PERFORMANCE ENHANCEMENT OF CATHODES WITH CONDUCTIVE POLYMERS

J.B. Goodenough and Y.-H. Huang University of Texas at Austin 27 February 2008

The plug-in hybrid and all-electric vehicles have a huge potential for petroleum displacement.

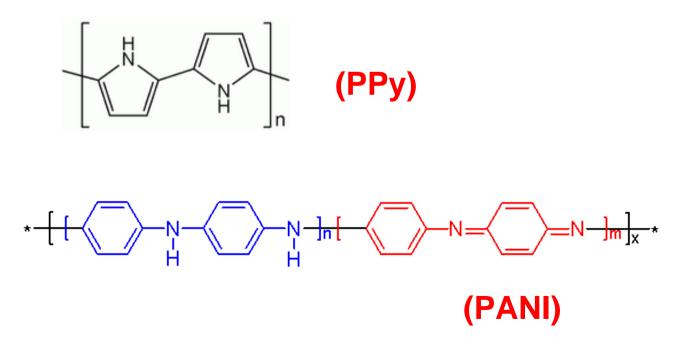
*This presentation does not contain any proprietary or confidential information.

BARRIERS

The Battery Electrodes

1. Commercial Considerations

- Cost, safety, environmental compatibility
- Energy density (capacity = range *vs* weight)
- Power, P = IV (voltage and rate capability)
- Recharge time (rate capability)
- Reliability and life (recyclability)


2. LiFePO₄ Cathode

- Low cost, safe, environmentally compatible
- Acceptable capacity (170 mAh/g at 0.5C)
- Excellent cyclability (many thousands)
- Acceptable voltage (3.45 V vs Li) with C anode
- Acceptable rate capability (10C)

3. Can we improve capacity at high rates?

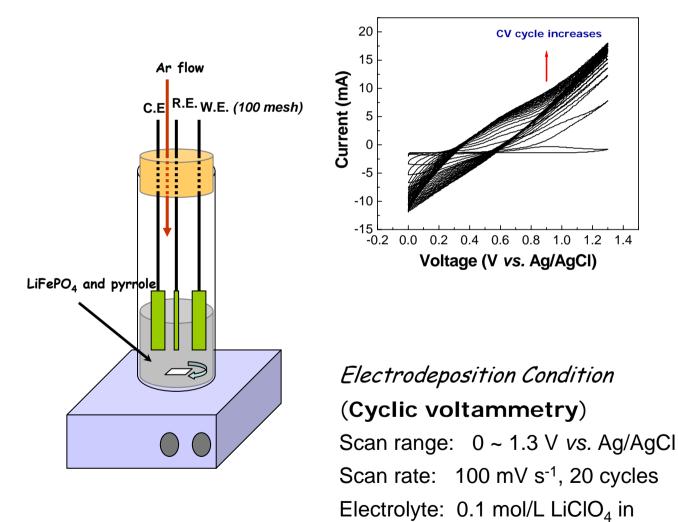
PURPOSE OF WORK

To improve capacity and rate capability of composite LiFePO₄/C/PTFE cathodes by replacing inactive C + PTFE with an electrochemically active, conductive polymer, such as polypyrrole (PPy), polyaniline (PANI).

APPROACH

• Select a conductive polymer that is electrochemmically active in voltage range of cathode redox center.

• Determine conditions to achieve and maintain good electrical contacts between polymer and cathode nanoparticle as well as polymer and current collector.


• Develop a convenient synthetic route to achieve and maintain electrical contact of polymer with all individual nanoparticles and with the current collector.

• Compare electrochemical versus chemical synthetic routes.

• Test performance to ensure electrolyte has access to all nanoparticles; determine optimal loading.

