
On Automating Failure Mode Analysis and Enforcing its Integrity*

Ann T. Tai Kam S. Tso Savio N. Chau

IA Tech, Inc. Jet Propulsion Laboratory

Los Angeles, CA 90024 Pasadena, CA 9 1 109

May 16,2005

Abstract

This paper reports our experience on the development of a design-for-safety (DFS) workbench called

Risk Assessment and Management Environment (RAME) for microelectronic avionics systems. Our ob-

jec&ve is to transform DFS practice from an ad-hoc, inefficient, error-prone approach to a stringent engi-

neering process such that DFS can keep up with the rapidly growing complexity of avionics systems. In

particular, RAME is built upon an information infrastructure that comprises a fault model, a knowledge

base, and a failure reportingltracking system. This infrastructure permits systematic learning from prior

projects and enables the automation of faiIure modes, effects and criticalrty analysis (FMECA). Among

other unique features, the most important advantage of RAME is its capability of directly accepting

design source code in hardware description languages (HDLs) for autolnated failure mode analysis,

which enables RAME to be compatible and to evolve with most electronic-computer-aided-design sys-

tems. Through an initial experimental evaluation of the RAME prototype, we show that our approach to

FMECA automation improves failure mode analysis turn-around-time, completeness, and accuracy.

Keywords: Design for safety, failure mode analysis, FMECA automation, information infrastructure,

design source code

Submission Category: Practical experience report

'The work reported in this paper was supported in part by SmaIl Business Innovation Research (SBIR) Contract NAS3-02096
from the Jet Propulsion Laboratory National Aeronautics and Space Administration.

A
c , ~ L ~ L M , ctd'a

1 Introduction

Risk identification and mitigation are essential in design for safety, especially for microelectronic avionics

systems. However, the widely used, traditional practice of failure mode, cause, and effect analysis (FMECA)

that relies on manual, textual-document manipulation are often ambiguous, inconsistent, and error-prone.

Those shortcomings are primarily due to that the analysis correctness heavily relies on the knowledge and

experience of individual systedquality-assurance engineers who perform FMECA worksheet generation.

Furthermore, the manual production of FMECA documents can absorb a significant amount of time during

the system design stage, and is unable to provide system engineers with timely feedback for design modifica-

tions. For example, the FMECA worksheet for the IEEE 1394 interface design at JPL took 6 person-month

to complete.

As the increased device complexity and reduced development cycle time collectively have made FMECA

automation highly desirable, a number of commercial tools were developed in order to facilitate the time-

consuming process of performing FMECA (see [I], for example). Nonetheless, the capabilities of those

tools are generally limited to automating the process of organizing data, providing a graphical interface

for users to enter their analysis results, and formating the reports according to Military Standards. More

specifically, the major inadequacy of those tools is that they lack the capability of automating the most

crucial part of FMECA, namely, the time-consuming and error-prone process of identifying failure modes.

With the motivation of transforming DFS practice from a traditional ad-hoc process that relies on error-

prone, textual-document manipulation to a stringent engineering process, we develop a DFS workbench

called the Risk Assessment and Management Environment (RAME). RAME comprises a static analyzer

that accepts and processes design source code in hardware design language, a FMECA automation engine, a

fault model, a knowledge base, a test reporting and failure tracking system (TRFTS), and a data mining tool

(DMT-WEKA). The Iast two components together enable the knowledge base and fault model to be built

and kept up-to-date along a project's life cycle and across successive projects, constituting a close loop that

enables the information infrastructure to evolve.

Failure mode analysis is a widely used means for design validation. By identifying possible failure

modes of devices used in a design and tracing their potential effects on system behavior at the application

level, design inadequacies can be resolved in an early stage so that risks that have serious impact on mission

success can be mitigated in a timely fashion. We view consistency, completeness, and accuracy collectively

as failure mode analysis integrity. Accordingly, the specific objective of our RAME project is to improve

both the integrity and turnaround time of design validation and to reduce the likelihood that design changes

initiate at a late stage of a system life cycle due to overlooking a design flaw or a failure mode that may

lead to a severe consequence. In addition, RAME intends to relieve system engineers from the tedious and

error-prone process of manually generating FMECA worksheet and to enable them to gain time for design

inadequacy mitigation.

