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Abstract
Active disturtbance rejection to minimize optical path length error is illustrated by experni-
mental results from the JPL Phase B Test Bed, which incorporates an interferometne sensor
and a controllable trolley mounted on a flexible truss structure. The controller actively isolates
the optical instruments from structural vibrations induced by external disturbances consisting,

of lincar combinations of sinusoidal signals.

1 Introduction

T'his paper describes the results of experimental implenentation of a new disturbance-rejecting, con-
troller. The controller is bawd oria discrete titne input-output model which is estimated from
experimental data using anadaptive order lattice filter. Though huplemented off-line in the exp cr-
iment reported in this paper, the lattice filter is desig ned for real-time iinpletnentation inadapt jve
ide nt ificationand control. The experimental results demonstrate that the disturbance rejecting con
troller can reduce optical pathlen gthresponse by anorder of magnitude, as cornpared to the response
produced by the nomninal stabiliz ing controller alone.

The controlled output in the experiment is the laser path length through an optical train on
the JPL Phase B Testbed (Figure 1.1). The Festbed, developed to demonstrate sub micron control
technolog ies for future space missions, consists of a 2.5 m high truss structure constructed from
aluminum tubing rigidly bolted to aluminuin nodes.  An optical compensation system is used to
provide precise, high bandwidth control to the optical light path length, which is measured using a
laser interferometer. It employs a primary and a secondary mirror configured as a retroreflector, and
is isolated as a unit frotn the underlying truss structure by flexure pivats. Path length control for
this experiinent is achieved with both a voice-coil actuator whichreacts betweenthe truss structure
and the optical compensation systemn, and a piczoclectric element which moves the sccondary mirror
with high bandwidth. A 68030- based real-tiltlc computer provides the computation required forthe
control la ws. While the Phiase B Test bed has provisions for usiug a variety of sensors and actuators
mcluding active struts and passive damnpets, only the voice coil actuator is used for this experiment.
Disturbance inputs are provided by a modal shakerattached to the truss structure along, the vertical
tower. Additional details can he found in [1, 2].

*This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a
contiact wilth the National Aecronautics and Space Adumanistiation,



2 Modcling and Jdentification

2.1 Modcls of Plant and Disturbance

Identification is based on the following SISO discrete: time input/output model of the structure:
ap (g Dy(t) = b(q Du(?) -1 dt), (2.1)

where u(1), y(1), and d(t) are the control, output, and dist urbance sequences, respectively, and

“?, =ty
-

(lp(q‘ ‘) =14 o (l“].{ asq - ayn,q ,
bu(a 1) cbyg” Ybog 2. fiN, g (2.2)

We assurnne that the disturbance satisfies
ag(q” 1) d(t) - c(1) (2.3)

for some monic polynomial ag(q™?) of order ng and some raudom noise scquence ¢(t).

2.2 ldentification

The identification experiment reported here consisted of forcing the pla nt with a known random
control sequence u(?) and record ing input/output data at 100/ 2. The cont rol u(t) was a zero arder
hold. i this expertment, the disturbance d(t) was zero. A 1 1 unwindowed adaptive lattice filter
developed in [3] was used to identify the plant polynomida s a, (g1 andb, (g7 '), for a series of
orders u, from the experimental input/output data.

The lattice filter used here has been used previously to identify a large flexible truss, actep orted
in [3, 4]. Like most lattice filters, the lattice in [3] generates recursive lea<t-squares estimates of
models of al ordersup to some maximumorder. A Ic;lst-squares lattice filter is a fast, numerically
robust algorithin for performing a Gram-Schinidt orthogon aliz ation of the regression vectors ina
lin car auto regressive miodel.  Lattice filters are numerically stable, eflicient,and order-rccllrsivce.
While classical least-squares algorithins require O(n*) operations at each time step, where 1 is the
order of the model being identified, a lattice filter requires O(n) operatio ns at cacti tine step. Also,
a lattice filter generates Jca<t-square.g estimates of models of all orders up to a maximum order
N, thereby facilitating order- deterrnination. Most lattice filters inthe literature are prewindowed,
which means that they assumethat all initial data is zero. Anunwindowed, or covariance lattice
filter, provides the exact initialization for nonzero data. As illustrated in [5], a prewindowed lattice
often takes much longer than an unwindowed lattice to converge that accurate paramecter estimates
when the initial data is not zero, as in the hnpulse response of a flexible structure. The multichanuel
unwindowed lattice filter developedin (3] eliminates numeric alinstabilit ies that can arise iu st andard
lattices and in the lattice in [b] for large numbers of data chan nels.

For the experiment, models of orders bet.wwll ny, = 2andn, . 25 were identified and compared.
The frequency responses of all identified models for 20 < 1y, < 25 were indistinguishable. Figure 2.1
shows the bode amplitude plots for the models of orders 25, 7 (dash-dot curve), ? (dashed curve).
The models of orders 2 and 7 both capture the first mode of the plant (i. e, the trolley mode) very
well. The model of order 7 also contains approxitnations to the second and third modes.
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3 Controller Design

3.1  State-space Mod el of Plant and Disturbance

The controller design described here is from [6]. We let the variable t take integer values, arid, for
any function z(t), we use standard notation for the forward shift operator: (¢x){t)= (-1 ). Wc

consider a linear system of the form
rp\ W\, op .
q (-Td) = A (?d> t Bu, (3.1)

v Iy v v In s
,(4); [ G (,,?](I;), (3.2)
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=
)

v Ip N v Ty q
v Gy () (o Cn () , (3.9)
with
A}, A’.d ]‘p
H i -
A [ 0 Ay J , i [ 0 ], (3.4)
T,,(t) ( (an, J'd(t) C (]“d U(i) C (}vyn y] ( (1" y'J ( (’nu. (35)

v

The matrices A, By, Aq, Cy, and Cy; have the appropriate dimensions. We denote by X,‘,' the space
of all complex (1, 4 ng)-vectors x such the first 1, components of r are zero.

The coutroller designed i n this section feeds back yy . the ineasured output, to make yq, the
controlled output, zero. In applications like that in the following scction, these two outputs will he
the same.

Nypothesis 3.1

1) (C1, A) is delectable;

i1) there exist matrices Fy, and K, such that

Ap= Ay~ 1,Ch and Az Ay - ByK,
are asymplolically stable and
o(A0) 1 (0(Ay) Uo(d,)) +

iii ) detCo(z~ A) "B, ¥ 0 Vze o(Ag)
For Conditions i) and ii), it is suflicient that (C;, A) be observable, that (A, B,,) be controllable.
Condition iii) says that no disturbance poles are transmissionzeros oOf the plant.
3.2 Disturbance-rejecting Control Gain

Theorem 3.2 Under the hypotheses staled, there caists a unique pair of matrices (11 x 14) and

L(n,, x ng) that satisfy the two matrir equations
Al - LAg < B, Ka - Apa (3.6)

and .
Cal 4 Cyy 1 0. (3.7)



This matrir Kq is the unique m x ng matrir Kg such that ,\'}f is an unobservable subspace of

(Ca, A- BK) where

K: [ K, Ka]l. (3.8)
If N
7 ] ]t I
), oo
then .
. N A, 0
JYA- BK)J - [ o Ad] (3.10)
Proof That there is at most one K4 such that X is an unobservable subspace of (Ca, A - BK)
follows from the fact that no eigenvalues of Ad are transiiission zeros of C21 (2 A ) - The

uniqueness O f the solution pair Ka and I for (3.6) and (3.7) then follows from the fdct let (3.6)
has a unique solution L for each K4, since A, and Aq have 1o common eigenvalues.

W c adopt the following notation for a matrix M: M ;; denotes the 4, j element of M, and M
denotes the jth column of M.

To prove existence of Kgand L, we assume without loss of generality that Ag is in Schur formn
and that the eigenvalues of Agarep;(j=1,... . 1a)-Iuthiscase, the colummns of Kd and I are given
recursively by

Kayj: [Con(ps - A) "B (O ~ Ap) (Apas - D Adijla) - Cozgg)y (3.11)
-1
j-1
jl';j H (/‘j - /i},)‘ l(]}p]\,d,:j - Al,dljj -} >;Ad,,'j ]z’;"), (3]?)
iz 1
with Agq 0 = 0 and j,.;o = 0.0
3.3 Fstimator for State and Disturbance
We let 1, be the unique (1, x 1g) matrix that satisfies
Al - LAg: FyCry - Apg, (3.13)
and we define i
)
Llo 1]' (3.14)
Then .
reac | el oy Ay 0
A F ] : p .
J Y [0 ](l)J [0 Ad]' (3.15)

Since (C, A) is detectable, (C,J,J"![A E)i C1)J) and (C11].4 Ci2, Aa) arc detectable. lence
there exists an nd x r matrix Fy such that
Ag: Ag- Fg(Cnl 4 Cra) (3.16)

is asymp totically stable.
Next, we define

" [ (¥, -}4‘;{1,1'11] ] . [ 18' ] 4 J [ 1?'4 ] (3.17)




Then

. . A 0
JHA - FODJ - ¥ ; 3.18
( 2 [ - FaCu Ad } (3:18)
so that . .
q (f”) = (A - FCYy) (2’,,) 4 Bu+ Fy (3.19)
T4 T4

1s an asymptotically convergent observer for <ZZ)

3.4 Controller and Closed-1oop System
Wedcfinethe controller for thesystemn (3.1)- (3,3) by

u: - K (:1;) , (3.20)
r dy [ Fp .
q (:f,) . Al (;;) 4 Fu, (3.21)
AP~ AL ey - BE. (3.29)
We will denote this controller by (A’, Agf:‘:z,lr").

Yo illutuinate the structure of this controller and the closed- loop system that it produces, we
define the additional controller state matrix

AP - A - B, - F,Cn (3.23)
and the closed-loop matrices
Atrdpd) - : 1{"4(;1 A;;S 1, (3.24)
AGwd) ]férl | ’A’gé( ] , (3.25)
(41
ol

We refer to the controller (Kp,ASf.)",Fp)&mt}m basic stabilizing colLtr-oiler for the plant,and we have
the common result

U(A(”i")) - O(AP) U O(AP)' (3.27)
Wc refer to the closed-loop systemn that containsallof the dates z,, 24, 7, and F4 as the complete
closed-loop system. The systernmatrix for the complete closed-loop system is APHrd Thesystemn
matrix for the closed-loop system that containsthe states z,, &, and #4 is g(ripd)
Next we define

. I(np % 1y) 0 4 J@#ir) 0
Jep) o [ P P (pipd) .
I I(ny, xny) | J 0 I(ng x ngq) (3.28)

(pdpdy . | 1(n x n) 0 .
! ) [ I I(nxn) |’ (3.29)

where 1= ny, 4 ng. We have then

A , A - B, K
(Fipd) y(pipd) , j(pipd) ’ r ‘
A AL JAEF [ é (A SN (3.30)




(A - BK) - BK

(pdipd) y(pdipd) _ (pdipd)
Alpdipd) jlpdipd) _ j(pdy : 0 (A - FC) (3.31)
It follows from (3.10), (3.18), (3.31), and (3.30) that
o(AWFDY 2 5(A, ) Uo(A4,) Uo(Ad), (3.32)
o (APdrdy - o(AFFDY U o(Aa). (3.33)

It follows from Theorem 3.2 and (3.31) that, for all initial conditions, the 2(ny, + ng)-dimensional
state vector of the complete closed-loop system converges exponentially to the unobservable gyhspace

of ([C2 [0 0]], AP4Pd)). For all states in this subspace ¢, ¥, = &, #4= Za,and Y2 = 0.

Anilluminating equivalent redlization of the controllerin (3.20) (3.22) 1s

(KJ,J- 14PN j-1py-

A . AP B (KL Kg) [ K ]
T ¢ , cntr 14 P , 'P . 3.34
[ Ky (Kpl A Ka) ] [~ FaChyy Aq Fa ( )

In this form, the cent.roller that stabilizes the plant and rejects the disturbance consists of the
basic stabilizing controller for the plant, coupled with the state estimator for the disturbance and a
disturt,allcc-rejecting control law.

If the measured output and coutrolled output are the same, then Cl = C2 and
Joraled . (AT 4 (L- L)FsChy 0

. 3.35
cnlr - }"d("ll Ad ( )

In th is case then, the eigenval ues of Ag are eigenvalues of the controller, and for single-input and
single-output, the eigenvalues of A4 arc 2eros of the closed-loop system counsisting of the plant and
the controller.

3.5 Numerical Design of the Controller

Here we discuss the computations required to construct the controller that stabilizes the plant and
rejects the disturbance.” We assume that the matrices in (3.1)- (3.4) are given. The following
algorithin yields the controller in (3.8), (3.17), and (3.22). Whether this realization or_some other
(e.g., that in (3.34)) is used, the matrices that must be computed are ¥y, Ky, I, Ka, Ly and Fa.

Algorithm 3.3 (Controller Design)
i) Determine matrices I, and K, such that Condition ii) of Hypothesis 3.1 holds.

ii) Solve (9.6) and (9.?) for thematrices Kq and L (by, for example,the recursive algo-
rithm in (9.11) and (8.12)).

iii) Solve (9.19) forthematrirl, and defermine amatrix Fy such that the mafriz Ag
given by (3.16) is asymplotically stable.
iv) ior-in the matrices K, F°, and AW inr9.8) (3.17), and (3.22).

entr

In this algorithm, Step i) is to design the basic stab ilizing controller for the plant. This can be any
stabilizing coutroller that includes an unbiased estimator for the plant state vector Tp. The design
of the basic stabilizing controller for the plantisindependent of the disturbance model, except that



the closed-loop poles produced by the basic controller should riot be neat any possible disturbance
eigenvalues. This is not restrictive inapplications where the disturbance is a linear combination of
perhaps lightly damped sine waves.

Many classes of controllers can be used for the basic stabilizing controller for t}ie plant, including
1.LQG and LTR. For the experimnent described in the next section, we use a combination of L.QG
design and pole placement to determine the control and estimator gains Kp and Fp. We note that
H, controllers do not fit directly into the design developed here for a disturballce-rejecting c.controller
because they involve a biased estimator. The controller design in this paper can be extended to alow
the basic stabilizing troller for the plant to be an H.. controller by using an unbiased auxillary
state estitnator aong with the H, controller.

Stepsii)—iv) of Algorithi 3.3 construct the disturbance-rejecting part of the controller. It
appears thatone of the most, if 1Ot the most, eflicient approach to solving (3-6) and (3.7) is to use
the recursion in (3.11) and (3.12), especialy with Apaswellas AginSchur (or quasi-Schur) form.

One of the most important features of the controller design here is that, once the basic stabilizing
controller for the plant is determined, only Steps ii)—-iv) of Algorithm 3.3 need be repeated if the
disturbance changes. The resulting computational efliciency is especially important inadaptive
disturbance rejection. Also, it follows from (3,32) that an erroneous disturbance model,as long as it
has on cigenvalues in common with the basic closed-loop matrix A®P) willnot cause the closed-loop
system to be unstable.

3.6 State-sr)ace Model for the Experiment

In the experiment, wc have %1 = y,and C;=C2; i.e, the measured output and controlled output
arc the same. For the matrices Ap, H,,and C,, we uUse the observer form corresponding to ap(g - ')
and by(g-1):

-ay 10 ...0
X by
- az 0 1 0 b,l
AP = o . N ’ ];p = - f
-a,] 0...01 b,
an,, 0 ... 0,
(3.36)
Cu=[100 ...]
The ng X ngmatrix Aqgis constructed in the form
Ay O

Ag= | 0 Ay . |, (3.37)

where each Ajisareal 2 x 2 matrix with eigenvalues equal to a coinplex-conjugate pair of dist urbance
poles (i.e, roots to u™4aa(u~1)= (). Also,

1

o OO -
oo o
O O =
oo o

Apa(np X ng)= ofl1 01 0 ...]: (3.38)



scontrol Results

The following table lists controllers used intheexperiment. In €ach cam, thenominal controller
i s the controller that stabilizes the plant. The second-order and sevenuth-order nominal controllers
were based, respectively, on the second-order and seventh-order imodels for whit}) the frequency
responses arc ploted in Figure 2.2. The order of each disturbance-rejecting controller is the order of
the nowdnal controller plus two orders for each disturbance frequency rejected.

Table 4.1: Controllers

Type Order of

Control f Order of Nominal Frequencies
| Rate Contyoller Controller Controller_ .Rejcc.tcd
| 100 Hz Stabilizing 2 2- e
- 100 uj DR 6 ‘2 ‘5Hz& 10 Hz
160111, | Stabilizing 7 7
71000z | DR 11 7 5Hz& 10 he

50 Hz DR 6 2 5Hz& 10 Hz

[ .50 Hz DR 1 ¥ 5 Hz & 10 Hz

DR: Disturbance- rejecting Controller

Figures 4.1- 4.8 compare time response of the laser path-lengtherror produced by disturbance-
rejecting controllers to either open-loop response or closed-loop response produced by controllers that
only stabilize the plant. In these experiments, the disturbance consisted of various combinatious of
5 Hzand 10 Hz sine waves, as noted in the figures.

in most cams, the disturbance-rejecting controllers based on the seventh-order model (i.e, the
controllers of order11)performonly marginally better than those based on the second-order model.
As the figures indicate, the 100 Hzdisturbance-rejecting controllers achieve an order-of-magnitude
nuprovernent in closed-loop response over open-loop and the stabilizing controllers only. However,
the disturbance-rejecting controller does not elimninate the path-leligth error entirely, as the theory
predicts. Figures 4.9 4.11 show typical powerspectral densities of the closed-loop responses. The
dashed vertical lines lie a 5 Hz and 10 Nz. These figures show that the disturbance-rejectirlg
controller does zero the output at the frequencies that the controller was designed to reject, but
there exits residual closed-loop response at frequencies not presentin the disturbance or the open-
loop response..

There appear to be two possible explanations of the residua closed-loop response, both involving
the discontinuous control command (i.e, the zero-order hold). Oue possibility is that the high-
frequency content of the control excites lightly damped high frequency modesin the structure and
the frequencies at which the power spectrum appears to be nonzero are aliases of the excited higher
frequencies. ‘I’he other possible source of the residual response is the the discontinuous control
coinmand causes the voice-coil actuator to behave nonlinearly. Perhaps, futher experiments should
be conducted to determine the source of the residua response; however, whatever the explanation,
the solution appears to be a smoother control sequence, produced either by a faster control rate or
alow-passfilter on the control sequence. Theamplitude of the residual response with the 100Hz
control rate is about one third of that with the 50H2 control rate,and the 50Hz controllers produce
similar inprovements over 25Hz controllers. whenthe control rateincreases from 50 Hz to 100 Hz,
and shimilar improvement resulted when cont rol rate increased from 256 Hz to 50 Hz. Thus, smoother
control commands reduce the residual response.
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5 conclusions

The experimental results reportedin this paper illustrate the ability of the disturbance-rejecting
controller to suppress the effect of harmonic disturbances on ameasured output. The experimental
results suggest that faster sample-and-hold rates than those used for this paper will yield even better
performance, approaching the theoretical performance where controlled output is zero. Indeed, the
power spectra shown here for the 100 Hz controller show that the frequency content of the controlled
output is very near zero at the frequencies that the controller is designed to reect.

To make the disturbance-rejecting controller adapt on-line to varying disturbances and/or plant
dynamics, both the lattice filter and the control design must be run in real time on a laboratory
computer, as simulated in [6]. The control design proposed in [6] and used for this paper can be
used for eflicient redesign of the disturbance-rejecting part of the coutroller when the disturbance
changes.
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