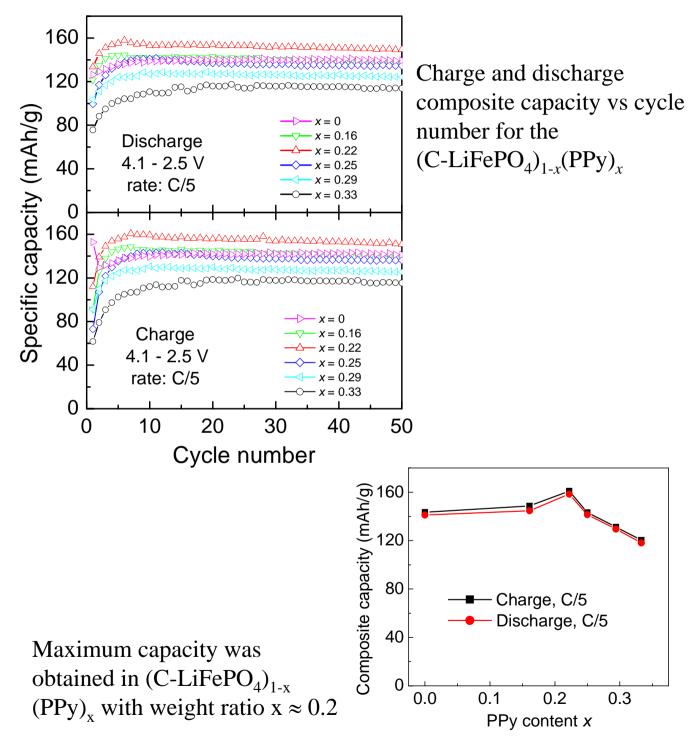
Method I: Electrodeposition

This method is applicable to C-LiFePO₄/PPy composite, but not to C-LiFePO₄/PANI composite.

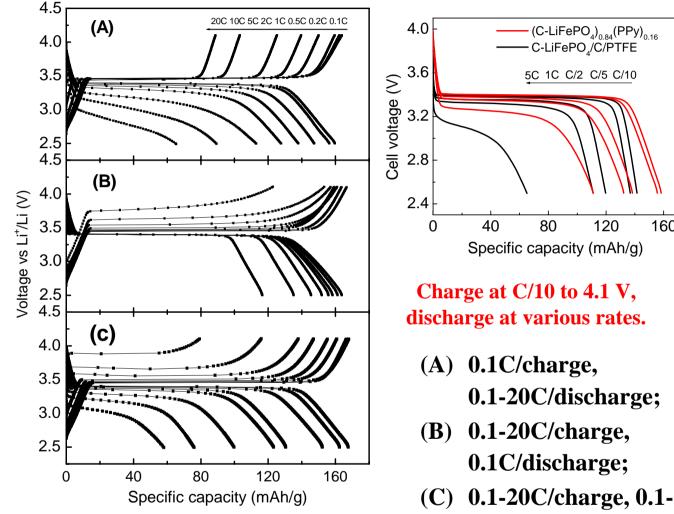
acetonitrile

Method II: Simultaneous Chemical Polymerization

(1) Synthesis of C-LiFePO₄/PPy composite


pyrrole monomer + sodium p-toluenesulfonate (dopant) + peroxydisulfate ($(NH_4)_2S_2O_8$, oxidant) + C-LiFePO₄, react at 0–5 °C for 6 h.

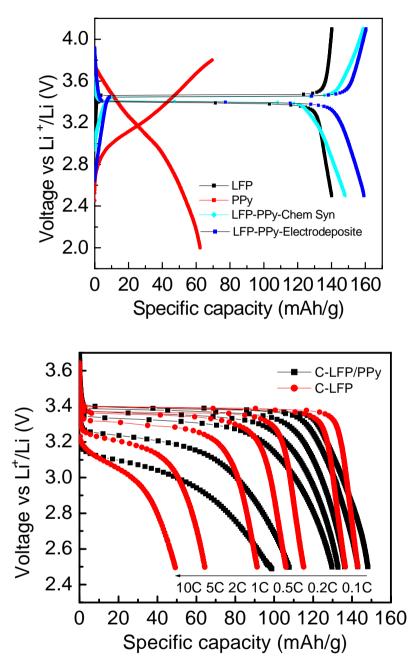
(2) Synthesis of C-LiFePO₄/PANI composite


aniline monomer + ammonium peroxydisulfate $((NH_4)_2S_2O_8) + C-LiFePO_4 + HCl$, react at 0–5 °C for 6 h.

* C-LiFePO₄ was provided by Phostech Lithium Inc.

