Solubility (Speciation) Models and Their Limitations

Michael Schock

WSWRD, ORD, U. S. Environmental Protection Agency Cincinnati, OH Water Quality in DS Affected by:

- Complex physical, chemical, biological interactions between the bulk water and the pipe scale
- Chemical reactions include:
 - hydrolysis
 - complexation
 - precipitation-dissolution
 - oxidation-reduction
 - sorption and partitioning

RESEARCH & DEVELOPMENT

Heterogeneous and Homogeneous Chemical Reactions

RESEARCH & DEVELOPMENT

Why Geochemical/Solubility Models?

- Based on fundamental chemistry reactions
- Can take into account complex matrices and interrelationships without needing site/system specific "calibration"
- Can allow prediction to NEW unknown/uncalibrated situations
 - Quantitative impacts of changes to WQPs
 - Mass transfer & metal release (dissolution, precipitation)
 - Secondary impacts of treatment changes on metals

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

What They Do

- Geochemical models can be used to describe these reactions mathematically through
 - Computation of the activities of different forms or species of a chemical entity as a function of
 - Temperature
 - Background constituents and concentrations
 - ORP
 - Maintaining mass balance in the calculations
 - Mass transfer

RESEARCH & DEVELOPMENT

What is the Real Fundamental Solution Parameter? Thermodyanmic "Activity"

Example: Calcium sulfate ion pair

$$Ca^{2+} + SO_4^{2-} = CaSO_4^{\circ}$$

log k is 2.3 at 25°C $10^{2.3} = \Omega_{CaSO4} / \{ \alpha_{Ca} \alpha_{SO4} \}$

 $\boldsymbol{\alpha}_{i} = \boldsymbol{\gamma}_{i} m_{i} \text{ or } \boldsymbol{\alpha}_{i} = \boldsymbol{\gamma}_{i} M_{i}$

 $\boldsymbol{\alpha}_{i}$ =activity

 γ_i = activity coefficient; m=molality or M = molarity

RESEARCH & DEVELOPMENT

Limitations.....

- System must be at equilibrium or quasi-equilibrium over timeframe of interest
 - Aqueous reactions may equilibrate much faster
 - All solids don't equilibrate at same rate
- Complications of metastable solids--the effect of time/scale age, and the direction of reaction, ie.
 dissolution vs. precipitation

RESEARCH & DEVELOPMENT

Effect of Molar Surface on Solubility Constants

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Copper Leaching Rate versus Age for California Study

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

- Need critically-evaluated thermodynamic data constants
 - Cannot use random selection from different speciation models
 - Constants may depend on the presumption of what species were present during the data fit
 - Temperature functions may be incomplete or missing for some or all systems & species of interest
 - Need assurance constants represent realistic conditions
 - Analytical verification
 - Careful selection of analogous systems

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

More Limitations & Cautions

- Some redox couples rarely in equilibrium or are microbially-mediated
- Field data gaps (common to other types as well)
 - Hydraulic effects on particle release/stability in films
 - Physical permeability and electron conductor properties

RESEARCH & DEVELOPMENT

Some Example Chemical "Models"

- Equilibria, mass-transfer, saturation states, surface reactions
 - PHREEQE (USGS), several forms
 - MINTEQA3 (USEPA, Athens)
 - MINEQL+ (Environmental Research Software)
 - Geochemists' Workbench (Rockware)
 - EQ3/EQ6 (LLL)
 - SOLMINEQ (USGS, high P & T included)

RESEARCH & DEVELOPMENT

More Examples

- Data reduction from analytical input
 - WATEQ4F and related (USGS)
 - WATEQX (van Gaans)--generalized WATEQF series
 - PHREEQE
 - MINEQL+
 - Many others

RESEARCH & DEVELOPMENT

Special - Purpose

- Many codes written by individual researchers or groups, eg. for solubility calculations
 - LEADSOL, CU2SOL, ZINCSOL (EPA)
 - SISAS (WRc)
- Sophisticated diagrams, eg. Eh-pH
 - Geochemists Workbench
 - Chess/Jchess
 - Various others, may need post-processing w/ graphics package

RESEARCH & DEVELOPMENT

Typical Program Data

- Inputs:
 - analytical data
 - Total concentrations
 - Sometimes Individual redox couples
 - Solution parameters eg. pH, temperature, Eh
 - thermodynamic data
 - usually in a separate database
 - Equilibrium constants, reactions, temperature functions, IX selectivity constants
- Outputs:
 - elements, species, redox couples, activities, molality, saturation indices

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Example Initial Solution-PHREEQE

Initial solution 1.