The remainder of the paper is organized as follows. Section 2 presents the information infrastructure of

W E . Section 3 describes our approach to FMECA automation. Section 4 reports an initial experimental

evaluation of the RAME prototype using the actual design source code of JPL's System Input/Output board.

Section 5 concIudes the paper.

2 Information Infrastructure

2.1 RAME Architecture

As shown in Figure 1, the architecture of W E comprises six components which together enable high-

integrity failure mode analysis. In particular, the HDL static analyzer and FMECA automation engine

carry out failure analysis, with the crucial support from the information infrastructure consisting of the fault

model, knowledge base, TRFTS, and DMT-WEKA. More specifically, TRFTS allows engineers to report

test results and track failures based on a unified taxonomy and terminology, serving as the information

source of the knowledge base and fault model, while DMT-WEKA extracts information concerning faiIure

mode, cause, and effect from TRFTS for building and maintaining the knowledge base and fault model.

/ VHDL /

VHDL
Static Analyzer

DMT-WEKA

Figure 1 : RAME Architecture

The goal of the information infrastructure is to 1) enable high-confidence FMECA automation by avoid-

ing inconsistency, omission, and miscommunication, and 2) facilitate design, test, and reliability engineers

to collaborate on risk assessment and management throughout a system's life-cycle. More succinctly, the

information infrastructure addresses the following issues:

Presentation integration: Enforcing the use of unged taxonomy and terminology, starting from the user-

interface level, to let all the components of RAME have a consistent view on the system under analysis

and communicate correctly.

Information sharing: Based on the unified taxonomy and terminology, letting a11 the components of RAME

collaborate share information. For example, appropriate entries in the test report database (a subsys-

tem of TRFTS) are extracted for constructing and updating the fault models and knowledge base,

which in turn, are employed for FMECA automation.

Assurance of data integrity: DMT-WEKA plays an important role in RAME for determining the relation-

ships among device types, failure modes, and types of cause and effect. Evidence and confidence

metrics are computed and used as the integrity indicators of the associations among those different

entities.

Within the information infrastructure, the fault model defines the possible failure modes associated with

each device type and the probable causes of a failure mode with which a device fails. For example, a device

such as a capacitor can be associated with faiIure modes open and short. The probable causes of "open"

will include "Cracked solder joint" and "Anomalous overstress," whereas the probable causes of "short" will

include "Part degradation."

The knowledge base supplies information necessary for interpreting the terms used in the HDL design

source code under analysis and thus to enable FMECA automation. Knowledges encompass device types,

signal types, and their characteristics that must consider when performing failure mode analysis. For exam-

ple, by helping identify signal types during analyzing an interface board, the knowledge base will make the

FMECA automation engine beware of certain signals are bus signals so that each of them must be analyzed

as an array. Knowledges are established and continuously enriched by the off-the-shelf data mining tool

WEKA which extracts useful information from TRFTS and translates them into organized knowledges.

2.2 DeveIopment of TRFTS

TRFTS is developed for recording, updating, and managing the reports concerning anomalies that are re-

vealed during testing or simulation of avionics systems prior to launch at different levels, namely, chip,

board, subsystem, and system. TRFTS is also the front end that enforces the use of a unified taxonomy

and terminology for reporting failures. In turn, this ensures correct data exchanges among all the exist-

ing components in RAME and permits additional component tools to be developedfintegrated into RAME

without violating analysis integrity. The development of TRFTS is based on Web technologies, Java and

XML, in order to create portable code and portable data that can run on any computing platforms including

handhelds.

Specifically, test reports are be stored in XML format to enable knowledge discovery from test or simu-

lation data. TRFTS consists of several server-side components implemented on the Java 2 Enterprise Edition

(J2EE) platform. A number of JavaServer Pages (JSPs) are deveIoped for TRFTS. The JSPs enable the user

to access TRFTS using any Web browsers, such as the Microsoft Internet Explorer, Netscape Navigator, or

open-source Firefox and Mozilla.

