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ABSTRACT 
This paper describes the validation process for the Autonomous 
Science Agent, a software agent that will fly onboard the EO-1 
spacecraft from 2003-2004. This agent will recognize science 
events, retarget the spacecraft to respond to the science events, 
and reduce data downlink to only the highest value science data. 
The autonomous science agent has been designed using a layered 
architectural approach with specific redundant safeguards to 
reduce the risk of an agent malfunction to the EO-1 spacecraft. 
This "safe" design is also in the process of being thoroughly 
validated by informal validation methods and extensive testing. 
This paper describes the analysis used to define agent safety, 
elements of the design that increase the safety of the agent, and 
the process being used to validate agent safety prior to the agent 
software controlling the spacecraft. 
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1. INTRODUCTION 
Autonomy technologies have incredible potential to revolutionize 
space exploration. In the current mode of operations, space 
missions involve meticulous ground planning significantly in 
advance of actual operations. In this paradigm, rapid responses to 
dynamic science events can require substantial operations effort. 
Artificial Intelligence technologies enable onboard software to 
detect science events, replan upcoming mission operations, and 
enable successful execution of re-planned responses. 
Additionally, with onboard response, the spacecraft can acquire 
data, analyze it onboard to estimate its science value, and only 

downlink the highest priority data. For example, a spacecraft 
could monitor active volcano sites and only downlink images 
when the volcano is erupting. Or a spacecraft could monitor ice 
shelves and downlink images when calving activities are high. Or 
a spacecraft could monitor river lowlands, and downlink images 
when flooding occurs. This onboard data selection can vastly 
improve the science return of the mission by improving the 
efficiency of the limited downlink. Thus, there is significant 
motivation for onboard autonomy. 

However, building autonomy software for space missions has a 
number of key challenges; many of these issues increase the 
importance of building a reliable, safe, agent. 

1. Limited, intermittent communications to the agent. A 
typical spacecraft in low earth orbit typically has 8 
communications opportunities per day. This means that 
the spacecraft must be able to operate for long periods 
of time without supervision. For deep space missions 
the spacecraft may be in communications far less 
frequently. Some deep space missions only contact the 
spacecraft once per week, or even once every several 
weeks. 

2. Spacecraft are very complex. A typical spacecraft has 
thousands of components, each of which must be 
carefully engineered to survive rigors of space (extreme 
temperature, radiation, physical stresses). Add to this 
the fact that many components are one-of-a-kind and 
thus have behaviors that are hard to characterize. 

3. Limited obsemability. Because processing telemetry is 
expensive, onboard storage is limited, and downlink 
bandwidth is limited, engineering telemetry is limited. 
Thus onboard software must be able to make decisions 
on limited information. 

4. Limited computing power. Because of limited power 
onboard, spacecraft computing resources are usually 
very constrained. An average spacecraft CPUs offer 25 
MIPS and 128 MB RAM -far less than a typical 
personal computer. 



5 .  High stakcs. A typical spacc mission costs hundrcds of 
m ~ l l ~ o n s  of dollars, any fa~lure has s~gn~l icant  economic 
impact. Over tinanclal cost, many launch andfor 
r n ~ s s ~ o n  opponunlties are lim~ted by planetary 
geometries. In these cases, i l  a space mission is lost it 
may be years before another similar rniss~on can hc 
launched Additionally, a space memlon can take years 
to plan, construct thc spacecraft, and rcach l h c ~ r  targets. 
This dclay can he catastrophic. 