SEAWATER FROM NORDSTROM ET AL. (1979)

-----Solution composition-----

Elements	Molality	Moles
Alkalinity	2.406e-03	2.406e-03
Ca	1.066e-02	1.066e-02
Cl	5.657e-01	5.657e-01
Fe	3.711e-08	3.711e-08
K	1.058e-02	1.058e-02
Mg	5.507e-02	5.507e-02

Etc....

-----Description of solution-----

рН ре	= 8.220 = 8.451
Activity of water	= 0.981
Ionic strength	= 6.748e-01
Mass of water (kg)	= 1,000e+00
Total carbon (mol/kg)	= 2.180e-03
Total CO2 (mol/kg)	= 2.180e-03
Temperature (deg C)	= 25.000
Electrical balance (eq)	= 7.936e-04
Percent error, 100*(Cat- An)/(Cat+ An)	= 0.07
Iterations	= 7
Total H	= 1.110147e+02
Total O	= 5.563047e+01

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Some Example Output-PHREEQE

Redox couples						
	Redox couple	pe	Eh (volts)			
	N(-3)/N(5)	4.6750	0.2766			
	0(-2)/0(0)	12.3893	0.7329			
Distribution of species						
	Species	Molality	Activity	Log Molality	Log Activity	Log Gamma
	OH-	2.674e-06	1.629e-06	-5.573	-5.788	-0.215
	H+	7.981e-09	6.026e-09	-8.098	-8.220	-0.122
	H2O	5.551e+01	9.806e-01	-0.009	-0.009	0.000
	MgHCO3+	2.195e-04	1.640e-04	-3.658	-3.785	-0.127
	NaHCO3	1.667e-04	1.948e-04	-3.778	-3.710	0.067
	MgCO3	8.913e-05	1.041e-04	-4.050	-3.982	0.067
	NaCO3-	6.718e-05	5.020e-05	-4.173	-4.299	-0.127
	CaHCO3+	4.597e-05	3.106e-05	-4.337	-4.508	-0.170
Etc						
Saturation indices						
	Phase	SI log I	AP log KT			
	Anhydrite	-0.84 -5.	20 -4.36	CaSO4		
	Aragonite	0.61 -7.	72 -8.34	CaCO3		
	Calcite	0.76 -7.	72 -8.48	CaCO3		
	Chalcedony	-0.51 -4.	06 -3.55	SiO2		
	Chrysotile	3.36 35.	56 32.20	Mg3Si2O5(0	H)4	

RESEARCH & DEVELOPMENT

Some Frequent Applications....

- Estimating solubility and mobilization of metals
 - Dissoluton/precipitation
 - Surface sorption of metal and ligands
- Computing sorption/IX process performance
- Understand speciation and impact of treatment, blending, or other chemistry changes upon it
- Deducing "control" mechanisms
- Testing "control" hypotheses
- Extracting thermodyamic data, eg. K_{sp}

RESEARCH & DEVELOPMENT

Solubility Diagram Example: Cu(II)

RESEARCH & DEVELOPMENT

Copper(II) Hydrolysis Species Frequently Reported

Cu ²⁺	Cu(OH) ₄ ²⁻
CuOH+	$Cu_2(OH)_2^{2+}$
Cu(OH) ₂ °	Cu ₃ (OH) ₄ ²⁺
Cu(OH) ₃ -	

RESEARCH & DEVELOPMENT

Reported Copper(II) Carbonate and Hydroxycarbonate Complexes

RESEARCH & DEVELOPMENT

Reported Copper(II) Orthophsphate and Sulfate Complexes $CuSO_4^{\circ}$ $Cu(SO_4)_2^{2-}$ $CuH_2PO_4^+$ $CuHPO_4^{\circ}$

