At the top laycr, thc
Continuous Activ~ty Scheduling PEanning Execution and
Replanning (CASPER) systcrn 13, 121 1s responsible for mission
planning funct~ons. Operating on the tens-of-minutes timescale,
CASPER responds to cvcnts that have widespread (across orbits)
cffccrs. scheduling science activities that respect spacecraft
operations and rcsourcc constraints. Actrvit~es in a CASPER
schedule become ~nputs to the Spacecraft Command Langzlagc
(SCL) systcm I lo!.

CASPER modcls act~vities pcrformcd by the spacecraft and
ground equipmcnt and staff. and tracks activity effects on its
model of spacecraft state and rcsourccs. CASPER then searches
for plans that combine these basic activities to satisfy goals (such
as downlinks and ohscrvation requests) w h ~ l e enforcmg
opcralions constraints.

. Control Slgnal~
".,, (very lw level)

Figure 1. Autonomy Software Architecture

At the middle layer, SCL is responsible for generating and
executing detailed sequence of commands that correspond to
expansions of CASPER activities. SCL also implements
spacecraft constraints and flight rules. Operating on the several-
second timescale, SCL responds to events that have local effects,
but require immediate attention and a quick resolution. SCL
performs activities using scripts and rules. The scripts link
together lower level commands and routines and the rules enforce
additional flight constraints.

SCL sends commands to the EO-1 flight software system (FSS)
[9], the basic flight software that operates the EO-1 spacecraft.
The interface from SCL to the EO-1 FSS is at the same level as
ground generated command sequences. This interface is
implemented by the Autonomy Software Bridge (FSB), which
takes certain autonomy software messages and issues the
corresponding FSS commands. The FSB also implements a set of
FSS commands that it responds to that perform functions such as
startup of the autonomy SW, shutdown of the autonomy SW,
switching from shadow to active mode, and other autonomy SW
configuration actions.

The FSS accepts low level spacecraft commands. These
commands can be either stored command loads uploaded from the
ground (e.g. ground planned sequences) or real-time commands
(such as commands from the ground during an uplink pass). The
autonomy SW commands appear to the FSS as real-time
commands. As part of its core, the FSS has a full fault and
spacecraft protection functionality which is designed to:

1. Reject commands (from any source) that would
endanger the spacecraft.

2. When in situations that threaten spacecraft health,
execute pre-determined sequences to "safe" the
spacecraft and stabilize it for ground assessment and
reconfiguration.

For example, if a sequence issues commands that point the
spacecraft imaging instruments at the sun, the fault protection
software will abort the pointing activity. Similarly, if a sequence
issues commands that would expend power to unsafe levels, the
fault protection software will shut down non-essential subsystems
(such as science instruments) and orient the spacecraft to
maximize solar power generation. While the intention of the fault
protection is to cover all potentially hazardous scenarios, it is
understood that the fault protection software is not foolproof,
Thus, there is a strong desire to not command the spacecraft into
any hazardous situation even if it is believed that the fault
protection will protect the spacecraft.

The science analysis software is scheduled by CASPER and
executed by SCL. The results from the science analysis software
generate new observation requests presented to the CASPER
system for integration in the mission plan.

This layered architecture for the autonomy SW is designed such
that each lower layer is validating the output of the higher layers.
The planner activities are checked by SCL prior to being sent on
to the FSS. The FSS fault protection is checking the SCL outputs
as well.

3. MODEL BUILDING & VALIDATION
Because the control aspects of the Autonomy SW are embodied in
the CASPER & SCL models, our methodology for developing
and validating the CASPER and SCL models is critical to our safe
agent construction process. These models include constraints of
the physical subsystems including: their modes of operation, the
commands used to control them, the requirements of each mode
and command, and the effects of commands. At higher levels of
abstraction, CASPER models spacecraft activities such as science
data collects and downlinks, which may correspond to a large
number of commands. These activities can be decomposed into
more detailed activities until a suitable level is reached for
planning. CASPER also models spacecraft state and its
progression over time. This includes discrete states such as
instrument modes as well as resources such as memory available
for data storage. CASPER uses its model to generate and repair
schedules, tracking both the current state & resources and the
expected evolution of spacecraft state and resources based on
planned activities.