This papcr discusses our cffons to huild and vill~date a safe 
autonomous space scrence agent. The prmc~pal contributions of 
this papcr arc as follows: 

1. Wc dcscr~bc our laycrcd q c n t  architecture and how that 
enables addi~ional agcnt sarcty. 

2. We descr~he our knowledge englncerlng and model 
revicw proccss dcsigned to enforce agent safety. 

3.  We describe our ground md on-orbil tcsiing process 
designed to improvc a g n t  safcty. 

4. Wc dcscribc our incrcmcntal flight v~lidation proccss to 
enhancc agcnt safcty. 

We descnbc thcsc areas In thc contcxt of lthc Autclnomous 
Sciencccraft Experiment (ASE), an autonomy software packagc 
originally designcd for flight on thc Air Force's Tcchqat-2 1 
Mission [Z] in 2006 and now being uploaded for flight on 
NASA's Ncw Millcnnium Earth Ohscrvcr Onc [EO- I) spacecraft 
in the summer 01 2003 [4]. 

In this paper wc addrcss a number of issucs From thc workshop 
call. 

Definition of agent safety and How to build safc agent - we dcRnc 
agent safety as ensurlng the health and cont~nued operailon of thc 
spacecraft. Wc design our agent to have redundanl mcans lo 
enforce 1 1  known spacecraft operations constraints. Wc also 
utilize declarative knowledge representations. whosc modcls are 
extensively rewewed and tested, We use codc gcncration 
technoIogies to automatically gcneratc rcdcrndanl chccks to 
Improve software rel~ab~lity,  hdd~tionally, our cxpcrirncnt is also 
designed to fly in a series of increasing autonomous phascs, to 
cnablc charactcri7ation of pcrforrnancc of thc a p t  and to huild 
con fidcncc. 

Robust to environment (uncxpcctcd) - our agent must hc robus1 to 
uncxpccted cnvlron~nental changcs. Our agent uses a classic 
layered architecture approach 10 dealing with cxccution 
uncertai ntics. 

How to constrain agents - bccausc of strong agcnt salcty 
concerns, our agcnt archltccture IS designed to enable redundancy, 
adjustable autnnomy, and fail-safe disabling or agent capabilities. 
TIie layerlng o t  the agent enables lower levels of thc agcnt lo 
inhibit highcr-levcl agcnt hchaviar. For cxample. the task 
executive systems (SCL) docs not allow dangerous commands 
from thc planncr to hc scnt on to the flight software. The Flight 
Softwarc br~dge (FSW-br~dgc) can he ~nstructcd to disahlc any 
commands form the autonomy SW or to shutdown components uf 
or the entirc autonomy SW. Thc EO- 1 Flight Software includes n 
fault protection function dcsigned to inhihit potcntiall y hafardnu~ 

commands form any source (including the autonomy software, 
stored command loads from the ground, or rcaI-timc commands). 

Validation OF aEent safcty - wc dcscribc in some detail how we 
havc or l ~ a v c  not ~rpplred Formal methods, informal rncthds,  and 
tcsting to validatc thc pcrformancc of thc ASE saflware. 

Application area - wc hricfly describe some or the more sallent 
fca~urcs o r  tlie spacccrai't control applicat~on area for autonomous 
apenrs. 

The remainder of  this paper is organized as follows. F ~ r s t  we 
describe the ASE sonware architecture, with an emphasis on how 
rt enhances safe agent construction. Ncxt we discuss the 
modeling process and how we developed and validated modcls. 
Thcn wc describe the testing proccss, including how we have 
designed test cases and the test infrastmcturc. Finally, wc 
descnbc thc incrcmcntal fliphc experiment setup and how that 
enables safer expcrimcnt opcralions. 

2. AUTONOMY ARCHITECTURE 
The autonomy sol'tware on EO-1 is organized as a traditinnal 
thrcc-laycr architecture [SJ (See F~gure  I.). At the top laycr, thc 
Continuous Activ~ty Scheduling PEanning Execution and 
Replanning (CASPER) systcrn 13, 121 1s responsible for mission 
planning funct~ons. Operating on the tens-of-minutes timescale, 
CASPER responds to cvcnts that have widespread (across orbits) 
cffccrs. scheduling science activities that respect spacecraft 
operations and rcsourcc constraints. Actrvit~es in a CASPER 
schedule become ~nputs  to the Spacecraft Command Langzlagc 
(SCL) systcm I lo!. 