As XML schemas are designed to express shared vocabularies and allow machines to carry out rules

defined by the designer, they are heavily exploited for the specification of failure report contents, structures,

constraints, and semantics. As an example, Figure 2 shows an excerpt of the Failure Report XML Schema

that specifies the Failure Level field and input-value choices for this field. The JSP translates this schema

element into an HTML multiple choice element so that the user can select one of the permissible input

values for the field. With this approach, updates of TRFTS, such as adding a field or a permissible choice

of input value, can be easily done by modifying the appropriate XML schema. Finally, the test reports

are organized as individual XML files and stored in the TRFTS database which supports data mining for

knowledge discovery.

2.3 Data Mining: Building and Enriching Fault Model and Knowledge Base

Data mining supports FMECA Automation by building and continuousIy enriching the knowledge base

and fault model. The data mining subsystem in RAME's information infrastructure employs the open-

<xsd:element name=~lFailure-Levelll>
<xsd:simpleType>
<xsd:restriction base=Irxsd: string1!>
<xsd:enumeration value="GateH / >
<xsd: enumeration ~alue=l~Chip~~ / >
<xsd:enumeration ~alue="Board~~ / >
<xsd:enurneration value="Subsystem" / >
<xsd:enurneration ~alue=~Systern" / >
<xsd:enurneration val~e=~Mission~ / >
</xsd:restrictions
</xsd:simpLe~ype>
</xsd:elements

Figure 2: XML Schema of the Field for Failure Level

source-code WEKA' to process and visualize data, and to extract knowledge from TWTS. WEKA contains

constituent tools for data pre-processing, summarization, classification, regression, clustering, association,

and visualization.

For the purpose of FMECA automation, we let WEKA perform data summarization, which is the ab-

straction and generalization of data, to aggregate the information in TRFTS concerning failures, causes and

effects; and we let WEKA cany out data association that discovers the relationships between data items; for

example, to relate failure modes to device types and probable causes to failure modes. Clearly, association

analysis is the most essential data mining mechanism for automating FMECA.

Further, we regard the certain data items available in TRFTS (such as device types, failure modes,

probable causes) as the universe and let each item type have a Boolean variable indicating its presence or

absence in individual reports. Thus Each test report can be marked by a vector of Boolean values that reflects

items that frequently appear together. These patterns can then be translated into the fonn of association

rules. For example, the pattern in which a resistor tends to fail in the "open" failure mode and it is usually

caused by "cracked solder joint" is translated into the following rule:

device=RESISTOR failure=OPEN ==> cause=CrackedSolderJoint
[support = 2 0 % , confidence = 90%1

Levels of support and conjidence are two metrics of rule validity. They respectively reflect the usefulness

and certainty of discovered rules. A support of 20% for the above association rule means that 20% of all

the test reports under analysis show that CrackedSolderJoint is the cause of OPEN failure for RESISTOR.

A confidence of 90% means that 90% of the test reports that reveal RESISTOR has Open failure mode also

indicate the failure mode is caused by CrackedSolderJoint. In RAME, association rules are considered valid

and entered into the knowledge base or fault model if the relationships they state satisfy both a minimum

support threshold and a minimum confidence threshold.

'WEKA stands for Waikato Environment for Knowledge Analysis, and is developed at the University of Waikato in New
Zealand.

3 FMECA Automation

3.1 General Approach

Over the past few years, hardware description languages (HDLs) have been wideIy used in electronic design

automation (EDA). Two HDLs, VHDL and Verilog have become the dominant de facto industry standard

HDLs. The VHSIC Hardware Description Language (VHDL) offers a broad set of constructs for describ-

ing even the most complicated logic in a compact fashion. It can be used to model hardware systems and

components, from gate level to system level. VHDL is designed to meet a number of requirements through-

out the design process: 1) to describe how it is decomposed into subsystems and how those subsystems

are interconnected, 2) to specify the functions of an system entity, using familiar programming language

constructs, and 3) to aIlow the design of a system be simulated prior to implementation and manufacturing,

which means that correctness verification can be performed without costly hardware prototyping.

Verilog also describes hardware systems with structure and behavior models similar to VHDL. Cur-

rently, most ECAD tools support both VHDL and Verilog [2]. Although our development is based on

VHDL, all the techniques and tools implemented in RAME, including the W E C A automation engine, are

compatible to both VHDL and Verilog except that an additional static analyzer will be needed for parsing

design source code in VeriIog.