SCL continues to model spacecraft activities at finer levels of
detail. These activities are modeled as SCL scripts, which when
executed, may execute additional scripts, ultimately resulting in
commands to the EO-1 FSS. Spacecraft state is modeled as a
database of records in SCL, where each record stores the current
value of a sensor, resource, or sub-system mode. The SCL model
also includes flight rules that monitor spacecraft state, and execute
appropriate scripts in response to changes in state. SCL uses its
model to generate and execute sequences that are valid and safe in
the current context. While SCL has a detailed model of current
spacecraft state and resources, it does not generally model future
planned spacecraft state and resources.

Development and verification of the EO-1 CASPER and SCL
models was a multiple step process.

1. First a target set of activities was identified. This was
driven by a review of existing documents and reports. This
allowed the modeler to get a high-level overview of the
EO-1 spacecraft, including its physical components and
mission objectives. Because EO-1 is currently in
operation, mission reports were available from past
science requests. These reports were helpful in identifying
the activities performed when collecting and downlinking
science data. For example, calibrations are performed
before and after each image, and science requests typically
include data collection from both the Hyperion
(hyperspectral) and Advanced Land Imager (ALI)
instruments.

2. Once the activities were defined, a formal EO-1 operations
document was reviewed to identify the constraints on the
activities. For example, due to thermal constraints, the
Hyperion cannot be left on longer than 19 minutes, and
the ALI no longer than 60 minutes. The EO-1 operations
team also provided spreadsheets that specified timing
constraints between activities. Downlink activities, for
example, are often specified with start times relative to
two events: acquisition of signal (AOS) and loss of signal
(LOS). Fault protection documents listing fault monitors
(TSMs) were also consulted, using the reasoning that
acceptable operations should not trigger TSMs.

3. With the model defined, CASPER was able to generate
preliminary command sequences from past science
requests that were representative of flight requests. These
sequences were compared with the actual sequences that
were uplinked for the same request. Significant differences

Table 1. Sample safety analysis for two risks.

between the two sequences identified potential problems
with the model. For example, if two commands were

Instruments overheat
from being left on too

long

sequenced in a different order, this may reveal an
overlooked constraint on one or both of the commands.
We were also provided with the actual downlinked
telemetry that resulted from the execution of the science
observation request. This telemetry is not only visually
compared to the telemetry generated by ASE, but it can
also be "played back" to the ASE software to simulate the
effects of executing sequences. The command sequences
were aligned with the telemetry to identify the changes in
spacecraft state and the exact timing of these changes.
Again, any differences between the actual telemetry and
the ASE telemetry revealed potential errors in the model.
A consistent model was defined after several iterations of
generating commands and telemetry, comparing with
actual commands and telemetry, and fixing errors. These
comparisons against ground generated sequences were
reviewed by personnel from several different areas of the
operations staff to ensure acceptability (e.g. overall
operations, guidance, navigation and control, science
operations, instrument operations).

Instruments exposed
to sun

4. Model reviews were conducted (or are planned) where the
models are tabletop reviewed by a team of personnel with
a range of operations and spacecraft background. This is
to ensure that no incorrect parameters or assumptions are
represented in the model.

Finally, a spacecraft safety review process was performed. In this
process, experts from each of the spacecraft subsystem areas (e.g.
guidance, navigation and control, solid state recorder, Hyperion
instrument, power, ...) studied the description of the ASE
software and commands that the ASE SW would execute and
derived a list of potential hazards to spacecraft health. For each of
these hazards, a set of possible safeguards was conjectured:
implemented by operations procedure, implemented in CASPER,
implemented in SCL, and implemented in the FSS. Every
safeguard able to be implemented with reasonable effort was
implemented and scheduled for testing. Such analysis for two
risks is shown below.

I I
(High-level activity (Maneuvers must be

on and turn off when the covers are

the maximum instruments are
separation. pointing at the earth)

Verify orientation of
spacecraft during

periods when
inseument covers are

open.

Oprations

I SCL I "on" time and issue a maneuver scripts
turn off command if from executing if

For each turn On

command, look for the
following turn off

command. Verify that
they are within the

maximum separation.

