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Abstract   There is currently much national and international interest in measuring commercial fishing capacity. Two 
quantitative methods that will likely be used for this purpose are data envelopment analysis (DEA) and stochastic frontier 
(SF) production functions. Although both methods can be used to estimate a production frontier, their underlying 
assumptions and method of solving for the frontier are quite different. One substantial difference is how each model handles 
noisy data. An understanding of the implications of this difference is important because random variation is likely to exist in 
commercial fishery catch data. This research uses Monte Carlo simulations to investigate possible finite sample biases 
attributable to this type of noise when estimating fishing capacity. The results suggest that the mean bias associated with 
noisy data is often substantially larger for DEA than SF. However, the frequency distributions of the biases from each 
method show a wide variation in some cases. 
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1. INTRODUCTION 
 
Problems associated with excess fishing capacity, 
including poor economic performance, biological 
overfishing, and the depletion or collapse of fisheries, 
have motivated recent policy initiatives focused on 
managing capacity. The FAO’s International Plan of 
Action for the Management of Fishing Capacity (FAO 
1999) urges countries to develop national fishery capacity 
management plans by 2002. The United States is 
currently developing a national fishery capacity 
management plan and the National Oceanic and 
Atmospheric Administration (NOAA) has adopted a 
formal planning objective of reducing the number of 
overcapitalized fisheries by fifteen percent by the year 
2004 (NOAA 1999). A National Marine Fisheries Service 
(NMFS) taskforce is expected to recommend that 
estimates of fishing capacity be developed for each 
federally managed fishery (NMFS 1999).  
 
Because the data necessary to estimate economic 
measures of capacity are generally not available for U.S. 
fisheries, most studies of fishing capacity will likely be 
based on a technical definition. Technical capacity is a 
measure of maximal output based on the full utilization of 
all variable inputs (Johansen, 1968), while economic 
capacity is usually defined in terms of cost functions 
(Klein 1960, Morrison 1985) or profit functions (Squires 
1987). Two methods that have been proposed for 
estimating technical capacity are data envelopment 
analysis (DEA) (Färe , Grosskopf and Kokkelenberg 

1989) and stochastic frontier (SF) production function 
models (Kalirajan and Salim 1997).1 Each method has 
particular advantages and disadvantages. These are 
largely documented in: Charnes et al. (1994), and Seiford 
and Thrall (1990) for DEA; Bauer (1990) and Green 
(1993) for SF; and, both methods are  discussed and 
contrasted in Coelli, Rao and Battese (1998) and Lovell 
and Schmidt (1988).  
 
Both DEA and SF attempt to identify a production 
frontier for a group of production units (e.g., the vessels 
in a fishing fleet). DEA is a non-parametric method that 
uses linear programming to construct a piecewise surface 
(frontier) over the observed data. SF is a parametric 
method that estimates the parameters of a frontier 
production function. SF is designed to accommodate 
deviations from the production frontier due to both 
random variation in production rates that may neutrally 
move output levels either up or down, and technical 
inefficiency that lowers output relative to the production 
frontier. Therefore, the estimated SF production function 
may not envelop all output points. In contrast, DEA treats 
all deviations from the frontier as inefficiency. 
Consequently, the DEA frontier may be pushed outward 
because high output rates due to random variation are 
assumed to be achievable through efficient production.  
 
                                                        
1 DEA and SF can also be used when economic data are 
available (Coelli, Rao and Battese, 1998). 
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The impacts of noisy data are of particular interest for 
frontier applications to fisheries since there is often a 
great deal of random variation in catch rates due to such 
factors as unanticipated weather and resource conditions 
(Kirkley, Squires and Strand, 1998), and because the data 
collected is often imprecise. Therefore, an important 
policy question is how different levels of noise (random 
variation in output) affect the accuracy of the estimates 
from both methods. Although this issue has been raised in 
the literature, it has yet to be fully explored in a 
quantitative fashion.  
 