CASPER modcls act~vities pcrformcd by the spacecraft and 
ground equipmcnt and staff. and tracks activity effects on its 
model of spacecraft state and rcsourccs. CASPER then searches 
for plans that combine these basic activities to satisfy goals (such 
as downlinks and ohscrvation requests) w h ~ l e  enforcmg 
opcralions constraints. 

. Control Slgnal~ 
".,, (very lw level) 

Figure 1. Autonomy Software Architecture 



At the middle layer, SCL is responsible for generating and 
executing detailed sequence of commands that correspond to 
expansions of CASPER activities. SCL also implements 
spacecraft constraints and flight rules. Operating on the several- 
second timescale, SCL responds to events that have local effects, 
but require immediate attention and a quick resolution. SCL 
performs activities using scripts and rules. The scripts link 
together lower level commands and routines and the rules enforce 
additional flight constraints. 

SCL sends commands to the EO-1 flight software system (FSS) 
[9], the basic flight software that operates the EO-1 spacecraft. 
The interface from SCL to the EO-1 FSS is at the same level as 
ground generated command sequences. This interface is 
implemented by the Autonomy Software Bridge (FSB), which 
takes certain autonomy software messages and issues the 
corresponding FSS commands. The FSB also implements a set of 
FSS commands that it responds to that perform functions such as 
startup of the autonomy SW, shutdown of the autonomy SW, 
switching from shadow to active mode, and other autonomy SW 
configuration actions. 

The FSS accepts low level spacecraft commands. These 
commands can be either stored command loads uploaded from the 
ground (e.g. ground planned sequences) or real-time commands 
(such as commands from the ground during an uplink pass). The 
autonomy SW commands appear to the FSS as real-time 
commands. As part of its core, the FSS has a full fault and 
spacecraft protection functionality which is designed to: 

1. Reject commands (from any source) that would 
endanger the spacecraft. 

2. When in situations that threaten spacecraft health, 
execute pre-determined sequences to "safe" the 
spacecraft and stabilize it for ground assessment and 
reconfiguration. 

For example, if a sequence issues commands that point the 
spacecraft imaging instruments at the sun, the fault protection 
software will abort the pointing activity. Similarly, if a sequence 
issues commands that would expend power to unsafe levels, the 
fault protection software will shut down non-essential subsystems 
(such as science instruments) and orient the spacecraft to 
maximize solar power generation. While the intention of the fault 
protection is to cover all potentially hazardous scenarios, it is 
understood that the fault protection software is not foolproof, 
Thus, there is a strong desire to not command the spacecraft into 
any hazardous situation even if it is believed that the fault 
protection will protect the spacecraft. 

The science analysis software is scheduled by CASPER and 
executed by SCL. The results from the science analysis software 
generate new observation requests presented to the CASPER 
system for integration in the mission plan. 

This layered architecture for the autonomy SW is designed such 
that each lower layer is validating the output of the higher layers. 
The planner activities are checked by SCL prior to being sent on 
to the FSS. The FSS fault protection is checking the SCL outputs 
as well. 

3. MODEL BUILDING & VALIDATION 
Because the control aspects of the Autonomy SW are embodied in 
the CASPER & SCL models, our methodology for developing 
and validating the CASPER and SCL models is critical to our safe 
agent construction process. These models include constraints of 
the physical subsystems including: their modes of operation, the 
commands used to control them, the requirements of each mode 
and command, and the effects of commands. At higher levels of 
abstraction, CASPER models spacecraft activities such as science 
data collects and downlinks, which may correspond to a large 
number of commands. These activities can be decomposed into 
more detailed activities until a suitable level is reached for 
planning. CASPER also models spacecraft state and its 
progression over time. This includes discrete states such as 
instrument modes as well as resources such as memory available 
for data storage. CASPER uses its model to generate and repair 
schedules, tracking both the current state & resources and the 
expected evolution of spacecraft state and resources based on 
planned activities. 

SCL continues to model spacecraft activities at finer levels of 
detail. These activities are modeled as SCL scripts, which when 
executed, may execute additional scripts, ultimately resulting in 
commands to the EO-1 FSS. Spacecraft state is modeled as a 
database of records in SCL, where each record stores the current 
value of a sensor, resource, or sub-system mode. The SCL model 
also includes flight rules that monitor spacecraft state, and execute 
appropriate scripts in response to changes in state. SCL uses its 
model to generate and execute sequences that are valid and safe in 
the current context. While SCL has a detailed model of current 
spacecraft state and resources, it does not generally model future 
planned spacecraft state and resources. 

Development and verification of the EO-1 CASPER and SCL 
models was a multiple step process. 

1. First a target set of activities was identified. This was 
driven by a review of existing documents and reports. This 
allowed the modeler to get a high-level overview of the 
EO-1 spacecraft, including its physical components and 
mission objectives. Because EO-1 is currently in 
operation, mission reports were available from past 
science requests. These reports were helpful in identifying 
the activities performed when collecting and downlinking 
science data. For example, calibrations are performed 
before and after each image, and science requests typically 
include data collection from both the Hyperion 
(hyperspectral) and Advanced Land Imager (ALI) 
instruments. 

2. Once the activities were defined, a formal EO-1 operations 
document was reviewed to identify the constraints on the 
activities. For example, due to thermal constraints, the 
Hyperion cannot be left on longer than 19 minutes, and 
the ALI no longer than 60 minutes. The EO-1 operations 
team also provided spreadsheets that specified timing 
constraints between activities. Downlink activities, for 
example, are often specified with start times relative to 
two events: acquisition of signal (AOS) and loss of signal 
(LOS). Fault protection documents listing fault monitors 
(TSMs) were also consulted, using the reasoning that 
acceptable operations should not trigger TSMs. 



3. With the model defined, CASPER was able to generate 
preliminary command sequences from past science 
requests that were representative of flight requests. These 
sequences were compared with the actual sequences that 
were uplinked for the same request. Significant differences 

Table 1. Sample safety analysis for two risks. 

between the two sequences identified potential problems 
with the model. For example, if two commands were 

Instruments overheat 
from being left on too 

long 

sequenced in a different order, this may reveal an 
overlooked constraint on one or both of the commands. 
We were also provided with the actual downlinked 
telemetry that resulted from the execution of the science 
observation request. This telemetry is not only visually 
compared to the telemetry generated by ASE, but it can 
also be "played back" to the ASE software to simulate the 
effects of executing sequences. The command sequences 
were aligned with the telemetry to identify the changes in 
spacecraft state and the exact timing of these changes. 
Again, any differences between the actual telemetry and 
the ASE telemetry revealed potential errors in the model. 
A consistent model was defined after several iterations of 
generating commands and telemetry, comparing with 
actual commands and telemetry, and fixing errors. These 
comparisons against ground generated sequences were 
reviewed by personnel from several different areas of the 
operations staff to ensure acceptability (e.g. overall 
operations, guidance, navigation and control, science 
operations, instrument operations). 

Instruments exposed 
to sun 

4. Model reviews were conducted (or are planned) where the 
models are tabletop reviewed by a team of personnel with 
a range of operations and spacecraft background. This is 
to ensure that no incorrect parameters or assumptions are 
represented in the model. 

Finally, a spacecraft safety review process was performed. In this 
process, experts from each of the spacecraft subsystem areas (e.g. 
guidance, navigation and control, solid state recorder, Hyperion 
instrument, power, ...) studied the description of the ASE 
software and commands that the ASE SW would execute and 
derived a list of potential hazards to spacecraft health. For each of 
these hazards, a set of possible safeguards was conjectured: 
implemented by operations procedure, implemented in CASPER, 
implemented in SCL, and implemented in the FSS. Every 
safeguard able to be implemented with reasonable effort was 
implemented and scheduled for testing. Such analysis for two 
risks is shown below. 

I I 
( High-level activity ( Maneuvers must be 

on and turn off when the covers are 

the maximum instruments are 
separation. pointing at the earth) 

Verify orientation of 
spacecraft during 

periods when 
inseument covers are 

open. 

Oprations 

I SCL I "on" time and issue a maneuver scripts 
turn off command if from executing if 

For each turn On 

command, look for the 
following turn off 

command. Verify that 
they are within the 

maximum separation. 

I ( left on too long. I covers are open. 1 

An interesting aspect of model development is the use of code 
generation techniques to derive SCL constraint checks from 
CASPER model constraints. In this approach, certain types of 
CASPER modeling constraints can be translated into SCL code to 
ensure activity validity at execution time. If the CASPER model 
specifies that activities use resources, this can be translated into an 
SCL check for resource availability before the activity is executed. 
If the CASPER model specifies a state requirement for an activity, 
one can auto-generate a check to see if that state is satisfied before 
executing the activity. Additionally, if the CASPER model 
specifies sequential execution of a set of activities, code can be 
generated so that SCL enforces this sequential execution. 

For example, in calibrating the Hyperion instrument, the solid 
state recorder (WARP) must be in record mode and the Hyperion 
instrument cover must be "open". Below we show the CASPER 
model and the generated SCL constraint checks. 
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/ /  Hyperion calibration 

activity hsi-img-cal 

( 

durat caldur; 

/ /  schedule only when the WARP is in record 

/ /  mode, recording data, and 

/ /  when the hyperion cover is open 

reservations = 

wrmwmode must-be " recn , 
ycovrstat must-be "closed"; 

/ /  start and stop the instrument 

decompositions = 

yscistart, yscistop 

where yscistop starts-after 

start of yscistart by caldur; 

I 

-- Hyperion calibration 

script hsi-img-cal caldur 

-- verify that the WARP is in record 

-- mode, recording data, and 

-- that the hyperion cover is open 

verify wrmwmode = rec 

and ycovrstat = closed 

within 5 seconds 

-- start and stop the instrument 

execute yscistart 

wait caldur sec 

execute yscistop 

end hsi-img-cal 

Figure 2. Sample model and script for Hyperion calibration. 

Note that this generated code also enforces the sequential 
execution of the "yscistart" and "yscistop" activities, separated by 
"caldur" seconds. This shows how code is automatically 
generated from a CASPER defined temporal constraint over two 
activities. 

As another example, when initiating the WARP recording, there is 
a limit on the total number of files on the WARP recorder (63). 
In CASPER we define the constraint that "wfl" new files are 
created. In SCL, code is auto-generated to verify that that many 
files can be created without exceeding the file number limit before 
the WARP recording activity is allowed to be executed. 

/ /  Start the WARP recording 

activity wrmsrec 

. . .  
reservations = 

/ /  reserve the required number of 

/ /  files on the WARP 

wrmtotfl use wfl, 

/ /  change the warp to record mode when 

/ /  complete 

wrmwmode change-to "rec" at-end, 

. . . 
1 

-- Start the WARP recording 

script wrmsrec 

. . . 
verify 

wrmfreebl wrmtotfl + wfl c= 63 
and wrmtotfl + wfl >= 1 and 

. . . 
end wrmsrec 

Figure 3. Sample model and script for WARP recording. 

4. TESTING ENFORCEMENT OF SAFETY 
Gaining confidence in the safety of the EO-1 autonomy software 
requires extensive testing. We structured our testing methodology 
such that it would verify the protections provided by our layered 
architecture, and compliment the phases of the model 
development process. Specifically, the test plan is intended to 
validate the following system properties: 

1. CASPER generates plans consistent both with its 
internal model of the spacecraft and SCL's model and 
constraints (as checked by SCL). 

2. SCL does not issue any commands that violate the 
constraints of the spacecraft (as checked by our 
spacecraft simulator). 

3. Our model satisfies spacecraft operational and safety 
constraints enumerated by the model safety-review 
process. 

We will validate these three requirements by extensive testing of 
the autonomy software on generated test-cases, using checks at 
each layer to validate performance. The test cases described 
below address only the top-two levels of the onboard autonomy 
software (CASPER and SCL), with the flight software and 
spacecraft hardware replaced by a software simulator. Flight 
software testing and validation is addressed by a separate, more 
conventional, test plan. 



4.1 Test Case Parameters 
Each EO-1 test case covers seven days of operations containing 
multiple schedulable windows separated by a variable number of 
orbits. Each schedulable window represents an opportunity to 
schedule one or more science observations. The test cases must 
account for variations in the mission and science objectives 
(mission scenario parameters), initial state of the spacecraft 
(spacecraft state parameters), and changes to the spacecraft state 
during execution. 

Since the autonomy software has no control over what happens 
outside of a schedulable window, we must be certain that our 
software performs reliably over a range of possible initial states. 
We cover these cases by using the simulator to vary the spacecraft 
state parameters as tracked within SCL and monitored by 
CASPER. The simulator also varies the spacecraft state 
parameters during execution to test the performance of our agent 
in the face of an uncertain environment. 

Mission scenario parameters represent the high-level planning 
goals passed to CASPER. They are derived from a combination 
of the orbit of the spacecraft and the science objectives uplinked 
from the ground. They specify when targets will be available for 
imaging, as well as the parameters of a science observation (i.e. 
number of targets to image and science analysis algorithms we 
wish to execute). 

The 22 spacecraft state parameters and 16 observation goal 
parameters used in the EO-1 test cases are shown in the tables 
below. 

Table 2. Spacecraft state parameters. 

Table 3. Mission-scenario parameters. 

ali fpe power 

ale fpe data gate 

ali cover state 

groundstation view 

mission lock 

To exhaustively test every possible combination of state and 
observation parameters, even just assuming a nominal and failLUe 
case for each parameter and ignoring execution variations, would 

disabled 

disabled 

closed 

unknown 

unlocked 



require a test set containing 238 or 2.7 x 10" test cases. Pruning 
the set of variations to just the sixteen observation parameters 
would still yield an impractically large set. The challenge thus 
becomes selecting a set of tests that most effectively cover the 
intractable space of possible parameter variations within a 
timeframe that allows for reasonable software delivery. 

4.2 Design of Test Cases 
Traditional flight software can be tested through exhaustive 
execution of a known set of sequences. Autonomy software 
however must be able to execute in, and react to, a much wider 
range of possible scenarios. As show above, testing all these 
possible scenarios would be intractable, however we can leverage 
the traditional nominal sequences and scenarios to baseline our 
tests - varying parameters off of a controlled scenario, and thus 
reducing the number of parameter variations our agent must 
consider. This is a similar approach to that used to validate the 
Remote Agent Planner for DS 1. [I 11. 

We started the design process by having spacecraft and operations 
personnel identify expected values for each parameter based upon 
the nominal mission scenario. Using these assignments we 
generated test cases by varying each of the parameters across three 
distinct classes of values - nominal (single value), off-nominal 
(range of acceptable values), and extreme (most likely failure 
conditions). For each parameter, based on this decomposition, we 
defined a set of five values at the boundaries of these classes - a 
minimum value, an "off-nominal-min" value at the boundary 
between the off-nominal and the extreme, a nominal value, an 
"off-nominal-max", and a maximum value. 

min- noenal  - max 

The single-parameter approach generates test sets that scale 
linearly with the number of parameters. Since we decomposed 
each of our parameters into five representative values, for N 
parameters, we have 5N test cases (or 4N+1 unique test cases as N 
of these will be the same nominal test set). For the EO-1 science 
agent this yields approximately 150 test cases. The pair-wise 
testing approach grows proportional to the number of pairs 
multiplied by the number of values for each pair or [k:2] * v * v 
for k parameters with v values. For EO-1, with 38 parameters 
each with 5 values, this gives us 17,575 test cases. Unfortunately 
even this number of test cases is impractical. Consequently we 
plan to use the method described in [6] and used by RAX [ l l ] ,  to 
reduce the number of pair-wise tests to a manageable level (under 
100). 

4.2.2 Stochastic Test Set 
In all but one of the cases generated by our Coverage test set some 
parameter has an off-nominal or extreme value. While these tests 
give us confidence in the robustness of our system, they do not 
provide much evidence as to the correctness of execution in 
nominal scenarios. In order to test more nominal scenarios, and 
also gain coverage in the off-nominal scenarios outside of the five 
representative values, we devised a scheme for generating 
stochastic test sets based on parameter value distributions. 

Parameters were given normal distributions around their nominal 
value, with standard deviations half the width of the off-nominal 
range (such that 95% of expected values will be either nominal or 
off-nominal). Nominal test sets were then generated assigning 
values to parameters based on the defined distributions. 
Furthermore, by modifying the construction of the parameter 
distribution, we were able to create off-nominal and extreme test 

off-nominal kin off-nominal max 
Figure 4. Parameter Decompositions 

Using this decomposition of the test space, we generated three 
sets of test cases: 

1. Coverage test cases that attempt to exercise a 
representative sample of all possible parameter-value 
assignments. 

2. Stochastic test cases that verify nominal-operation 
scenarios. 

3. Environmental test cases that evaluate how our agent 
performs in an uncertain environment. 

4.2.1 Parameter-Coverage Test Set 
Using the parameter decomposition we designed two sets of test 
cases, one that exercised the five values for each parameter while 
holding all other parameters within their nominal mission 
scenario, and another that exercised pair-wise combinations of 
parameter variations. Single-parameter variations allow for 
simple tests of off-nominal situations (variations that allow 
defects to be easily traced back to the source), while pair-wise 
combinations allow us to test the more complex interactions 
between parameters. 

sets that would stochastically favor some parameters to choose 
values outside of their nominal range. 

4.2.3 Environmental Test Set 
We further extended the stochastic test sets described above to 
include execution variations based on the parameter distributions. 
The spacecraft simulator was modified to allow as input variations 
to expected parameter values. During the execution of activities 
the simulator will simulate the change to each parameter of the 
current activity, and then vary the value returned based on the 
provided parameter distributions. Again nominal, off-nominal, 
and extreme test sets were generated that instructed the simulator 
to vary parameter values within the corresponding value class. 

Finally we needed a way to test how the system responds to 
unexpected or exogenous events within the environment. These 
events could be fault conditions in the spacecraft or events outside 
of the CASPER model. Unlike the initial-state and execution- 
based testing described above, these events could happen at any 
time, and do not necessarily correspond to any commanded action 
or modeled spacecraft event. To accomplish this we added to our 
spacecraft simulator the ability to change the value of any 
parameter, at either an absolute time or time relative to the 
execution of an activity, to a fixed value or a value based on the 
distributions described above. We added small-variation events 
(within appropriate off-nominal and nominal classes) to our 
nominal and off-nominal stochastic test sets. Test cases are also 
currently in development that will use this capability to exercise 
the fault scenarios outlined in the Spacecraft Safety document. [5] 



4.3 Testing Procedure 
The number of test cases we plan to run is limited by available 
testing resources and the time remaining before mission inception. 
The EO-1 experiment has a compressed two month testing 
window with limited access to high-fidelity test beds. We forecast 
two-thirds of testing time will be spent evaluating output and 
running regression tests. The remaining one-third of our testing 
resources will be available for generated test cases. At two-hours 
per test run this gives us the capacity to run approximately 2400 
tests. 

At this time our automated test harness can detect "hard test 
failures (i.e. crashes), and violations of system constraints 
(checked by the simulator). We also have in development and 
limited-deployment "goal-detection" software that evaluates 
whether CASPER successfully executed the goals specified in the 
mission scenario. 

As an additional complication, for EO-1 we have a number of 
testbeds with varying degrees of fidelity to the actual flight 
environment. The vast majority of tests must be run on the 
Solaris and Linux testbeds, as they are the fastest and most readily 
available. However, these test the software under a different 
operating system, so are useful for testing of the model only. The 
operating system and timing differences are significant enough 
that many code behaviors occur only in the target operating 
system, compiler, and timing of interest. In order to validate 
aspects of the model dependent on precise timing we are forced to 
run tests on higher fidelity testbeds. 

Table 4. Testbeds available to validate EO-1 agent. 

5. STATUS & DEPLOYMENT 
Black box testing verifies that the system correctly follows those 
constraints encoded in the model and enforced by the layered 
architecture. However we also need a way to validate through 
testing that the model correctly encodes the requirements and 
constraints of the spacecraft. For EO-1 the first step in this 
process was the informal telemetry validation discussed 
previously in section 3. We have decided to augment this 
validation with a set of operational procedures that will help to 
build confidence in the safety of the EO-1 science agent before it 
is given full control to command the spacecraft. The autonomy 
software will be deployed as follows: 

TYP 

Solaris 

Sparc Ultra 

Linux 

2.5 GHz 

GESPAC 

PowerPC 

100-450 MHz 

JPL Flight Testbed 

RAD 3000 

EO-1 Flight Testbed 

Mongoose M5, 

12 MHz 

EO-1 Autonomy 
Testbed (under 

Executive-only deployment (planned May 2003) 

In this phase SCL will be uploaded to the spacecraft and 
enabled to receive and process ground commands. SCL will 
monitor telemetry from the spacecraft but will be prevented 
from issuing any spacecraft commands across the software 
bridge. These commands will instead be downlinked as 
telemetry for review and safety inspection by the operations 
team. 

construction, 
complete Sep 2003) High - runs Flight 

Software 
Mongoose M5, 

12 MHz 

Number 

7 

10 

1 

1 

Ground generated flight test (planned May 2003) 
In this phase CASPER and SCL will generate a command 
sequence from ground-based testbeds for flight operations. 
This sequence will then be uplinked for execution onboard 
the spacecraft. 

Fidelity 

Low - can test model but 
not timing 

I, 

Moderate - runs flight 
0s 

Moderate 

High - runs Flight 
Software 

Shadow flight operations (June 2003) 

Next we will upload CASPER and SCL to EO-1 and allow 
spacecraft telemetry and ground commands, but disable any 
spacecraft commands across the software bridge. This test 
will serve two purposes: test that the code executes as 
expected on the actual spacecraft, and validate that the 
generated command sequences conform to spacecraft safety 
and operations constraints. 

Full deployment ( July 2003 - September 2004) 

After the sequences from shadow flight operations have been 
verified as correct, CASPER and SCL will be permitted to 
command the spacecraft. During this phase telemetry will be 
downlinked and checked on the ground to validate command 
sequences. 

As this paper is being written, we are in integration of the full 
autonomy SW with the EO-1 FSW on the GSFC testbed. 
Additionally, the SCL-only software load is being uplinked to be 
tested May 22nd. While it is quite possible that there will be 
further delays from the schedule described above, the integration 
process is moving forward at a steady pace. 

The majority of the testing effort has just begun. The ground- 
based testing has only begun in the last month, and additional 
analysis for test case generation is underway. Because of this, it is 
likely that the shadow mode of operations may need to be 
extended slightly, particularly if any of the flight tests cause 
anomalies. 



6. CONCLUSIONS 
This paper has described the design and validation of a safe agent 
for autonomous space science operations. First, we described the 
salient challenges in developing a robust, safe, spacecraft control 
agent. Second, we described how we used a layered architecture 
to enhance redundant checks for agent safety. Third, we 
described our model development, validation, and review. 
Fourth, we described our test plans, with an emphasis on reducing 
the number of test cases to a tractable set. Finally, we described 
our phased approach to flight, which provides additional 
safeguards. 
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