I (left on too long. I covers are open. 1

An interesting aspect of model development is the use of code
generation techniques to derive SCL constraint checks from
CASPER model constraints. In this approach, certain types of
CASPER modeling constraints can be translated into SCL code to
ensure activity validity at execution time. If the CASPER model
specifies that activities use resources, this can be translated into an
SCL check for resource availability before the activity is executed.
If the CASPER model specifies a state requirement for an activity,
one can auto-generate a check to see if that state is satisfied before
executing the activity. Additionally, if the CASPER model
specifies sequential execution of a set of activities, code can be
generated so that SCL enforces this sequential execution.

For example, in calibrating the Hyperion instrument, the solid
state recorder (WARP) must be in record mode and the Hyperion
instrument cover must be "open". Below we show the CASPER
model and the generated SCL constraint checks.

t

/ / Hyperion calibration

activity hsi-img-cal

(

durat caldur;

/ / schedule only when the WARP is in record

/ / mode, recording data, and

/ / when the hyperion cover is open

reservations =

wrmwmode must-be " recn ,
ycovrstat must-be "closed";

/ / start and stop the instrument

decompositions =

yscistart, yscistop

where yscistop starts-after

start of yscistart by caldur;

I

-- Hyperion calibration

script hsi-img-cal caldur

-- verify that the WARP is in record

-- mode, recording data, and

-- that the hyperion cover is open

verify wrmwmode = rec

and ycovrstat = closed

within 5 seconds

-- start and stop the instrument

execute yscistart

wait caldur sec

execute yscistop

end hsi-img-cal

Figure 2. Sample model and script for Hyperion calibration.

Note that this generated code also enforces the sequential
execution of the "yscistart" and "yscistop" activities, separated by
"caldur" seconds. This shows how code is automatically
generated from a CASPER defined temporal constraint over two
activities.

As another example, when initiating the WARP recording, there is
a limit on the total number of files on the WARP recorder (63).
In CASPER we define the constraint that "wfl" new files are
created. In SCL, code is auto-generated to verify that that many
files can be created without exceeding the file number limit before
the WARP recording activity is allowed to be executed.

/ / Start the WARP recording

activity wrmsrec

. . .
reservations =

/ / reserve the required number of

/ / files on the WARP

wrmtotfl use wfl,

/ / change the warp to record mode when

/ / complete

wrmwmode change-to "rec" at-end,

. . .
1

-- Start the WARP recording

script wrmsrec

. . .
verify

wrmfreebl wrmtotfl + wfl c= 63
and wrmtotfl + wfl >= 1 and

. . .
end wrmsrec

Figure 3. Sample model and script for WARP recording.

4. TESTING ENFORCEMENT OF SAFETY
Gaining confidence in the safety of the EO-1 autonomy software
requires extensive testing. We structured our testing methodology
such that it would verify the protections provided by our layered
architecture, and compliment the phases of the model
development process. Specifically, the test plan is intended to
validate the following system properties:

1. CASPER generates plans consistent both with its
internal model of the spacecraft and SCL's model and
constraints (as checked by SCL).

2. SCL does not issue any commands that violate the
constraints of the spacecraft (as checked by our
spacecraft simulator).

3. Our model satisfies spacecraft operational and safety
constraints enumerated by the model safety-review
process.

We will validate these three requirements by extensive testing of
the autonomy software on generated test-cases, using checks at
each layer to validate performance. The test cases described
below address only the top-two levels of the onboard autonomy
software (CASPER and SCL), with the flight software and
spacecraft hardware replaced by a software simulator. Flight
software testing and validation is addressed by a separate, more
conventional, test plan.

4.1 Test Case Parameters
Each EO-1 test case covers seven days of operations containing
multiple schedulable windows separated by a variable number of
orbits. Each schedulable window represents an opportunity to
schedule one or more science observations. The test cases must
account for variations in the mission and science objectives
(mission scenario parameters), initial state of the spacecraft
(spacecraft state parameters), and changes to the spacecraft state
during execution.

Since the autonomy software has no control over what happens
outside of a schedulable window, we must be certain that our
software performs reliably over a range of possible initial states.
We cover these cases by using the simulator to vary the spacecraft
state parameters as tracked within SCL and monitored by
CASPER. The simulator also varies the spacecraft state
parameters during execution to test the performance of our agent
in the face of an uncertain environment.