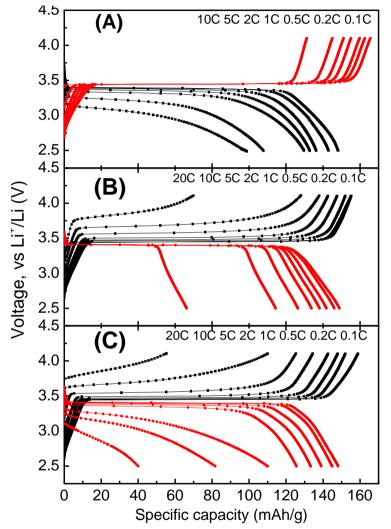
Specification of optimal ratio for electrodeposited (C-LiFePO₄)_{1-x}(PPy)_x

Enhanced capacity and rate capability in electrodeposited C-LiFePO₄-PPy composite cathode


20C/discharge.

120

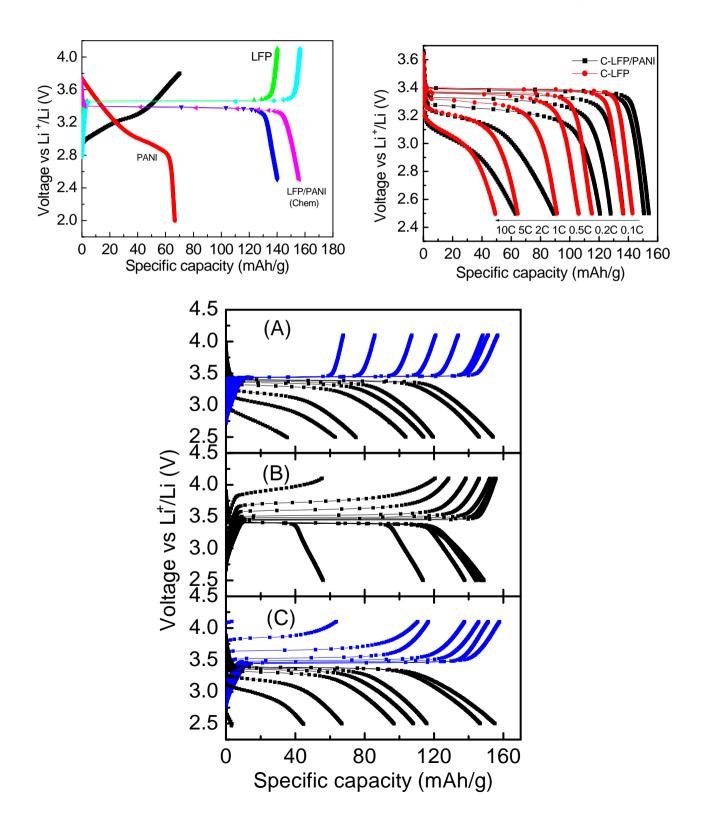
160


* Charging at 10C can reach 94% of full capacity (see B); this composite can endure both fast charging and discharging (C).

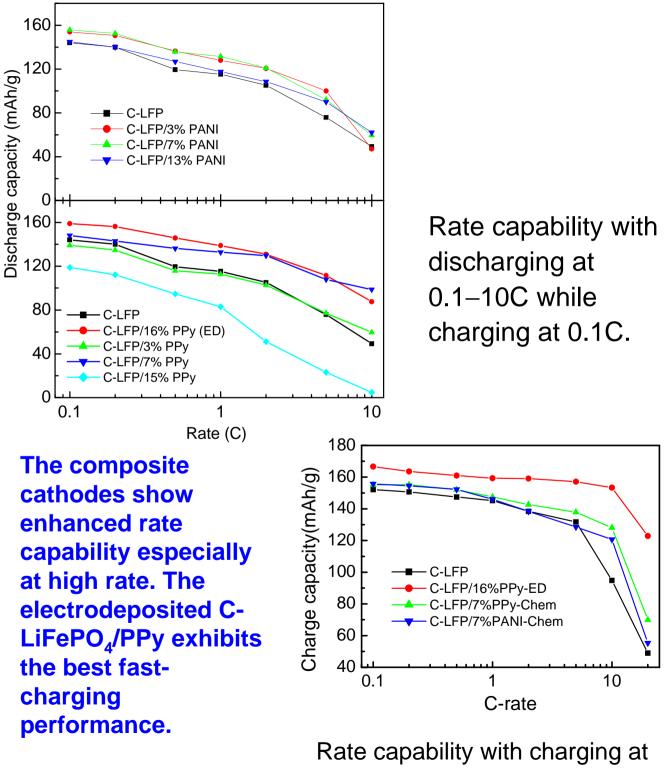
Electrochemical performance of chemicallysynthesized (C-LiFePO₄)_{1-x}(PPy)_x