DEA and SF methods were originally developed to 
calculate the relative efficiency of different firms in an 
industry.2  However various versions of the methods may 
be used to measure some type of frontier output. Since 
capacity is an output measure, we use an output measure 
that is easily derived from each model, technically 
efficient output. This facilitates comparison of the 
methods in terms of how they handle noisy data. We 
define technically efficient output as the maximum level 
of output that individual vessels, or the fleet as a whole, 
could produce with technically efficient use of its current 
input levels. The efficient usage of all inputs would, by 
definition, place a vessel on the production frontier. This 
should provide an upper bound on the level of catch a 
given fleet could take given observed levels of inputs. In 
the case where both fixed and variable inputs are 
constrained by regulations this would also provide a 
measure of maximum potential output. This level of 
output can be thought of as a measure of technical 
capacity somewhere between Johansen’s (1968) technical 
capacity measure and current production. Our results 
using technically efficient output as the measure by which 
DEA and SF are compared apply in a qualitative fashion 
to other measures of frontier output, including models that 
more closely approximate Johansen’s capacity output.3 
 
Many authors have compared DEA and SF in an 
empirical setting. The comparisons are often based on the 
                                                        
2 A small number of such applications of SF to fisheries 
appear in the literature. Kirkley, Squires and Strand 
(1995) use SF to estimate the technical efficiency in the 
Mid-Atlantic sea scallop fishery.  Sharma and Leung 
(1998) and Kirkley, Squires and Strand (1998) use SF to 
analyze how vessel and managerial attributes affect 
technical efficiency. To the authors’ knowledge, no 
applications of DEA to commercial fisheries have yet 
been published. 
3 For SF, one may solve for the full input utilization point 
on the estimated production function.  Since these 
approaches are quite different, we have chosen a more 
similar comparison, technically efficient output. However, 
we also examine the impact of noise on the DEA model 
proposed by, Färe, Grosskopf and Kokkelenberg (1989) 
for estimating technical capacity. 

ability of the models to correctly identify relative 
efficiency or returns to scale rather than technically 
efficient output. The results are inconclusive since there is 
substantial variation in the types of models and data used, 
and the results across studies are sometimes contradictory. 
Several empirical comparisons of DEA and SF found 
differences between their estimates (Cummins and Zi, 
1998 and Kalaitzandonakes and Dunn, 1995) while other 
studies found the estimates to be somewhat close 
(Sharma, Leung and Zaleski, 1997 and Bjurek, 
Hjalmarsson and Forsund, 1990). Still other studies found 
mixed results (Hjalmarsson, Kumbhakar and Heshmati, 
1996, and Ferrier and Lovell, 1990). These empirical 
findings amplify the need for Monte Carlo simulation 
analyses. 
 
While a number of Monte Carlo studies have documented 
some of the small sample properties of SF and DEA when 
output data are noisy, none of these studies provides a 
complete and reliable picture of the impact of random 
noise on their estimates. Gstach (1998) found average 
efficiency estimates from standard DEA models in the 
presence of noisy data had and upward bias of 80% to 
200% relative to the true levels, but he did not identify 
how the bias varied with different levels of noise. Coelli 
(1995) examined how different levels of noise and sample 
size impact SF estimates of efficiency. However, the 
study only looked at average bias of a parameter of the 
model. Our research presents the entire frequency 
distribution of the bias of estimates of technically efficient 
output in order to examine issues such as asymmetric or 
bimodal distributions. Gong and Sickles (1992) compare 
SF and DEA estimates of average efficiency as random 
noise varies relative to average efficiency, however they 
use panel data which tends to smooth out the bias of 
estimates, only the correlations of true and estimated 
efficiency are compared, and only 50 replications of each 
scenario are conducted. Banker et. al (1993) present a 
Monte Carlo experiment that addresses the issue of 
random noise in DEA and SF models; however, they 
perform only five replications of each scenario and use 
corrected ordinary least squares rather than the now 
popular maximum likelihood method to estimate the SF.  
 
The remainder of the paper proceeds as follows.  The 
DEA and SF models used in this study are presented 
followed by a description of the experimental design of 
our Monte Carlo simulation analysis.  The results of the 
experiment, including an extension using a DEA model 
specifically designed to measure capacity, are presented 
next followed by a discussion of the implications of the 
results. 
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2. DEA AND SF MODELS 
 
2.1 DEA Model 
 
An output-oriented, constant-returns-to-scale DEA model 
is used in our analysis. The constant-returns-to-scale 
formulation conforms with the true technology used in the 
data generating process. This model, hereafter referred to 
as the CCR model, is an output-oriented version of the 
model proposed by Charnes, Cooper and Rhodes (1978). 
The model is solved independently for each of the j firms.  
The single output the model can be written as: 
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where:  

 yj is the output level for firm  j 
 xjn are the levels of inputs indexed by n for the 
input and j for the firms  
 zj are weights, solved for by the model, for each 
of the j firms 
Tj  is a measure of technical inefficiency solved 
for by the model that indicates the amount by 
which firm j could increase its output if it 
operated on the frontier. It takes a minimum 
value of 1 when the firm is operating on the 
frontier and the maximum value is unbounded. 
 