Mission scenario parameters represent the high-level planning
goals passed to CASPER. They are derived from a combination
of the orbit of the spacecraft and the science objectives uplinked
from the ground. They specify when targets will be available for
imaging, as well as the parameters of a science observation (i.e.
number of targets to image and science analysis algorithms we
wish to execute).

The 22 spacecraft state parameters and 16 observation goal
parameters used in the EO-1 test cases are shown in the tables
below.

Table 2. Spacecraft state parameters.

Table 3. Mission-scenario parameters.

ali fpe power

ale fpe data gate

ali cover state

groundstation view

mission lock

To exhaustively test every possible combination of state and
observation parameters, even just assuming a nominal and failLUe
case for each parameter and ignoring execution variations, would

disabled

disabled

closed

unknown

unlocked

require a test set containing 238 or 2.7 x 10" test cases. Pruning
the set of variations to just the sixteen observation parameters
would still yield an impractically large set. The challenge thus
becomes selecting a set of tests that most effectively cover the
intractable space of possible parameter variations within a
timeframe that allows for reasonable software delivery.

4.2 Design of Test Cases
Traditional flight software can be tested through exhaustive
execution of a known set of sequences. Autonomy software
however must be able to execute in, and react to, a much wider
range of possible scenarios. As show above, testing all these
possible scenarios would be intractable, however we can leverage
the traditional nominal sequences and scenarios to baseline our
tests - varying parameters off of a controlled scenario, and thus
reducing the number of parameter variations our agent must
consider. This is a similar approach to that used to validate the
Remote Agent Planner for DS 1. [I 11.

We started the design process by having spacecraft and operations
personnel identify expected values for each parameter based upon
the nominal mission scenario. Using these assignments we
generated test cases by varying each of the parameters across three
distinct classes of values - nominal (single value), off-nominal
(range of acceptable values), and extreme (most likely failure
conditions). For each parameter, based on this decomposition, we
defined a set of five values at the boundaries of these classes - a
minimum value, an "off-nominal-min" value at the boundary
between the off-nominal and the extreme, a nominal value, an
"off-nominal-max", and a maximum value.

min- noenal - max

The single-parameter approach generates test sets that scale
linearly with the number of parameters. Since we decomposed
each of our parameters into five representative values, for N
parameters, we have 5N test cases (or 4N+1 unique test cases as N
of these will be the same nominal test set). For the EO-1 science
agent this yields approximately 150 test cases. The pair-wise
testing approach grows proportional to the number of pairs
multiplied by the number of values for each pair or [k:2] * v * v
for k parameters with v values. For EO-1, with 38 parameters
each with 5 values, this gives us 17,575 test cases. Unfortunately
even this number of test cases is impractical. Consequently we
plan to use the method described in [6] and used by RAX [l l] , to
reduce the number of pair-wise tests to a manageable level (under
100).

4.2.2 Stochastic Test Set
In all but one of the cases generated by our Coverage test set some
parameter has an off-nominal or extreme value. While these tests
give us confidence in the robustness of our system, they do not
provide much evidence as to the correctness of execution in
nominal scenarios. In order to test more nominal scenarios, and
also gain coverage in the off-nominal scenarios outside of the five
representative values, we devised a scheme for generating
stochastic test sets based on parameter value distributions.

Parameters were given normal distributions around their nominal
value, with standard deviations half the width of the off-nominal
range (such that 95% of expected values will be either nominal or
off-nominal). Nominal test sets were then generated assigning
values to parameters based on the defined distributions.
Furthermore, by modifying the construction of the parameter
distribution, we were able to create off-nominal and extreme test

off-nominal kin off-nominal max
Figure 4. Parameter Decompositions

Using this decomposition of the test space, we generated three
sets of test cases:

1. Coverage test cases that attempt to exercise a
representative sample of all possible parameter-value
assignments.

2. Stochastic test cases that verify nominal-operation
scenarios.

3. Environmental test cases that evaluate how our agent
performs in an uncertain environment.

4.2.1 Parameter-Coverage Test Set
Using the parameter decomposition we designed two sets of test
cases, one that exercised the five values for each parameter while
holding all other parameters within their nominal mission
scenario, and another that exercised pair-wise combinations of
parameter variations. Single-parameter variations allow for
simple tests of off-nominal situations (variations that allow
defects to be easily traced back to the source), while pair-wise
combinations allow us to test the more complex interactions
between parameters.

sets that would stochastically favor some parameters to choose
values outside of their nominal range.