The capacity and rate capability of the chemicallysynthesized LiFePO₄/PPy composite cathode is comparable with the electrodeposited film and higher than the parent LiFePO₄.

Enhanced performance of chemicallysynthesized (C-LiFePO₄)_{1-x}(PPy)_x



Specific capacity (mAh/g) 0 07 08 07 09 09 0.1 C 0.5 C 1 C 2 C 5 C 10 C Charge Discharge 0 20 40 60 80 100 120 0 Cycle number


High rate capability is also obtained for the chemicallysynthesized LiFePO₄/PPy composite cathode.

- (A) 0.1C/charge,0.1-10C/discharge;
- (B) 0.1-20C/charge,0.1C/discharge;
- (C) 0.1-20C/charge, 0.1-20C/discharge.

Enhanced performance of chemicallysynthesized $(C-LiFePO_4)_{1-x}(PANI)_x$

Comparison of rate capability for the C-LiFePO₄/polymer composite cathodes

0.1–20C while discharging at 0.1C.

Technology Transfer

Patent has been licensed to Hydro Quebec. PHOSTECH owns license to C-LiFePO₄ and supplies nanoparticles.

Worldwide interest in optimizing capacity and rate capability of C-LiFePO₄ cathode.

Summary

Petroleum displacement

- (a) Lithium batteries already power tools and small EVs;
- (b) They are under worlwide development for electrical energy storage with alternate energy technologies;
- (c) They show promise for plug-in hybrids and larger EVs.

• Approach

Improve capacity at high rates of the battery cathode for power applications.

Accomplishments

- (a) Demonstrated significant improvement at high rates
- (b) Developed synthetic routes for PPy and PANI
- (c) Electrodeposition of PPy on C-LiFePO₄ shown to be superior to chemical deposition of PPy and PANI

Technology transfer

Patent licensed. Optimal loading demonstrated

• Future plans

Identify new electrodes

Future Plans

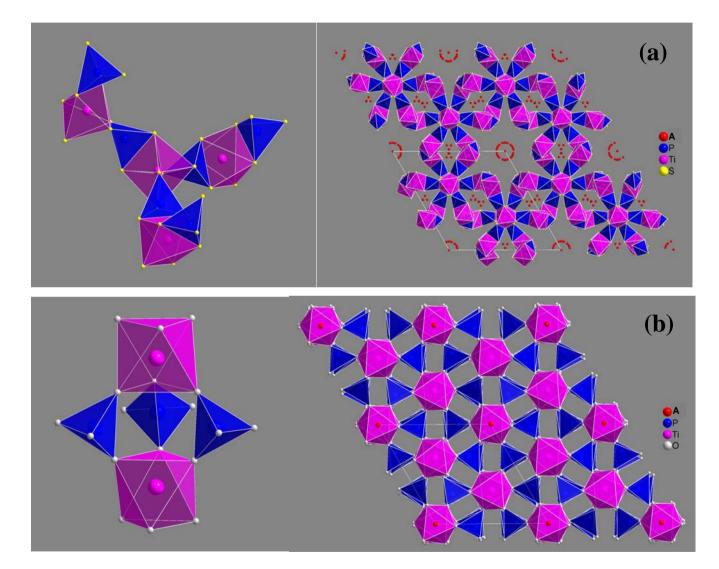
(Youngsik Kim)