This linear programming problem can be solved with 
widely available software. 
Technically efficient output for each firm j is defined by 
yjTj.  This gives the amount each firm could produce if it 
operated on the frontier given its current levels of all 
inputs n. The efficient output for the fleet is therefore 

given by y j j
j

T¦ . 

 
2.2 SF Model 
 
The stochastic frontier model used follows those first 
proposed by Aigner, Lovell and Schmidt (1977) and 
Meeusen and van den Broeck (1977).  In general terms 
this model can be expressed as  

yj = f(xj, E) + Hj,  (5)   
      
where yj is output, xj is a vector of inputs and E is a vector 
of parameters to be estimated. Actual output deviates 
from potential output due to the effect of an individual 
specific error term, Hj.   The error is assumed to be 
induced by, possibly, two sources.  One source is due to 
inefficient input use.  This error is denoted by uj, and is 
drawn from an independent distribution with a weakly 
positive range.  The other source of error is due to neutral 
random, positive or negative, deviations from the 
production function.  This may be due to purely random 
variations in output unrelated to efficiency (e.g., luck , 
weather, etc.), measurement error in output, or data 
coding errors and is directly analogous to the error term in 
a standard regression model.  This error is denoted by vj, 
and is drawn from a mean zero, independent, unbounded 
distribution. Therefore, Hj can be written as 
 
Hj = vj � uj.  (6)   
      
  
It is usual to specify vj as coming from an iid normal 
distribution and uj as coming from a half normal or 
truncated normal distribution.  For other distributional 
assumptions see Green (1990) and Stevenson (1980). 
Most current applications of SF models use maximum 
likelihood to estimate the parameters, and that is the 
method employed in this study.  The stochastic frontier 
models are estimated in logged form with a Cobb-
Douglas functional form. We do not impose constant 
returns to scale in the estimation. 
 
Technically efficient output for each firm j is defined by 

f(xj, �E ) where �E  is the estimated parameter vector.  
Given the Cobb-Douglas form and log transformation 

used in our estimations, f(xj, �E ) = exp(�E xj,).  This gives 
the amount each firm could produce if it operated on the 
frontier given its current levels of all inputs. The efficient 

output for the fleet is therefore given by f
j

(x ,  ) j
�E¦ . 

 
3. EXPERIMENTAL DESIGN 
 
The DEA and SF models are estimated under several data 
generating processes to investigate their ability to 
correctly determine technically efficient output.  The 
study focuses on three issues that are quite fundamental to 
the estimation of technically efficient or capacity output, 
and may highlight some differences between the models’ 
capabilities: 1) the effect of different levels of random 
variation in output; 2) the effect of the number of vessels 
in the fleet; and 3) the effect of a having different 
proportions of the fleet operating on the production 
frontier. This third issue also relates to the robustness of 
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SF estimates when deviations from the assumed error 
structure are present. 
 
A single output, Y, constant-returns-to-scale Cobb-
Douglas production function is used to generate the data.  
Production is dependent on two inputs: capital (K) and 
labor (L).  For each observation, j, the maximum 
production level during a period of time is given by the 
following equation. 
 
Yj = D0Kj

DkLj
Dl   (7)   

     
 
For purposes of the simulation, K and L are drawn from 
independent uniform distributions with a range [50, 100], 
and {D0 ,Dk ,Dl } = {1, .5, .5}.   
 
Actual output deviates from potential output (1) due to the 
effect of an individual specific error term, Hj, where Hj = vj 
� uj as in equation (6) above. The one-sided error term, uj, 
is drawn from an independent half-normal distribution 
with a zero mean and weakly positive range.  The two-
sided error term, vj, is drawn from a mean zero, 
independent normal distribution.  
 

The realized or actual output level, 
~
Yj , is therefore given 

by 
~
Yj  = D0Kj

DkLj
Dl eHj  (8)  

       
where e is the exponential operator. 
 
The effect of the different levels of random variation in 
output are investigated by fixing the standard deviation of 
u at 0.25 and using three different standard deviations for 
v (0.05, 0.20 and 0.35). This experimental design allows 
for the isolation of the effect of various levels of random 
noise while holding the distribution of relative fleet 
efficiency constant. These comprise the three base error 
structure scenarios and correspond to the data generating 
process of a standard type SF model with half-normal and 
normal errors.  
 
The effect of deviations from this structure is also 
investigated by creating a separate set of cases with 30 
percent of the vessels placed on the frontier. In this data 
generating process 30% of the uj are set equal to zero. 
These scenarios characterize a fishery with a 
concentration of fully efficient vessels.4 The effect of 
placing 30% of the vessels on the frontier is to change the 
shape of the distribution, sometimes just slightly, and shift 
it to the right. 
 
                                                        
4 Banker, Gadh and Gorr (1993) also placed a similar 
percentage of the sample on the frontier in their Monte 
Carlo simulation. 

 For each of these data generating processes, data sets are 
generated with fleet sizes of 50, 100, 200 and 400.  This 
design creates twenty-four combinations [(3 random error 
levels) u (2 percentages of the fleets placed on the 
frontier) u (4 fleet sizes)] of the three issues under 
investigation.  Each scenario is simulated 1000 times. In 
order to reduce unnecessary variability across the four 
sample sizes, one draw of 400 observations is made for 
each replication.  The other sample sizes for that 
replication are created using the first 50, 100 and 200 
observations of the original 400 observations.  
 
4. RESULTS  
 
We begin the analysis of the results by examining the 
mean bias of each method in estimating the technically 
efficient output of the fleet. The DEA and SF mean biases 
are presented in Tables 1 and 2 (next page), respectively.5 
The results of the DEA models indicate that random noise 
in output data can generate considerable upward bias in 
estimates of the fleet’s technically efficient output. The 
level of bias in output estimates increases sharply with the 
standard deviation of the random noise v. The bias also 
increases with fleet size.  This is because there is a greater 
probability of outliers pushing out the frontier. For 
example, the mean bias for a fleet size of 100 when the 
level of noise is “small” (std. dev. v = .05) is 3.3%.  When 
the level of the noise increases to the “middle” and “high” 
values (std. dev. v = 0.20 and 0.35), the mean biases 
increases to 36.5% and 89.2%, respectively. Likewise, 
when the sample size increases from 50 to 400 vessels, 
the mean biases increases from 1.1% to 7.0% when the 
noise level is “small”, and from 72.5% to 124.4% when 
the noise level is “high”. As would be expected, the level 
of mean bias is higher when the data generating process 
places 30 percent of the fleet on the frontier, and the same 
pattern of bias associated with the level of noise and fleet 
size applies.   
 
We also investigated whether a log-log specification 
would perform better than the DEA model described 
above. This specification has been suggested as more 
appropriate if the production function is believed to be 
Cobb-Douglas.  The results from this specification were 
very similar to those described above. With noise in the 
data the average level of upward bias was in general 
slightly higher (0.5% to 1.5%) than it was with the CCR 
model and the differences between the models tended to 
decline with sample size. 
 
                                                        
5 All DEA estimates were obtained using the GAMS 
software package using the MINOS5 primal simplex 
method on a Unix based computer. The SF estimates were 
obtained using Gauss for Windows and the CML 
(constrained maximum likelihood) application module 
with analytical derivatives supplied by the authors. 
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Table 1.  Mean bias of technically efficient output estimates from the DEA model with varying levels of noise and fleet size. 
0% On Frontier 30% On Frontier  

Fleet  
Size 

Std.Dev v=0.05 Std.Dev v=0.20 Std.Dev v=0.35 Std.Dev v=0.05 Std.Dev v=0.20 Std.Dev v=0.35 

50 1.1% 27.8% 72.5% 5.6% 36.3% 86.2% 
100 3.3% 36.5% 89.2% 7.6% 45.0% 104.3% 
200 5.2% 44.1% 107.4% 9.4% 52.6% 121.1% 
400 7.0% 52.1% 124.4% 11.0% 60.5% 139.7% 

 
 

Table 2. Mean bias of technically efficient output estimates from the SF model with varying levels of noise and fleet size. 
0% On Frontier 30% On Frontier  

Fleet  
Size 

Std.Dev v=0.05 Std.Dev v=0.20 Std.Dev v=0.35 Std.Dev v=0.05 Std.Dev v=0.20 Std.Dev v=0.35 

50 -0.84% -2.39% 0.59% 6.24% 5.75% 6.96% 
100 -0.14% -2.61% -1.36% 6.61% 5.55% 5.64% 
200 -0.06% -2.02% -2.20% 6.50% 6.54% 4.95% 
400 -0.01% -1.26% -2.76% 6.40% 7.55% 4.76% 

 
 
The mean biases from the SF models show that random 
noise in output data generates smaller biases than from 
DEA, especially at the “middle” and “high” levels of 
noise (Table 2). In fact, the largest (in absolute value) 
mean bias from the SF model when no vessels are placed 
on the frontier is -2.76%.  This level of bias is smaller 
than the bias of DEA estimates in all but one scenario.  In 
contrast to the DEA results, the SF results generally show 
less bias as the sample size increases, but the relationship 
varies and is highly nonlinear. The general pattern is 
similar to the results found by Coelli (1995) when he 
examined one parameter from the SF model. The bias is 
negative when the level of noise is small, then becomes 
positive as the level of noise increases. With 30 percent of 
the vessels on the frontier, a similar pattern of bias 
associated with the level of noise and fleet size applies, 
however, in this case the bias is shifted upward and is 
always positive. 
 
Examining the frequency distribution of the biases across 
the 1000 simulations run for each model and scenario 
reveals a more complete and informative picture. 
Examining the DEA frequency distributions, it is apparent 
that there is considerable variation in the bias of efficient 
output estimates among the 1000 trials done for each data 
generating process. The 95 percent bounds, calculated as 
the upper limits of the 2.5 and 97.5 percentiles, provide an 
indication of the range of the possible bias that may be 
expected from each data generating process.  An increase 
in the sample size leads to a large, positive shift in the 95 
percent bounds, even in the case of the “small” level of 
noise. When the standard deviation of v is 0.05 and the 
sample size is 50, the lower 95 percent bound is –3.3% 
and the upper 95 percent bound is 5.9%. When the sample 

size increases to 400, the lower bound increases to 4.0% 
and the upper bound increases to 10.6%. Perhaps 
surprisingly, an increase in the sample size holding the 
level of noise constant, has little affect on the difference 
between the upper and lower bound of bias. However, the 
spread of the bias increases substantially with the standard 
deviation of v.  For example, even when the sample size is 
50, an increase in the standard deviation of v from 0.05 to 
0.35 increases the lower 95 percent bound from –3.3% to 
33.9%, and the upper bounds from 5.9% to 140%.  
 
The SF frequency distributions of bias reveal that an 
increase in the level of noise increases the dispersion of 
the bias estimates, although not by as much as the DEA 
estimates. Perhaps the most striking feature of the SF bias 
distributions is that they can be bimodal with “higher” 
levels of noise and a “smaller” sample size. However, 
even when the sample size is 400 in our simulations, the 
distributions show a bimodal characteristic when the 
noise is at the “middle” level, and this characteristic is 
quite pronounced when the level of the noise is “high.”  
Therefore, although the mean biases from the SF models 
are usually quite close to zero, there is likely to be a high 
occurrence of over or under estimates. Although this 
characteristic diminishes as the sample size increases, it 
may require a fairly large sample if the level of noise in 
the data is “high”. It may be difficult to establish when 
and under what conditions this is likely to be true using 
real world data sets. 
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5. RESULTS FOR A DEA CAPACITY MODEL  
 
A modification of the DEA model was proposed by Färe, 
Grosskopf, and Kokkelenberg (FGK) (1989) as a method 
of estimating capacity and capacity utilization assuming 
unconstrained use of variable inputs.  The only difference 
between the FGK model and the CCR model is that the 
constraints on the variable inputs are dropped.  
Consequently firms with the highest ratio of output to 
fixed inputs make up the frontier. This model may be a 
more appropriate model for measuring technical fishing 
capacity since it more closely fits standard definitions 
(e.g., Johansen, 1968) which assumes full utilization of 
variable inputs.  Our Monte Carlo analysis also includes 
the application of the FGK model to a subset of the data 
generating processes to determine how random noise 
impacts the capacity estimates of this model. 
 
The constant returns to scale specification is appropriate 
for estimating technically efficient output, but is arguably 
not appropriate for the FGK model.  With only the capital 
input constrained, the model will pick as the frontier firms 
those with the highest output to capital ratio and will 
make capacity estimates for all firms based on this ratio.  
As a result, the model will tend to pick frontier firms with 
a low level of capital and a high level of labor.  The 
capacity predictions implicitly assume that non-frontier 
firms can raise their actual labor input to the point where 
the labor to capital ratio would equal that of the frontier 
firms.  This may well be a higher level of labor than was 
allowed in the data generating process which is described 
below. Therefore we present results both from a constant 
returns to scale and a variable returns to scale version of 
the FGK model. The variable returns to scale (VRS) 
models include the following additional constraint: 

z jj

J

 
¦  

1
1

 

 
This constraint, proposed by Banker, Charnes and Cooper 
(1984), essentially ensures that firms are only 
benchmarked against other firms of similar size. 
 
The FGK model was used to generate capacity estimates 
with a fleet size of 200 and four different level of two-
sided random error. The DEA model is designed to 
calculate a measure of capacity, that reflects “full 
utilization” of the variable input. Theoretically there is no 
full utilization point with this Cobb-Douglas 
specification, however, the DEA model is not designed to 
find the point where marginal product of the variable 
input is zero, only the level of variable inputs used by 
firms with the highest ratio of outputs to fixed inputs. 
Since the level of labor that corresponds with full 
utilization is not defined, it is unclear what exactly the 
true capacity should be for computing a level of bias. 
Rather than calculating a level of bias of capacity 
estimates we simply present the estimates of total frontier 
output calculated by the CRS and VRS versions of the 
CCR and FGK models (Table 3).  
 
The results in Table 3 demonstrate that the impacts of 
noise on capacity estimates derived by projecting firms 
onto the frontier mapped out by the FGK model are 
similar to those from the CCR model.  Estimates of 
frontier output from both models are greatly increased as 
more noise is introduced into the data.  As with the CCR 
model, capacity estimates range widely over the 1000 
replications done for each data generating process.  It is 
also apparent that assumptions on returns to scale can 
change capacity estimates considerably.  Allowing for 
variable returns to scale results in significantly lower 
estimates of capacity 

 
 
 
 
Table 3. Fleet output and capacity utilization estimates from constant (CRS) and variable (VRS) returns of scale versions of 
CCR and FGK models with varying levels of noise and a fleet size of 200. 
 

Model v=0.0 v=0.05 v=0.20 v=0.35 

CRS-FGK 19,336 19,869 25,980 36,945 

VRS-FGK 16,391 16,973 22,271 31,473 

CRS-CCR 14,718 15,643 21,410 30,823 

VRS-CCR 14,505 15,158 19,826 27,442 
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6. DISCUSSION 
 
The results of the Monte Carlo analysis raise some serious 
concerns regarding the accuracy of DEA and SF in 
identifying overall levels of technically efficient output in 
commercial fisheries. DEA models may incorrectly 
interpret random noise (exogenous shocks beyond the 
control of the production unit) and measurement error, as 
inefficiency.  DEA may consequently provide significant 
overestimates of efficient or capacity output at levels of 
noise that appear to be plausible in real world fisheries 
data.6 Although the sensitivity of the DEA frontier to 
random noise has been acknowledged in the literature, 
many practitioners may not be aware of the extent to 
which estimates of efficient or capacity output can be 
biased.  If random variation in catch rates are thought to 
be significant, it may be advisable to seek alternatives to 
the standard DEA model.  
 
Parametric methods such as SF are one alternative, 
however there are variations of the DEA model that may 
prove useful.  If panel data is available it may be possible 
to reduce the bias caused by random noise through use of 
catch data averaged or aggregated over time for a given 
individual vessel. However, if the level of random noise is 
large, capacity estimates may still exhibit significant 
upward bias. A variety of more sophisticated techniques 
have been developed to accommodate random noise in 
DEA models (e.g., Gstach 1998 and Land, Lovell and 
Thore 1993) though they are not available with standard 
commercial software. Further research and investigation 
of the accuracy of these and other techniques are clearly 
needed.7 
 
The average biases of SF estimates of technically efficient 
output are small relative to DEA estimates when the data 
are noisy.  However, as the biomodal frequency 
distribution of bias across replications demonstrates, the 
probability of deriving estimates of technically efficient 
output well above or below the true level may be quite 
                                                        
6 In fact, estimated standard deviations of v (calculated by 
the present authors from reported point estimates of SF 
model parameters) in two recent SF applications to 
fisheries (Kirkley, Squires and Strand 1998 and Sharma 
and Leung 1998) are close to our “middle” value (0.20).  
7 It was suggested to us that the bias of DEA estimates 
caused by noise could be largely eliminated by searching 
for and removing outliers from the data. However, our 
concern is not with outliers in the typical sense which 
might be due to errors in the data or inclusion of 
observations from different production processes.  We are 
assuming that there is inherent randomness in production. 
To remove the bias completely would require removing 
all observations with an error term sufficiently positive to 
distort the frontier, and this is clearly neither possible nor 
reasonable. 

high if the sample is “small” or the level of noise is 
“high”. While random noise clearly results in an upward 
bias in DEA estimates, it may be difficult to determine the 
direction of bias in an empirical SF application. However, 
larger sample sizes are clearly better than smaller sample 
sizes. 
 
Although these results are based on models that predict 
technically efficient output as opposed to maximum 
potential output for a given capital stock, they can be 
expected to carry over to estimates of technical capacity 
that assume full utilization of variable inputs.  The DEA 
model proposed by Färe , Grosskopf and Kokkelenberg 
(1989) for measuring capacity, that simply drops the 
constraints on variable inputs from the model, is subject 
to the same qualitative effects from noise as the standard 
DEA model8. Regardless of whether the model includes 
variable inputs, efficient or capacity output will still be 
determined by the firms with the highest output to input 
ratio and this ratio may be biased upward by random 
noise. Predictions of capacity output from SF (i.e., the 
maximum of the SF production function for a given set of 
fixed inputs) can also be expected to show a bias that is 
similar to estimates of technically efficient output.  The 
bias in SF estimation of efficient output is directly related 
to biased parameter estimates.  Therefore, any results 
found here apply to any use of the model’s parameter 
estimates, including capacity output. 
 
It would be incorrect to assume that empirical DEA 
estimates of technically efficient output will always be 
upwardly biased in the presence of random noise or that 
they will typically exceed SF estimates. This can depend 
on the extent to which data are available to fully map out 
the frontier and the specifications chosen. The DEA 
frontier may in fact be downwardly biased if a sufficient 
number of efficient firms with varying input levels are not 
included in the data.  This is particularly likely if the 
number of inputs and outputs is large and may not be 
mitigated by large sample sizes9 (Tauer and Hanchar 
1995, Pedraja-Chapporo, Salinas-Jimenez and Smith 
1999). DEA models that allow for variable returns to 
                                                        
8 Färe, Grosskopf and Kokkelenberg (1989) propose as a 
measure of capacity utilization the ratio of frontier output 
from a standard output oriented DEA model to frontier 
output from their capacity output model.  Since the impact 
of noisy data tends to cancel out in the ratio, this measure 
of capacity utilization may remain relatively free from 
noise induced bias although the estimate of capacity 
output may be highly biased. 
9 Banker et al. (1989) suggest a heuristic that sample size 
should exceed three times the sum of inputs and outputs, 
however Pedraja-Chapporo, Salinas-Jimenez and Smith 
(1999) show that sample size must increase exponentially 
with the number of inputs to preserve a given level of 
model performance.  
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scale (VRS) will generally provide lower estimates of 
technically efficient output than those that assume 
constant returns to scale (CRS). This is because, in 
determining the relevant frontier for a particular firm, the 
VRS version of DEA is restricted to considering firms of 
similar size and may eliminate comparisons to more 
efficient firms that are larger or smaller. Empirical 
applications (e.g., Sharma, Leung and Zaleski 1997, 
Hjalmarsson, Kumbhakar and Heshmati 1996, Bjurek, 
Hjalmarsson and Forsund 1990) have found CRS and 
VRS estimates of efficiency from DEA models that 
straddle estimates from SF. SF estimates of technically 
efficient output will also vary with the specifications 
chosen.  They will tend to be lower when more flexible 
functional forms are used.  Both DEA and SF estimates of 
technically efficient output may be downwardly biased if 
catch is under-reported. 
 
The results of this study should not be interpreted as an 
indication of the general superiority of either DEA or SF. 
While DEA may confound noise with inefficiency, SF 
may confound inefficiency with specification error. The 
accuracy of estimates of efficiency, or technically 
efficient or capacity output depends on many factors. The 
choice of the appropriate method should depend on a 
careful weighing of these factors as well as the likely 
presence of noise in the data. 
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