Our approach to automating FMECA, as illustrated in Figure 3, is based on 1) the structural and behav-

ioral information embedded in the VHDL source files, and 2) the fault model and knowledge base in the

FUME information infrastructure.

Modification

VHDL Abtract
Source Syntax Device

Files Graph Identification

FMECA
Automation

Engine

4 +
DMT- Probable

WEKA Cause
Determination

-4 I +

Figure 3: FMECA Automation

Failure Mode TRFTS
Association

The VHDL source files are first analyzed by the VHDL Static Analyzer, which parses the design source

code according to the formal grammar of VHDL. The analyzer is able to detect and report any syntax

errors, resolves all the names used in the VHDL code to their respective declarations (including overloaded

function names), and checks types used by each named elements. If no syntax or type-check error is found,

the analyzer generates the abstract syntax graph which enables FMECA automation.

From the structural perspective, the FMECA Automation Engine traces the signals from outer layer of

FMECA
Worksheet
Generation

a system under analysis (e.g., a connector of an $10 board under analysis) to the inner layer (e.g., an ASIC

inside the SIO board), and from the higher level (e.g., the board level) to the lower level (e.g., the chip level).

The engine takes the advantage of a VHDL specification in which signals can be identified from the port list

of the system under analysis (e.g., all the signals at the connectors), or from a list specified by the user. In

particular, a recursive trace is based on the design's architectural information encoded in the VHDL files.

The trace stops when it reaches "terminals" such as power, ground, connector, or an entity that has no further

elaboration (e.g., an IP-based ASIC which does not have a VHDL design file for architecture specification).

Through the trace, the FMECA automation engine collects all the devices (e.g. resistors and capacitors)

along the paths. It subsequently exploits the information in the knowledge base and fault model to generate

the FMECA worksheet.

3.2 VHDL Static Analyzer

RAME's VHDL Static Analyzer (VSA) is able to analyze IEEE VHDL-93 compliant designs, such as

JPL's SIO board design (see Section 4). VSA consists of two components, namely, a lexical scanner and a

syntax interpreter. The lexical scanner groups characters in a VHDL source code file into tokens, which are

keywords defined in VHDL specifications, such as e n t i t y and port, identijers used in the design files

such as DIOA-CLK and 12C_O_ID, VHDL operator symbols such as => and : =, and VHDLpunctuation

symbols such as parentheses and commas

Hence, the output of the lexical scanner is a stream of tokens which is subsequently passed to the syntax

interpretor. According to the VHDL grammar, the syntactic interpretor then organize the tokens to form

syntactic structures. For example, the three tokens "TDI", "=>", and "MSIOA-TDI" are grouped into a

syntactic structure caIled an expression. Expressions are in turn combined to form statements, etc. Those

syntax structures eventually constitute an abstract syntax tree whose Ieaves are the tokens produced by the

lexical scanner, More specifically, the abstract syntax tree is represented by a collection of C++ objects

tightly connected by pointers. With the tree structure, the objects can then be accessed by a set of C++

methods for FMECA automation. Figure 4 shows a portion of an abstract syntax tree generated by the

syntax interpretor (for the design validation of JPL's SIO board).

3.3 FMECA Automation Engine

The FMECA automation engine (FAE) automates the otherwise labor-intensive process of performing fail-

ure modes, effects and criticality analysis of hardware designs, by exploiting the information infrastructure

as follows:

a Use the C++ methods to access those design information that is organized into an abstract syntax tree,

including the entities that comprise the design, the architectural structure of those entities, and the

input/output signals of each entity.

Use the information about system parts, signal types, and failure modes that are accommodated in the

knowledge base. The system parts allow FAE to identify the type of device (e.g., CDR3 1 Z 2 p f is a ca-

pacitor). The signaI types allow FAE to identify power andground signals (e.g., I2CAO -3 . 3VRTN is

desi n file "r'

Figure 4: Portion of the Abstract Syntax Tree for the VHDL SIO Design

a ground signal). Knowledge about which of the bus signals requires an array data structure for the au-

tomated analysis can also be found in the knowledge base (e.g., treats AD as a bus signal AD (3 1 : 0)).