4.2.3 Environmental Test Set
We further extended the stochastic test sets described above to
include execution variations based on the parameter distributions.
The spacecraft simulator was modified to allow as input variations
to expected parameter values. During the execution of activities
the simulator will simulate the change to each parameter of the
current activity, and then vary the value returned based on the
provided parameter distributions. Again nominal, off-nominal,
and extreme test sets were generated that instructed the simulator
to vary parameter values within the corresponding value class.

Finally we needed a way to test how the system responds to
unexpected or exogenous events within the environment. These
events could be fault conditions in the spacecraft or events outside
of the CASPER model. Unlike the initial-state and execution-
based testing described above, these events could happen at any
time, and do not necessarily correspond to any commanded action
or modeled spacecraft event. To accomplish this we added to our
spacecraft simulator the ability to change the value of any
parameter, at either an absolute time or time relative to the
execution of an activity, to a fixed value or a value based on the
distributions described above. We added small-variation events
(within appropriate off-nominal and nominal classes) to our
nominal and off-nominal stochastic test sets. Test cases are also
currently in development that will use this capability to exercise
the fault scenarios outlined in the Spacecraft Safety document. [5]

4.3 Testing Procedure
The number of test cases we plan to run is limited by available
testing resources and the time remaining before mission inception.
The EO-1 experiment has a compressed two month testing
window with limited access to high-fidelity test beds. We forecast
two-thirds of testing time will be spent evaluating output and
running regression tests. The remaining one-third of our testing
resources will be available for generated test cases. At two-hours
per test run this gives us the capacity to run approximately 2400
tests.

At this time our automated test harness can detect "hard test
failures (i.e. crashes), and violations of system constraints
(checked by the simulator). We also have in development and
limited-deployment "goal-detection" software that evaluates
whether CASPER successfully executed the goals specified in the
mission scenario.

As an additional complication, for EO-1 we have a number of
testbeds with varying degrees of fidelity to the actual flight
environment. The vast majority of tests must be run on the
Solaris and Linux testbeds, as they are the fastest and most readily
available. However, these test the software under a different
operating system, so are useful for testing of the model only. The
operating system and timing differences are significant enough
that many code behaviors occur only in the target operating
system, compiler, and timing of interest. In order to validate
aspects of the model dependent on precise timing we are forced to
run tests on higher fidelity testbeds.

Table 4. Testbeds available to validate EO-1 agent.

5. STATUS & DEPLOYMENT
Black box testing verifies that the system correctly follows those
constraints encoded in the model and enforced by the layered
architecture. However we also need a way to validate through
testing that the model correctly encodes the requirements and
constraints of the spacecraft. For EO-1 the first step in this
process was the informal telemetry validation discussed
previously in section 3. We have decided to augment this
validation with a set of operational procedures that will help to
build confidence in the safety of the EO-1 science agent before it
is given full control to command the spacecraft. The autonomy
software will be deployed as follows:

TYP

Solaris

Sparc Ultra

Linux

2.5 GHz

GESPAC

PowerPC

100-450 MHz

JPL Flight Testbed

RAD 3000

EO-1 Flight Testbed

Mongoose M5,

12 MHz

EO-1 Autonomy
Testbed (under

Executive-only deployment (planned May 2003)

In this phase SCL will be uploaded to the spacecraft and
enabled to receive and process ground commands. SCL will
monitor telemetry from the spacecraft but will be prevented
from issuing any spacecraft commands across the software
bridge. These commands will instead be downlinked as
telemetry for review and safety inspection by the operations
team.

construction,
complete Sep 2003) High - runs Flight

Software
Mongoose M5,

12 MHz

Number

7

10

1

1

Ground generated flight test (planned May 2003)
In this phase CASPER and SCL will generate a command
sequence from ground-based testbeds for flight operations.
This sequence will then be uplinked for execution onboard
the spacecraft.

Fidelity

Low - can test model but
not timing

I,

Moderate - runs flight
0s

Moderate

High - runs Flight
Software

Shadow flight operations (June 2003)

Next we will upload CASPER and SCL to EO-1 and allow
spacecraft telemetry and ground commands, but disable any
spacecraft commands across the software bridge. This test
will serve two purposes: test that the code executes as
expected on the actual spacecraft, and validate that the
generated command sequences conform to spacecraft safety
and operations constraints.