RESEARCH & DEVELOPMENT

Copper(II) Speciation in Equilibrium with Cupric Hydroxide DIC = 4.8 mg C/L, I = $0.005, 25^{\circ}$ C -4.00 Cu^{2+} $Cu(OH)_2(s)$ -5.00 log (mol Cu/L) CUHOO3 -6.00 Cu2(0H)2 CHO30 Cu3(0H)42 CuQIF -7.00 $Cu(OH)_2^0$ GIOD'S Q1Q03(QH)22--8.00 $Cu(CO_3)_2^2$ C(OB) -9.00 8 9 10 7 11 6 pН

RESEARCH & DEVELOPMENT

3-D Solubility "Surface" for Cu(II)

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Example Relationship of Contour Diagram to 3-D Surface

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Pb-F Interaction Example-MINEQL+

Species	Concentration, mg L ⁻¹	Concentration, mol L ⁻¹
[SiO ₂] _T	5.0	8.3 × 10 ⁻⁵
[Pb ²⁺] _T	0.015	7.2 × 10 ⁻⁸
[F⁻]⊤	1.0	5.3 × 10 ⁻⁵
DIC as C	5.0	4.2 × 10 ⁻⁴
Ca ²⁺	5.0	1.2 × 10 ⁻⁴
Mg ²⁺	2.0	8.2 × 10⁻⁵
Na⁺	10.0	4.4 × 10 ⁻⁴
Al ³⁺	0.20	7.4 ×10⁻ ⁶
C⊢	10.0	2.8 × 10 ⁻⁴
SO4 ²⁻	5.0	5.2 × 10⁻⁵

RESEARCH & DEVELOPMENT

MINEQL+ Example: Major F Associations

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

MINEQL+ Example: Major Pb Associations

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

MINEQL+ Example: Major Pb Associations

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Metastable Hypochlorite Species

RESEARCH & DEVELOPMENT

Classic Corrosivity Interpretation

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Saturation Indices to Deduce Solubility Controls

RESEARCH & DEVELOPMENT

Saturation Index to Test Control Model

pH 9.0, DIC = 5 mg C/L, I= = 0.003, 25° C

RESEARCH & DEVELOPMENT

Is System at Equilibrium: Stagnation Effects

Stagnation time, hours

RESEARCH & DEVELOPMENT

Dealing with Uncertainty

- Results are no better than the quality of the input data (analytical and thermodynamic)
- Check internal consistency
 - Charge balance for completeness
 - DIC from Alk + pH should match analytical
 - Computed DIC must make sense
- Does the field data collection scheme match model assumptions?

RESEARCH & DEVELOPMENT

Some Typical QA Applications

- Internal consistency of DIC, Alkalinity & pH
- Check for redox equilibrium amongst species
 - Sulfur (sulfide, sulfate, bisulfite, sulfite, sulfur)
 - Nitrogen (nitrate, nitrite, ammonia)
 - Various metals
- Charge/ion balance errors

RESEARCH & DEVELOPMENT

QC Applications: Ion Balance Error

RESEARCH & DEVELOPMENT

Wise Analytical Considerations

- The more complete the analyses, the less uncertainty and guesswork
- Gross estimation of uncertainty/error based on input data, and choosing analyses wisely to minimize it
- Background chemistry important!!!
 - Ionic strength corrections
 - Side-reactions with important ligands or metals when present in excess (eg. Ca²⁺, Cl⁻, PO₄, Al³⁺)

RESEARCH & DEVELOPMENT

- Broadly applicable and underused
- Many fundamental constants remain unmeasured
 - Temperature effects on solubility and speciation
 - ID and log K's for metastable solids
 - Kinetic equations for disequilibrium systems
 - Mass transfer
 - Reaction rates

RESEARCH & DEVELOPMENT

Some Shortcomings That Need Attention

- Absence of disinfectant species in most computer programs
- Thermodynamic databases are often not "calibrated" for drinking water applications (metastable solids)
- Problem with handling polyphosphates and NOM
 - Characterizing speciation
 - Quantifying appropriately
- Kinetic complications to modeling--dearth of data, how to incorporate?
 - Reaction rates
 - How to handle crystal growth poisoning (scaling issue)

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