The failure modes allow FAE to associate possible failures with each device type (e.g., the failure

mode of a resist or is Open).

Use the association rules that are provided by the fault model to determine the relationships among

device types, failure modes, and probable causes.

Device Identification

The first step in the automated FMECA process is to identify all the devices (i.e., the structure primitives

at a given abstraction level) whose failures may affect system operation. In VHDL, a module (which could

be an ASIC, a board, a subsystem, or a system) is described using an entity declaration which specifies the

interface in terms of popts, and the connecting points for input and output signals. FAE traces the signal one

by one according to the list of signals (i.e., the port list), from the outside of the module to its inside until

it cannot trace any further, that is, it reaches the power, ground, connector, or a terminal entity, such as an

ASIC that does not have a VHDL design file. But when FAE encounters a device which does have a VHDL

design file, it will trace down one level further. During the trace, FAE collects all the devices along the trace

path and to constructs a list of devices for that signal.

Since we are interested in the type of a device (e.g. capacitor) instead of the specific device (e.g.

CDR3 1-2 2uf), the FAE uses the System Parts information in the knowledge base to look up the type of a

device. The System Parts information is specific to the target system and it can be either obtained from the

project design engineers or through data mining of the test reports.

Failure Modes Identification

After a list of devices is established, FAE relates particular potential failures to each of the devices, based on

the association rules for devices and failures that are discovered through data mining in TRFTS and stored

in the fault model.

Another piece of information we use during FMECA is the mode of each signal. The VHDL declaration

of each signal includes its mode, such as in , out, and inout. This information allows FAE to identify

whether the failure is for the input or output of a particular device, for trace purpose.

Probable Causes Identification

The probable causes of failures are extracted from TRFTS and stored in the knowledge base. From TRFTS,

DMT-WEKA also produces the association rules for the fault model which relate the probable causes to

a failure mode of a particular device type. Accordingly, based on the fault model, FAE determines the

probable causes for the failure modes of every identified device, signal, and failure mode.

Multi-Level Trace and Failure-Mode Effect Identification

An avionics system is usually designed as a hierarchical collection of modules. ECAD tools that have the

abiIity to generate hierarchical models are increasingly used for design specification, which results in a trend

that VHDL source files become available not only at the chip or board levels but also at the subsystem and

system levels. For example, the ECAD tool I-Logix Statemate Magnum which is able to generate hierarchi-

cal system models in VHDL and Verilog is used for avionics architecture design at JPL [3]. Accordingly,

it is important that FAE has the ability to trace the devices, their signals and the effects of potential failures

from one level of a design to the next.

FAE uses a recursive algorithm to perform top-down trace of failure effects across multiple levels. When

a signal is traced to an entity which is a VHDL structure, FAE loads the VHDL file of that entity and traces

the signal through that structure. Figure 5 shows an example in which the trace starts from the connector

CONNl3 9 4 at the SIO board level and ends at the point when the M S I O A ASIC is reached. Note that when

the trace reaches the terminator MGC13 94 A-TERM (at Segment 2 in the path of the trace), FAE recognizes

that it is a structure at one abstraction level below (i.e., the chip level next to the board level) and thus loads

the MGC13 9 4 2 - T E R M . vhd file to trace the internal structure of the entity MGCl3 94 A-TERM. FAE then

reaches the resistor R M I 0 0 5-5 5ohm and the capacitor CDR3 3 -0 -04 6 luF-5 OV at the chip level. In Figure

5 we can see the trace of Segment 2 branches into Segments 3 and 4 which are in a chip-level structure in

the VHDL hierarchical design model. After the chip-level trace, it comes back to Segment 2 at the board

level and continues until it reaches M S I O A ASIC.

It is worth to note that Ms1o-A must be treated as a termination entity because it is defined as a

black-box in the VHDL design source code for the SIO board. That means, there is no further architec-

tural information about the entity (i.e., an IP-based ASIC for which no design details are supplied) available

in the VHDL design source code.

Segment 0 :
Segment 1:

Segment 2 :

Segment 3 :
Segment 3:
Segment 4 :
Segment 4 :
Segment 2 :

1 Segment 5 : MSIO-A->AO-TPA I

Figure 5: Tracing of the AO-TPA Signal

When the VHDL design files at all levels of the design are available, this recursive algorithm will ex-

haustively collect the information that will enable FAE to analyze the effects of a failure mode of a particular

device D (or an entity of another type). More specifically, the top-down trace starts from D at the top level

and goes down level by level successively until reaching a termination entity. Along the path of the multi-

level trace, all the entities that D has dependency with are entered into a tree-type data structure. Upon

the completion of the trace for every top-level device, FAE searches through the information organized in

the data structures in a bottom-up manner, summarizes the failure modes (a collection denoted as F) of

the top-level entities that are related to a failure mode f of a bottom-level entity e, and concludes that F

is the top-level effect of the failure mode f of device e . From a view similar to that suggested by [4], the

usage of the above algorithm can be generalized. More succinctly, a failure mode f, of an entity e at design

abstraction level n will be 1) an effect of a failure mode fk of an entity e' at level k (k < n), and 2) a cause

of a failure mode f, of an entity e" at level m (m > n), if the trace results indicate such dependencies.

Finally, FAE is able to access the criticality and system-level effect of the failure mode of a particular

device by considering the fault tolerance mechanisms provided by a VHDL design and by taking into ac-

count the redundant components identified during the recursive trace procedure. For example, in the trace

shown in Figure 5, FAE recognizes that the failure modes of the resistor RM10 0 5 -55ohm and capacitor

CDR3 3 -0 -04 61uF-5 OV can affect the signal A0 TPA of the SIO Board, In terms of the $10 design, that

implies a disabled port 0 in the 1394A bus. Nonetheless, this is a failure mode of low criticality because

the 1394A bus architecture implements three redundant ports so that a single disabled port will not have a

system-level effect.

4 Experimental Evaluation of RAME Prototype

In order to validate the RAME prototype, we carry out an experimental evaluation by applying the prototype

to an actual VHDL design, namely, the System InputlOutput (SIO) board which implements a fault-tolerant

bus interface. Among other objectives, the experimental validation address on the following:

Data integrity: To examine whether RAME can ensure that data are entered into TRFTS and utilized for

FMECA automation correctly and consistently. This is indeed to validate the effectiveness of enforc-

ing the use of unified taxonomy and terminology.

Completeness: To examine whether the model- and knowledge-based FMECA automation is able to ex-

haustively identify the failure modes of a VHDL design.

Accuracy: To examine whether FMECA automation is able to produce correct entries for the failure mode

of each device and the probable causes of those failure modes.

Turnaround time: To examine whether FMECA automation can significantly reduce the time required to

perform a design validation.

4.1 Overview of SIO Board

The VHDL design of the SIO board selected for RAME evaluation implements the IEEE 1394 and 12C bus

interfaces among the flight computers and microcontrollers in the X2000 avionics system, and their internal

PC1 bus interface [S]. The architectural structure of the board is shown in Figure 6.

PC1 Bus

c

Subsystem IEEE System UART System IEEE Subsystem
12C. 1394 12C 12C 1394 12C

BusA BusA BusA Bus 8 Bus B Bus B

Figure 6: Architectural Structure of the SIO Board

As shown in the figure, the $10 board consists of two redundant bus interface units, each of which has

a 3-port IEEE 1394 bus interface and two 12C bus interfaces. The bus interface unit is composed of two

ASICs, the Digital VO (DIO) ASIC and the Mixed Signal UO (MSIO) ASIC. The DIO ASIC implements the

link layer of the IEEE 1394 bus, the two 12C bus controllers, and the logic for fault tolerance mechanisms of

the buses; the MSIO ASIC serves as the physical layer in the overall data-communication architecture and

implements an analog interface to the IEEE 1394 and 12C bus cables.

4.2 Types of Analysis Output Document

To evaluate RAME's enforcement of data integrity, we manualIy enter into TRFTS the data from test/simulation

results concerning the VHDL SIO board. The reports are then processed for DMT-WEKA to create the

knowledge base and fault model which enable FAE to analyze the SIO VHDL fiIes and to generate the

FMECA worksheet. The FMECA worksheet so generated are then imported into Microsoft Excel.

In addition, FAE provides three options for the types of output documents The following are the three

different types of worksheets that can be generated using the different options, namely, 1) signal-list work-

sheet which is generated based on a list of signals; we use this option in the RAME experimental evaluation

because the FMECA worksheets manually produced by JPL engineers was based signal lists, 2) port-list

worksheet for which FAE analyzes a VHDL modules by tracing the signals based on a list of ports, and 3)

complete-list worksheet which allows the user to choose not to include the Open failure mode if there is a

pullup resistor; that failure mode is traditionally intentionally ignored in JPL's traditional manual FMECA
practice. Figure 7 shows the Web interface which allows us to submit a VHDL design source code file and

make choices of output document type.

I RAME Automated FMECA I

Figure 7: Web Interface to FMECA Automation Engine

4.3 Results Evaluation

We conduct the experimental evaluation a PCLinux platform in which the PC is a Dell Dimension 8200

desktop computer with a 2.8 MHz Pentium 4 processor and 1 GB of memory running Red Hat 9 Linux. The

SIO design source code consists of 14 VHDL files with a total of 17,854 lines of code.

We exercise all the three different options explained earlier for the experimental validation of FMECA

automation. While the signal-list and port-list options both yield a FMECA worksheet of 872 lines in 1.27

seconds, the complete-list option results in a worksheet that has 101 more entries (since it includes the Open

failure mode of the chips, as discussed above) and takes 1.29 seconds.

In order to evaluate data integrity, completeness, accuracy, and turn-around time of FMECA automation,

we compare the worksheet produced by FAE with that generated manually at JPL. The comparison results

show that while the JPL worksheet has 689 items the Signal-List Worksheet which is automatically generated

based the same VHDL design source code, has 872 items. By carefully inspecting all the entries of the two

worksheets, we become able to explain where those differences come from:

1. The manually generated worksheet missed a number of internal signals. For example, in analyz-
ing the UARTA-SIN-P signal, the manually generated worksheet only has three items for the Open,
ShortVCC, and ShortGND failure modes.

26CLV32RH input UARTA-SIN-P Open

26CLV32RH input UAIITA-SIN-P Input shorted to P3.3V

26CLV32RH input UARTA-SIN-P Input shorted to P3.3VGND

But the UARTA-S IN-P signal connects to the S I N pin of the DIO ASIC chip after it passes through
the driver 26CLV32RH. As a result, there should also be Open, ShortVCC, and ShortGND failure
modes for the S I N signal at the DIOASICA, as identified by FAE:

26CLV32RH input for UARTA-SIN-P Open

26CLV32RH input for UARTA-SIN-P Input shorted to P3.3V

26CLV32RH input for UARTA-SIN-P Input shorted to P3.3VGND

D I O A S I C A input for SIN Open

DIO-ASIC-A input for SIN Input shorted to P3.3V
DIO - ASIC - A input for SIN Input shorted to P3.3VGND

Since there are a total of 28 such signals, the automatically generated worksheet has 84 more items.

2. The manually generated worksheet omitted the trace of both paths in the 1394 terminators. For exam-

ple, in analyzing the AO-TPB signal, that worksheet only considered the path of the 55ohm resistor

and 270pF capacitor. But it was neglected that there is another path in which the 55ohm resistor con-

nects to a 5K resistor (part RM1O 05 SK). If this 5K resistor fails and becomes open, the effectiveness

of the terminator will degrade. Therefore, the FAE-generated worksheet has one more item to take

into account for the failure of the 5K resistor. Moreover, besides A0 -TPB, there are many such sig-

nals passing through the terminators, which contributes to the discrepancy between the manually and

automatically generated worksheets.

3. When analyzing the power and ground signals, e.g., 1 3 94A-3 . 3v2, the manually generated work-

sheet uses one item ("Any single capacitor between 1394A3.3V and 1394A3.3VGND") for all the

capacitors connecting the 1394A power and ground, while the automatically generated worksheet

enumerates exhaustively all the capacitors affecting the signal.

4. When analyzing the MSIOA-TMS signal, the automatically generated worksheet identifies a 7K re-

sistor (part RM10 0 5-7K) while the manually generated worksheet considers it as a 10K resistor. By

inspecting the VHDL design source code, it is confirmed that S I O x - 0 3 6x2 0 0 0 . vhd is a 7K resis-

tor, as identified by FAE.

5. There are two signals (P3 .3V and P3 .3VGND) analyzed in the manually generated worksheet but

they do not appear in the port list of the VHDL file. After examining the schematic diagram, we

confirm that those two signals are not designated as the ports of the SIO board. Consistently, those

signals are not included in the port list of the VHDL design source code, and consequently, they do not

appear in the automatically generated worksheet. It is very likely that the discrepancy in the manually

 he VHDL files created by Mentor Graphics use slightly different names, e.g. MGC1394A3-0463V is used instead of
1394A-3.3V. The FAE worksheets use the names in the VHDL files. But for the discussion in this report, we change them to
the ones used in the JPL worksheet.

generated worksheet was caused by neglecting to make all the updates in the worksheet according to

the updated version of the SIO board design (where the two signals have been eliminated).

Aside from these differences, the worksheet generated by FAE is the same as the manually generated

worksheet. More specifically, as described in the above, automated FMECA is superior to manual FMECA,

with respect to completeness and accuracy. Moreover, automated FMECA is able to generate accurate en-

tries in a worksheet so long as the VHDL file is free of editorial errors. Finally, in terms of turnaround time,

generating each of the three worksheets (using signal list, port list, and complete list) took less than 1.5 sec-

onds, Clearly, FMECA automation will lead to significant improvement in design and design modification

efficiency.

5 Concluding Remarks

As described in the paper, RAME's information infrastructure enables not only FMECA automation but

also continuous enhancement of knowIedge about failure modes, causes, and effects, which in turn, ensures

failure mode analysis efficiency and integrity. In summary, RAME is distinctive from those previously de-

veloped faiIure mode analysis tools in several respects as follows. First, none of those previously developed

tools accepts HDL design source code as input file for analysis, which seriously prevents those tools from

being compatible with other ECAD (electronic computer-aided design) tools and from becoming a widely

accepted tool in industry. Therefore, the ability of RAME to accept HDL design source code as FMECA

input is an important advantage.

Second, the extent of automation implemented in existing tools is generally very limited when they

are compared with RAME. In particular, most of them are intended to escort a manual FMECA process

by supplying online menu, input checlung, choice of library functions, and/or facilitating the post-analysis

documentation process by providing automatic plottingfgraphing capabilities. In contrast, RAME enables

the automation of the analysis aspect of a FMECA process and emphasizes to improve the integrity of the

FMECA process by using model- and knowledge-based techniques. Further, with respect to the means of

automation, most previously developed automation tools for failure mode analysis were implemented to

emulate the manual process of failure analysis (see [6] , for example). In contrast to those "cookbook-based"

approaches, we use a semi-formal approach to the automation by directly processing HDL design source

code based on its grammar, enhancing analysis completeness and consistency.

Finally, while none of the existing tools addresses the issue of automatic learning from previous projects,

RAME's self-enriching information infrastructure continuously enhances the coverage and integrity of fail-

ure mode analysis and gives to RAME the most unique advantage.

References

[l] C. J. Price, "Effortless incremental design FMEA," in The Proceedings ofAnnual Reliability and MaintainabiIity

Symposium, (Las Vegas, NV), pp. 43-47, 1996.

[2] V. Berman, "Standard Verilog-VHDL interoperability," in Proceedings of the VHDL International Users Forum

(TIUF), (Oakland, CA), pp. 142-149, May 1994.

[3] S. Chau, R. Hall, M. Traylor, md A. WhitfieId, "Using COTS tools in the development of a model based avionics

architecture tool," in Proceedings of the International Council on Systems Engineering, (Melbourne, Australia),

July 2001.

[41 J.-C. Laprie, editor, Dependability: Basic Concepts and Terminology, vol. 5 of Dependable Computing andFault-

Tolerant Systems. Vienna, Austria: Springer-Verlag, 1992.

[5] S. Chau et al., "The implementation of a COTS based fault tolerant avionics bus architecture," in Proceedings of

IEEE Aerospace Conference, (Big Sky, M T) , Mar. 2000.

[6] D. Palumbo, "Automating failure modes and effects analysis," in The Proceedings of Annual Reliability and

Mainfainability Symposium, (Anaheim, CA), pp. 304-309, 1994.

