

Making Smart Sensors Intelligent: Building on the IEEE 1451.x Standards

John L. Schmalzel, EA41
Fernando Figueroa, EA41
Jon Morris, Jacobs Technology
Mark Turowski, Jacobs Technology

54th International Instrumentation Symposium Pensacola, FL USA 5-8 May 2008

Outline

- Integrated Systems Health Management and the Role of Intelligent Sensors
- Intelligent Sensors
- The Role of IS in Future Space Flight

NASA Centers

ISHM Requirements

- Improve quality
 - By making better and more reliable measurements
- Minimize costs
 - Of reconfiguration between test articles
 - Of repair and calibration
- Avoid downtime
 - By predicting impending failures
 - By timely intervention
- Increase safety (protect people and assets)

Technologies and Tools for ISHM

- ISHM Architecture
- Health assessment database
- Anomaly detection methods
- Predictive modeling
- Root cause analysis
- Intelligent elements
- Integrated awareness

A View of an ISHM Application

ISHM Models (Embedded Data, Information, and Knowledge):
MTTP Implementation

Health Assessment Database:

Health Electronic Data Sheets Repository of anomalies

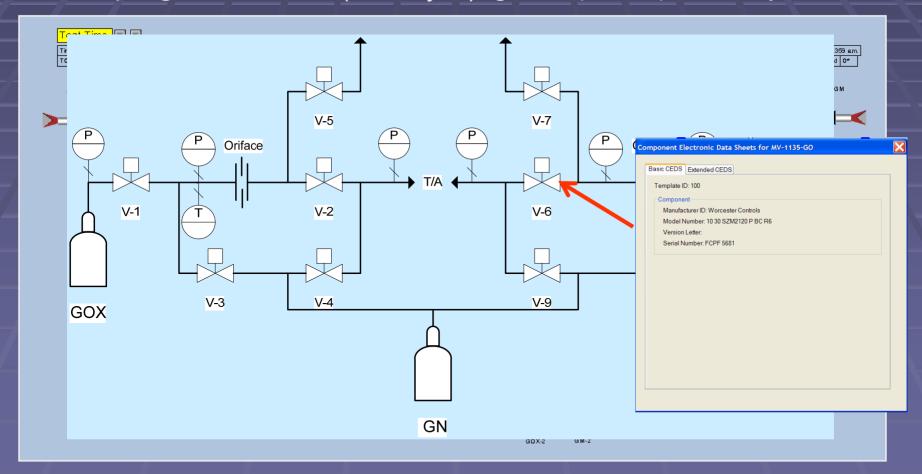
Anomaly
Detection:
Leaks. etc.

Intelligent
Sensors: IEEE
Standard+Health

Embedding of Predictive Models

Root Cause Analysis

Integrated Awareness:


3-D Health Visualization of MTTP

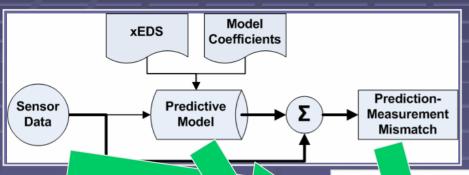
ISHM Enabling Technologies: ISHM Architecture

The Paip shated to tau 12 (Cation VID) agrade (P.&ID) for a system...

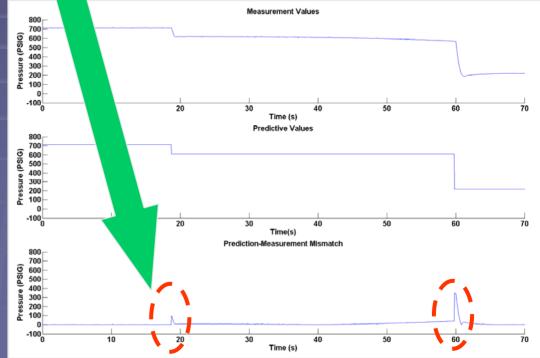
Populated by component objects with associated xEDS...

ISHM Enabling Technologies: Health Assessment Database

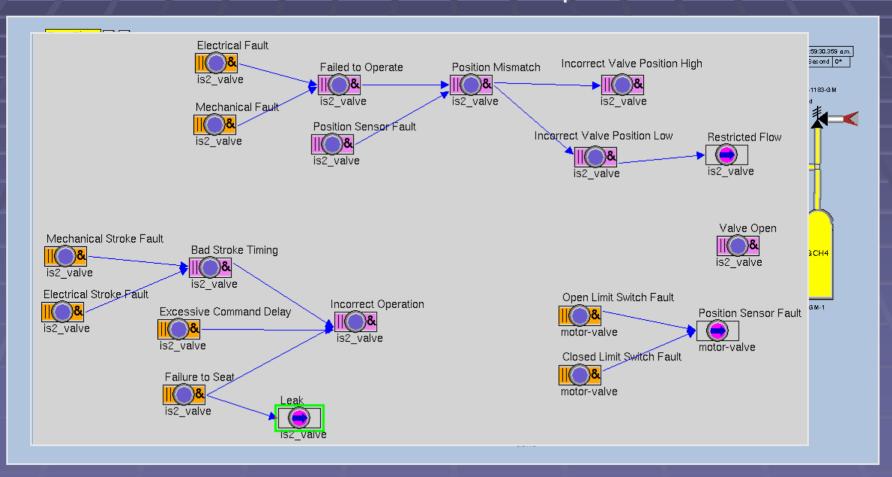
- Historical data records
 - Nominal
 - Anomalous
- Algorithm repository
 - Complex for implementation at upper ISHM architecture levels
 - Simplified for embedding in Intelligent Sensor
- Electronic Data Sheets (EDS)
 - Transducer Electronic Data Sheets (TEDS)
 - Health Electronic Data Sheet (HEDS)
 - Component EDS (CEDS)
 - Others



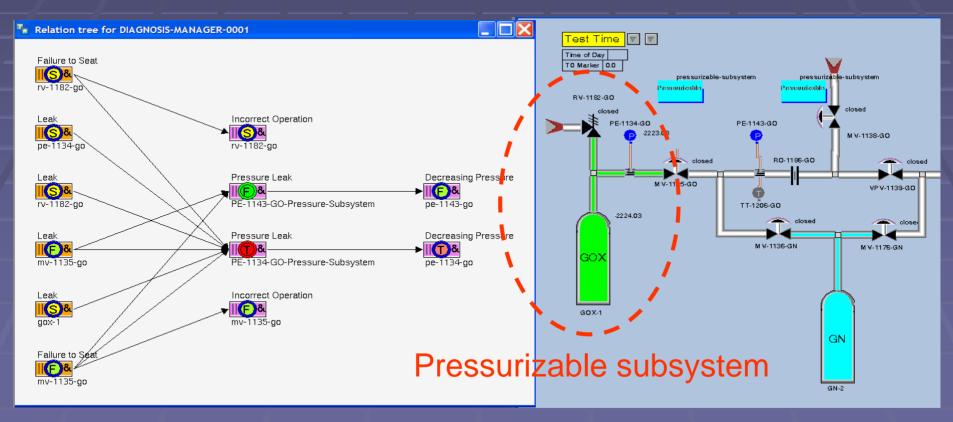
ISHM Enabling Technologies: Anomaly Detection


- NASA (Glenn Research Center)
 - Developed as part of Atlas-Centaur pneumatic and hydraulic system post-flight analysis ('80's)
 - Noise Events
 - Spike Events
 - Flat-line Events
 - Level Shift Events
 - Drift Events
- Open literature

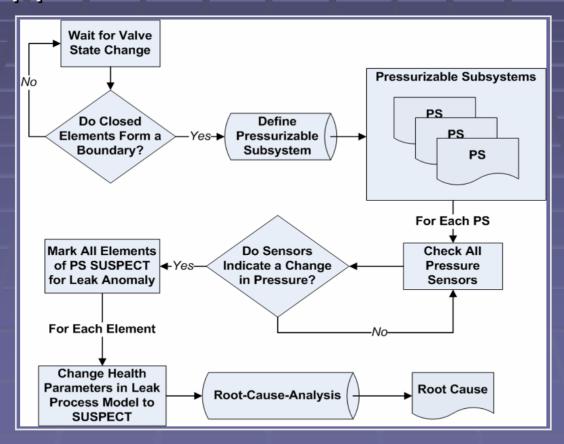
ISHM Enabling Technologies: Predictive Modeling


The determinent with a local predictions...

ISHM Enabling Technologies: Root Cause Analysis

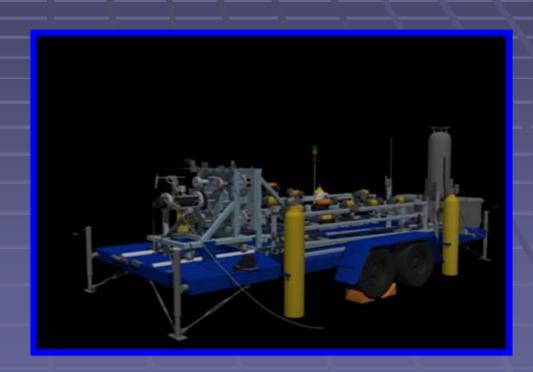

Withindberlist Wanger in repatrons apparalysis layer...

Example Leak RCA


A decreasing pressure measurement associated with a pressurizable subsystem is used to reason about the possible cause/effects.

Pressure Leaks

- Leaks are critical in hydraulic systems
- One approach for leak detection:



ISHM Enabling Technologies: Integrated Awareness

User interface

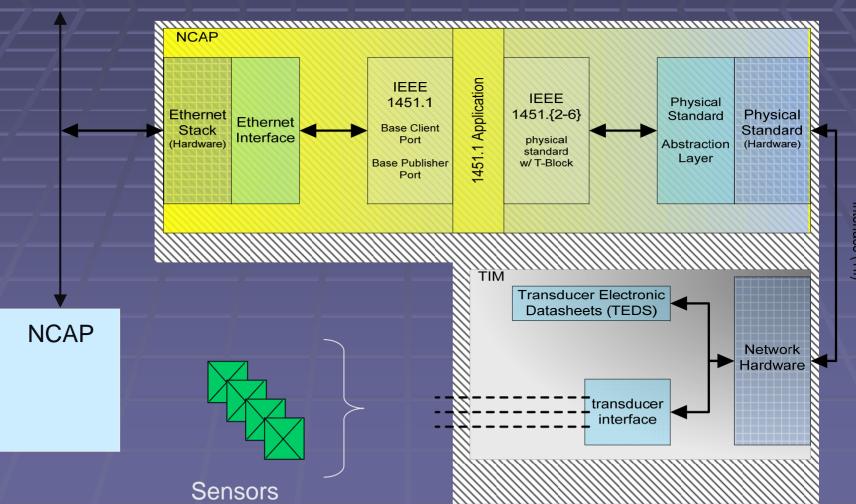
- Minimize information overload
- Provide navigation through 3d structure
- Spatial relationships between components
- Maintenance guide

Definition of an Intelligent Sensor

An *Intelligent Sensor* consists of a *Smart Sensor* augmented by support for application-specific algorithms and associated electronic data sheets (xEDS).

That means, we first have to deal with Smart Sensors...

Smart Sensors

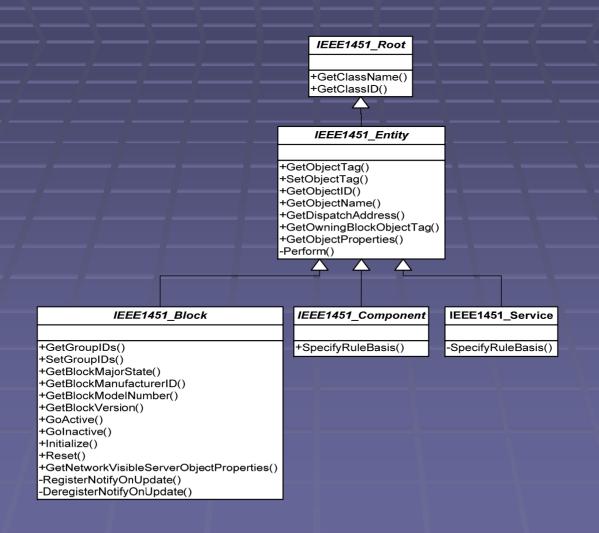

- A Smart Sensor adheres to one of the IEEE
 1451.x Standards; for distributed systems,
 important to have a network capable application
 processor (NCAP)
 - IEEE 1451.0 Defines a set of common commands, operations and Transducer Electronic Data Sheets (TEDS) for the family of IEEE 1451 standards
 - IEEE 1451.1 Defines a common object model describing the behavior of a Network Capable Applications Processor (NCAP)

More IEEE 1451.X Smart Sensor Standards

- IEEE 1451.2 Defines a transducer to NCAP transducer independent interface (TII) and TEDS for a point-to-point configuration of transducer interface modules (TIMs)
- IEEE 1451.3 Defines a transducer to NCAP interface and TEDS for multi-drop transducers
- IEEE 1451.4 Defines a mixed-mode interface for analog transducers with analog and digital operating modes; simplest 1451 model
- IEEE 1451.5 Defines a TII interface and TEDS for wireless transducers
- IEEE P1451.6 Defines a TII interface and TEDS using the controller area network (CAN)
- IEEE P1451.7 Defines an RFID interface

IEEE 1451 - Smart Sensor

Transducer Independent Interface (TII)



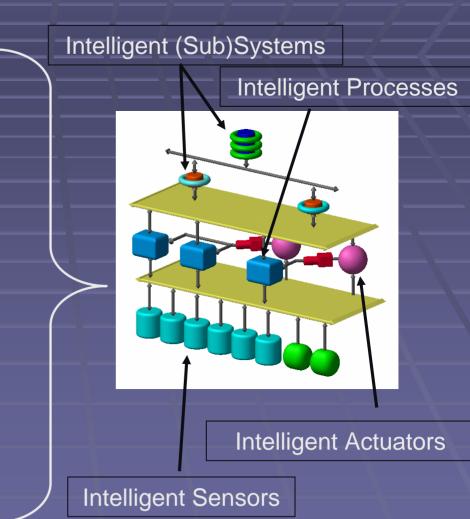
TEDS

- The transducer electronic data sheet provides the means to tag a sensor with a description.
 - Manufacturer
 - Serial number
 - Calibration status
 - Coefficients
 - Physical location
- Offers practical means for reducing costs/errors associated with measurement system configuration

IEEE 1451.1 - Information Model

Making a Smart Sensor Intelligent

- Capable of embedding algorithms; for example, for ISHM:
 - Noise detection (broadband, bandlimited, spike)
 - Instrumentation anomalies
 - Flat line
 - Drift
 - Sensor anomalies
 - Open/short
 - Debondment


Augmenting Core IEEE 1451 Functions

- NCAP
 - Publish normal data + health
- Extended TEDS
 - Health electronic data sheet (HEDS)
 - Set HEDS
 - Get_HEDS
 - Component electronic data sheet (CEDS)
 - Set CEDS
 - Get_CEDS

Intelligent Sensors

- Smart sensor
 - NCAP (Go Active, Announce)
 - Publish data
 - Set/Get TEDS
- Intelligent sensor
 - Set/Get HEDS
 - Publish health
- Detect classes of anomalies using:
 - Using statistical measures
 - Mean
 - Standard deviation
 - RMS
 - Polynomial fits
 - Derivatives (1st, 2nd)
 - Filtering—e.g., Butterworth HP
 - FFT—e.g., 64-point
 - Algorithms for
 - Flat
 - Impulsive ("spike") noise
 - White noise
 - Other (ANN, etc.)

Example ISHM-Enabled Intelligent Sensors

IEEE 1451 & O/S

- •NCAPBlock Go Active
- •NCAP_Block_Go_InActive
- •Request_NCAPBlock_Announcement
- •NCAPBlock Announcement
- •PublishNormalData

ISHM

- •Mean, Std dev, Min/Max, RMS
- •dv/dx, d^2v/dx^2
- •Poly fit
- •Bu HPF (13th)
- •64-pt FFT
- Anomalies: Flat,Spike, Noise

Hardware

- •3-Ch Thermocouple
- •24-bit ADC
- •8-bit µP
- •1 MB RAM/Flash
- •SPI
- •Ethernet (802.3af)

- •PublishNormalData+Health
- •Channel_Sample_Rate
- •Get_HEDS •Set_HEDS •Get_TEDS •Set_TEDS

Other Smart Sensors—Some w/ Intelligent Sensor Capabilities

Mobitrum www.mobitrum.com

Smart Sensor Systems www.smartsensorsystems. com

Esensors

NIST www.mel.nist.com

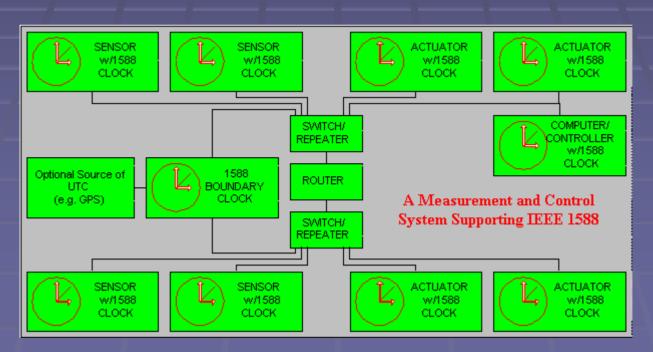
www.eesensors.com

ISHM Enabling Technologies: Intelligent Sensors

- Winfortunately Idintelligent Sensors are not widely available; to realize IS benefits in a system populated with conventional sensors, create a Virtual IS
- The Virtual Intelligent Sensor is software that

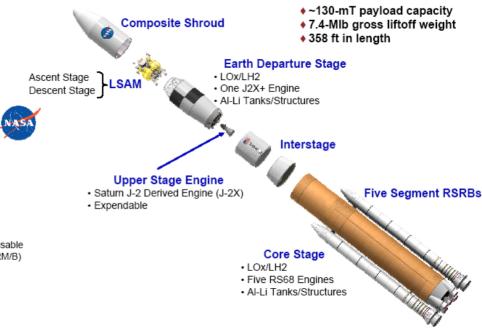
ISHM mimics IS behavior and allows use of conventional **NCAP** sensors and data acquisition systems Sensor 1 VIRTUAL INTELLIGENT SENSOR **Smart Sensor** DAS Sensor 2 •TFDS NCAP •NCAP Intelligent Sensor Other EDS Sensor N Health Algorithms **ELLIGENT SENSOR NCAP** Sensor

HEDS Extensions to IEEE-1451

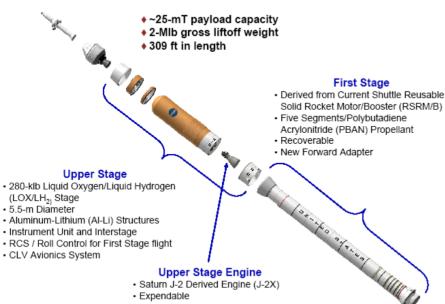

Data Structure Model for IEEE-1451

Field No.	Description	Туре	No. of Bytes
	Data structure related data sub-block		
1	Extension: TEDS length	U32L	4
2	Extension TEDS ID Number	U16E	2
3	Extension TEDS version number	U16E	2
	Application related data sub-block		
	Fields 4-8 repeat for each health condition.		
4	Phase code	U8C	1
5	Condition code	U8C	1
6	Detection algorithm + arguments	STRING	Varies
	Data integrity data sub-block		
N	Checksum for the extension TEDS	U16C	2

Timing in Sensor Networks


- Need to provide time synchronization across multiple IS nodes in order to time-align measurements
- IEEE-1588 in distributed networks
 - For spatially-localized networks (e.g., Test stand, Space vehicle, Labs)
 - μs to sub-μs accuracy
 - Local oscillators synchronized to reference oscillator(s) by measuring network transport delays

The Role of IS in Future Space Flight


Ares V Cargo Launch Vehicle

Ares V: Cargo Launch Vehicle

Ares I Crew Launch Vehicle

Intelligent Sensors in Space

- Space-qualified intelligent sensors
 - Size, mass, power constraints
 - Trade spaces: Minimized wiring, distributed computing, distributed intelligence
 - Integrated with guidance, navigation & control (GN&C) architecture
 - Bus structure/protocol
 - Bandwidth, reliability

Constellation: Return to the Moon

VTS_06_1.VOB

Discussion