Full deployment (July 2003 - September 2004)

After the sequences from shadow flight operations have been
verified as correct, CASPER and SCL will be permitted to
command the spacecraft. During this phase telemetry will be
downlinked and checked on the ground to validate command
sequences.

As this paper is being written, we are in integration of the full
autonomy SW with the EO-1 FSW on the GSFC testbed.
Additionally, the SCL-only software load is being uplinked to be
tested May 22nd. While it is quite possible that there will be
further delays from the schedule described above, the integration
process is moving forward at a steady pace.

The majority of the testing effort has just begun. The ground-
based testing has only begun in the last month, and additional
analysis for test case generation is underway. Because of this, it is
likely that the shadow mode of operations may need to be
extended slightly, particularly if any of the flight tests cause
anomalies.

6. CONCLUSIONS
This paper has described the design and validation of a safe agent
for autonomous space science operations. First, we described the
salient challenges in developing a robust, safe, spacecraft control
agent. Second, we described how we used a layered architecture
to enhance redundant checks for agent safety. Third, we
described our model development, validation, and review.
Fourth, we described our test plans, with an emphasis on reducing
the number of test cases to a tractable set. Finally, we described
our phased approach to flight, which provides additional
safeguards.

7. ACKNOWLEDGEMENT
Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

8. REFERENCES
[l] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, M.

Slack, Experiences with an Architecture for Intelligent,
Reactive Agents, Journal of Experimental and Theoretical
Artificial Intelligence, 9:237-256, 1997.

[2] S. Chien, R. Sherwood, M. Burl, R. Knight, G. Rabideau, B.
Engelhardt, A. Davies, P. Zetocha, R. Wainright, P. Klupar,
P. Cappelaere, D. Surka, B. Williams, R. Greeley, V. Baker,
J. Doan, "The TechSat 21 Autonomous Sciencecraft
Constellation", Proc i-SAIRAS 2001, Montreal, Canada,
June 200 1.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, "Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,"
Proceedings of the Fifh International Conference on
Artijicial Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000. (see also
casper.jp1.nasa.gov)

S.Frye, J. Hengemihle, J. D'Agostino, R. Bote, B.
Trout, S. Shulman, S. Ungar, J. Van Gaasbeck, D.
Boyer, M. Griffin, R. Greeley, T. Doggett, K.
Williams, V. Baker, J. Dohm, "Autonomous Science
on the Earth Observer One Mission," ," International
Symposium on Artijicial Intelligence Robotics and
Automation in Space, Nara, Japan, May 2003.

[5] S. Chien et al, EO 1 Autonomous Sciencecraft Experiment
Safety Analysis Document, 2003.

[6] D. Cohen; Dalal, S.; Fredman, M.; and Patton, G.1997. The
AETG system: An approach to testing based on
combinatorial design. IEEE Transactions on Software
Engineering 23(7):437-444.

[7] A.G. Davies, R. Greeley, K. Williams, V. Baker, J. Dohm,
M. Burl, E. Mjolsness, R. Castano, T. Stough, J. Roden, S.
Chien, R. Sherwood, "ASC Science Report," August 2001.
(downloadable from ase.jpl.nasa.gov)

[8] E. Gat, Three layer architectures, in Mobile Robots and
Artificial Intelligence, (Kortenkamp, Bonasso, and Murphy
eds.), Menlo Park, CA: AAAI Press, pp. 195-210.

[9] Goddard Space Flight Center, EO-1 Mission page:
eo 1 .gsfc.nasa.gov

[lo] Interface and Control Systems, SCL Home Page,
sclrules.com

[l 11 NASA Ames, htt~:llic.arc.nasa.gov/~roiects/rernote-agent/,
Remote Agent Experiment Home Page.

[12] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A.
Govindjee, "Iterative Repair Planning for Spacecraft
Operations in the ASPEN System," International Symposium
on Artificial Intelligence Robotics and Automation in Space,
Noordwijk, The Netherlands, June 1999.

[4] S. Chien, R. Sherwood, D. Tran, R. Castano, B. Cichy,
A. Davies, G. Rabideau, N. Tang, M. Burl, D. Mandl,