Problems for EVs

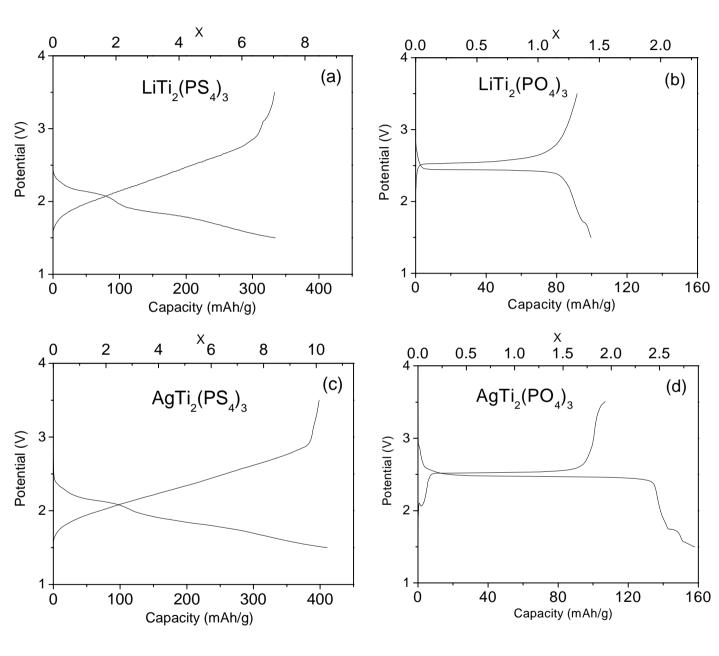
- Better anode
- Higher-capacity electrodes

Solutions

• Identify a viable framework compound allowing more than one Li/redox center.


Specification: (a) No large voltage step

(b) No large volume change


Examples

- LiTi₂(PO₄)₃ vs. LiTi₂(PS₄)₃
- *N.B.* Li_3PX_4 reported to have a > 5 V window

Structure of LiTi₂(PS₄)₃ vs. LiTi₂(PO₄)₃

 $ATi_2(PS_4)_3$ vs. $ATi_2(PO_4)_3$ (A = Li, Ag)

New Anode Materials

Insertion Compound vs Displacement Reaction

• want smaller volume change

Redox Couples

• Ti³⁺/Ti²⁺, V³⁺/V²⁺, Cr³⁺/Cr²⁺, Nb⁵⁺/Nb⁴⁺

Findings

- Cr³⁺/Cr²⁺ gives too large a volume change
- With sulfides and sulfochlorides, smallest voltage vs Li is ca. 1V
- With oxide and oxyfluorides, what is role of metal-metal bonding ?
 e.g. Li[Ti₂]O₃F → Ti₂O₃ + LiF

Publications, patents, and presentations

• Publications:

Y.-H. Huang, K.-S. Park, and J.B. Goodenough, "Improving lithium batteries by tethering cathode oxides to conductive polymers," *J. Electrochem. Soc.* **153** (12) A2282-A2286 (2006)

S. B. Schougaard, J. Bréger, M. Jiang, C. P. Grey, J. B. Goodenough, "LiNi_{$0.5+\delta$}Mn_{$0.5-\delta$}O₂ A High-Rate, High-Capacity Cathode for Lithium Rechargeable Batteries," *Advanced Materials* **18**, 905-909 (2006)

K.-S. Park, S.B. Schouguaard, and J.B. Goodenough, "Conducting-Polymer/Iron-Redox- Couple Composite Cathodes for lithium Secondary batteries," *Adv Mater.* **19**, 848-851 (2007)

K. Zaghib, N. Ravet, M. Gauthier, F. Gendron, A. Mauger, J.B. Goodenough, and C.M. Julien, "Optimized electrochemical performance of LiFePO₄ at 60°C with purity controlled by SQUID magnetometry," *Journal of Power Sources* **163**, 560-566 (2006)

Y. Kim, N. Arumugam, and J.B. Goodenough, "3D Framework Structure of a New Lithium Thiophosphate, $\text{LiTi}_2(\text{PS}_4)_3$ as Lithium Insertion Hosts," Chem. Mater. **20(2)**, 470-474 (2008)

Y. Kim and J.B. Goodenough, "Lithium Intercalation into $ATi_2(PS_4)_3$ (A = Li, Na, Ag)" Electrochemical Communications (in press)

• Patents:

J.B. Goodenough, Kyu-Sung Park, and Steen Schougaard, "Cathode for Rechargeable Lithium-ion Batteries."

• Presentations: