

The Smart Transducer Interface Standard (IEEE P1451)

NIST Workshop on Data Exchange Standards at the Construction Site

NIST Gaithersburg, MD

May 29, 2003

Kang Lee

Sensor Development and Application Group Manufacturing Engineering Laboratory National Institute of Standards and Technology United States Department of Commerce

Introduction

- Sensors are ubiquitous
 - Aerospace and automotive
 - Industrial control and automation
 - Manufacturing and process control
 - Building automation and security
 - Homland security and first responders
 - Construction site
- Increasing uses of digital communication and networked configurations for connecting sensors and actuators.
- The trend is moving toward distributed control with intelligent sensing architectures.
- Wireless sensor communications are becoming critical to rapid deployment and cost-effective utilization.

Sensor Market Drivers

Total Smart Sensors Market: Market Drivers Ranked in Order of Impact (North America), 2001-2007

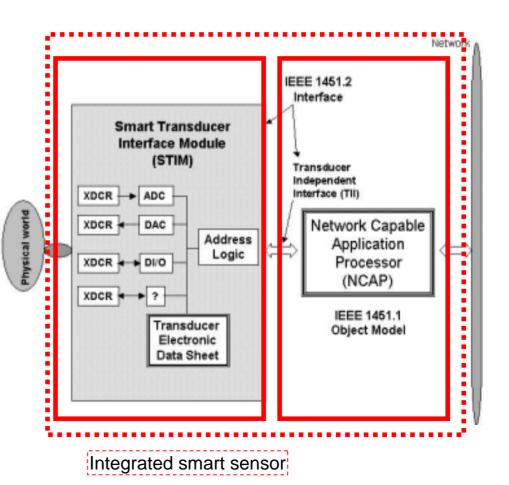
Rank	Driver	1-2 Years	3-4 Years	5-7 Years
1	Additional IEEE standards approvals prods smart	High	High	High
	sensors demand.			
2	Microchip helps drive smart sensing.	High	High	High
3	Adaptive technology stimulates market growth.	High	High	High
4	Higher reliability and lesser downtime spur market	High	High	Medium
	revenues.			
5	Integration of smart IR temperature sensors	Medium	Medium	High
	increases process control applications.			
6	Extended sensor's useful life promotes demand.	Medium	High	High
7	Development of communication networks boost	Medium	High	High
	revenues.			
8	Increasing applications for condition monitoring	Medium	Medium	Medium
	spurs demand.			

Source: Frost & Sullivan

Sensor Market Restraints

Total Smart Sensors Market: Market Restraints Ranked in Order of Impact (North America), 2001-2007

Rank	Restraint	1-2 Years	3-4 Years	5-7 Years
1	Absence of universal interface standards limits	High	High	Medium
	market growth.			
2	New smart technology hinders market penetration.	High	Medium	Medium
3	High prices thwart market revenues.	High	Medium	Medium
4	Slow end user acceptance restrains smart sensors	High	Medium	Medium
	revenues.			
5	Skepticism to adopt digital signal conditioning	High	Medium	Medium
	retards market expansion.			
6	Smart I/O distributed systems retards smart	Medium	Medium	Low
	sensors growth.			
7	United States economic slowdown impedes market	Medium	Medium	Low
	growth.			

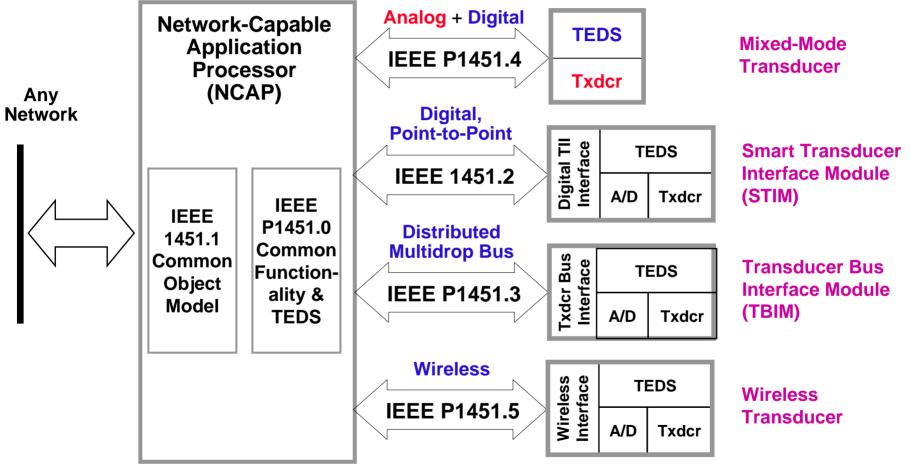

Source: Frost & Sullivan

Establishment of IEEE P1451 Smart Transducer Standard

- An industry-wide, open standard
- Providing common interfaces between sensors/actuators and instruments,microprocessors, or networks.
- Analog, digital, and wireless interfaces
- Self-describing sensor via the Transducer Electronic Data Sheet (TEDS)

Goals of the IEEE P1451 Standard

- Develop network-independent and vendor-independent transducer interfaces,
- Provide standardized Transducer Electronic Data Sheets (TEDS) that contain manufacture-related data.
- Support a general transducer data, control, timing, configuration, and calibration model,
- Allow transducers to be installed, upgraded, replaced and/or moved with minimum effort,
- Eliminate error prone, manual entering of data and system configuration steps,
- Ease the connection of sensors and actuators by wireline or wireless means.


Status of the IEEE P1451 Standard

- IEEE P1451.0, Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats -- In progress
- IEEE Std 1451.1-1999, Network Capable Application Processor (NCAP) Information Model for smart transducers -- *Published standard*
- IEEE Std 1451.2-1997, Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats --Published standard
- IEEE P1451.3, Digital Communication and Transducer Electronic Data Sheet (TEDS) Formats for Distributed Multidrop Systems -- Balloting in progress, May 2003
- IEEE P1451.4, Mixed-mode Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats -- *Balloting in progress, May 2003*
- IEEE P1451.5, Wireless Communication and Transducer Electronic Data Sheet (TEDS) Formats – *In progress*

IEEE 1451 Family of Smart Transducer Interface Standards

TII = Transducer Independent Interface

Txdcr = Transducer (Sensor or Actuator)

Transducer Electronic Data Sheet (TEDS) Example: IEEE 1451.2

- Meta-TEDS
 - Data structure related information
 - ➤ version number
 - > number of implemented channels
 - ➢ future extension key
 - ≻....
 - Identification related information
 - ➤ manufacturer's identification
 - ≻ model number
 - ➤ serial number
 - ➤ revision number
 - ≻ date code
 - ➢ product description
 - ≻...

Transducer Electronic Data Sheet (TEDS) - cont'd Example: IEEE 1451.2

Channel TEDS

- Transducer related information
 - ➤ lower range limit
 - ➤ upper range limit
 - ➤ physical unit
 - ➤ unit warm-up time
 - ➤ uncertainty
 - ➤ self test key

 \succ

- Data Converter related information
 - channel data model
 - channel data repetitions
 - channel update time
 - channel read setup time
 - channel write setup time
 - data clock frequency
 - channel sampling period
 - ➤ trigger accuracy

≻…

Transducer Electronic Data Sheet (TEDS) - cont'd Example: IEEE 1451.2

• Calibration TEDS

- Data structure related information
 - ➤ Calibration TEDS length
- Calibration related information
 - ➤ last calibration date-time
 - ➤ calibration interval
 - Inumber of correction input channels
 - ➤ multinomial coefficient
 - ▶....
- Data integrity information
 - checksum for calibration TEDS

Transducer Electronic Data Sheet (TEDS) - cont'd

- TEDS data could be in
 - Binary format
 - Human readable format
 - XML format

Industry/Government Collaboration

Control network providers participated in preliminary 1451.2 standards specification verification.

✓ DeviceNet

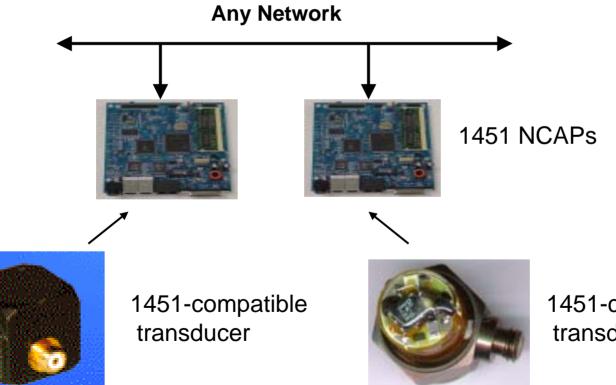
by Allen-Bradley

✓ LonWorks

by Echelon

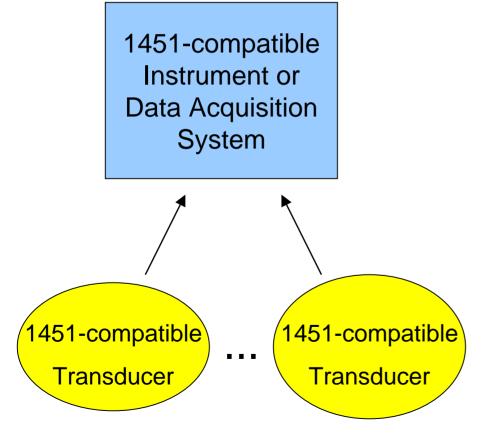
- Smart Distributed System
 (SDS) by Honeywell Microswitch
- ✓ Ethernet

by Hewlett-Packard



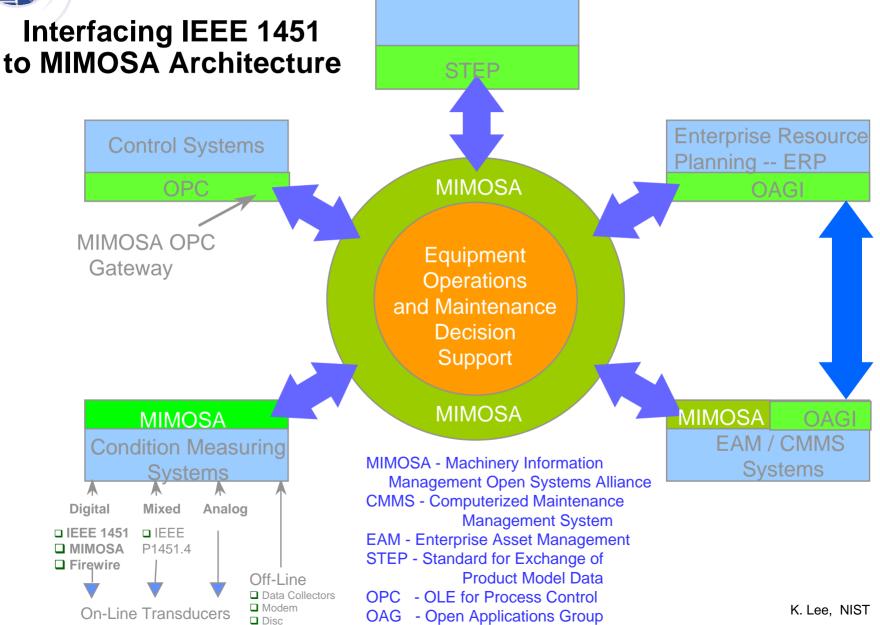
IEEE 1451

Enables "Plug and Play" of Transducers to Networks

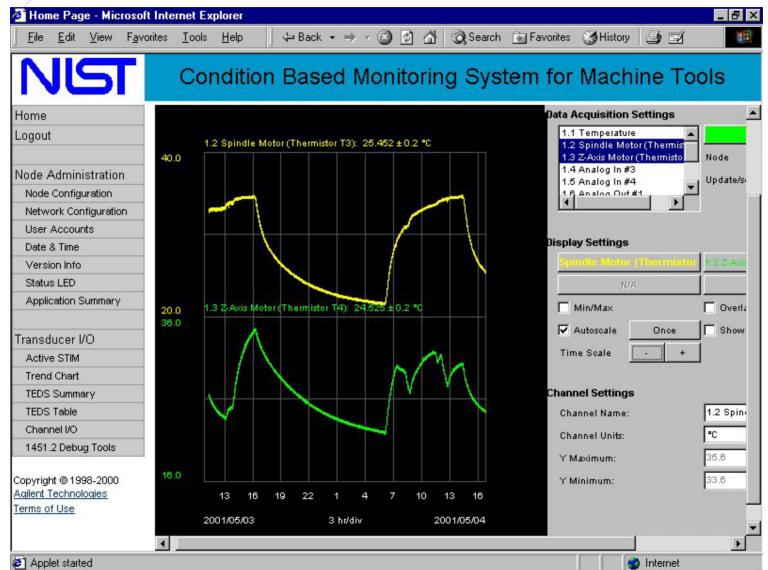


1451-compatible transducer

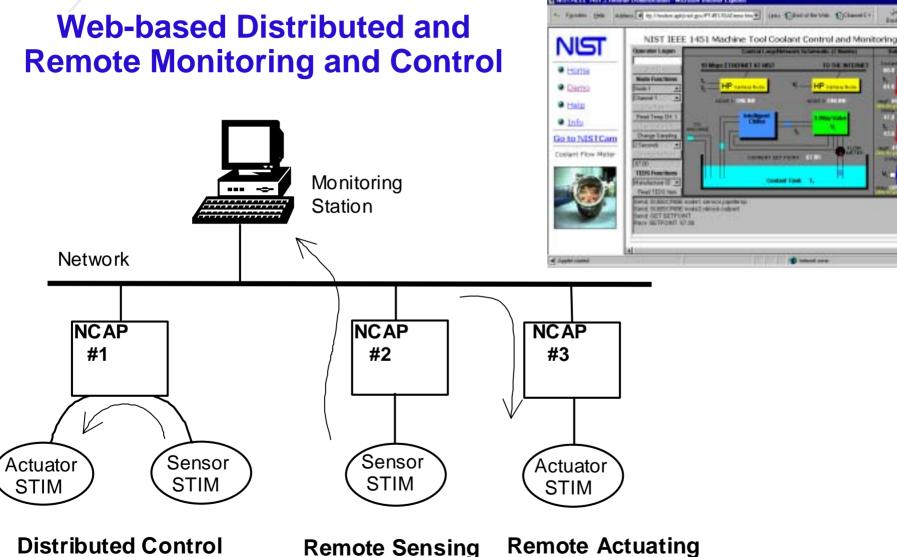
IEEE 1451 Enables "Plug and Play" of Transducers to instruments



Example: P1451.4 transducer demonstration (acceleration, load cell, position, and temperature sensors, etc)

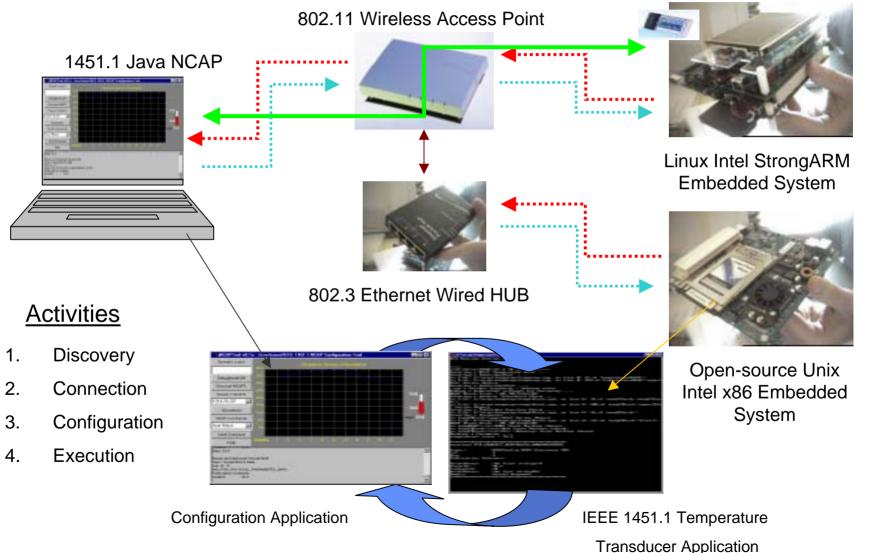

Machine Condition Monitoring in the Shop

- Temperature sensors monitor spindle motors, bearings, axis drive motors.
- Allow monitoring of sensors over the Internet via any common web browser.



Wireless Sensor Interface IEEE P1451.5

- Low-cost wireless links will
 - reduce and/or eliminate the cost-prohibitive cabling
 - decreased number of cable/LAN drops
 - greatly reduced sensor installation cost
 - reduced labor and training hours
 - faster installation and setup times
 - enable collection of data by easily installing condition-based monitoring of equipment at an affordable cost.
 - achieve cost saving realization of the predictive maintenance program
- What physical layer(s) to adopt in IEEE P1451.5?
 - IEEE 802.11 (FIWI)
 - IEEE 802.15.1 (Bluetooth)
 - IEEE 802.15.4 (PAN, lower power, lower rate, lower cost)
 - Others?


NIST 1451.1 Platform-Independent Wireless Interface Demonstration

- Targets at the closed-loop control industrial automation area:
 - Three hardware platforms representing various NCAPs:
 - Windows NT Laptop
 - Open-source Unix based Intel x86 embedded single board computer (SBC)
 - Linux based Intel StrongARM SBC
 - All connected via an IEEE 802.11b Wireless Access Point and an IEEE 802.3 Wired Ethernet Hub based subnetwork
 - Each NCAP is executing a particular transducer application, i.e., temperature, pressure, and actuator applications
 - Each transducer application is linked with the NIST-developed 1451.1 library and "open-source" Adaptive Communication Environment (ACE)
- Use a Java-based IEEE 1451.1 NCAP Configuration Tool to connect, configure, control and monitor the NCAPs in our demonstration "control network"

1451.1 Demonstration Setup

In Summary - Benefits of IEEE 1451

✓ A common transducer interface will

• Lower the cost to design sensors and actuators to a set of standardized interfaces.

✓ Having TEDS with transducers will

- Enable self-description of sensors and actuators.
- Eliminate error-prone, manual configuration
- Provide easy self-documentation.
- Simplify field installation, upgrade, and maintenance of sensors by simply "plug and play" devices to instruments and networks.

Benefits of IEEE 1451- Cont'd

System integrators

- Self-documenting of hardware and software
- Sensor systems easier to install, maintain, modify and upgrade
- Easy and quick transducer replacement (plug and play)
- Mean to store installation details (in the TEDS)
- Choose sensors based on merit

Application software developers

- Standard transducer model for control and data
- Facilitate distributed measurement and control applications
- Support for multiple languages good for international developers

Benefits of IEEE 1451- Cont'd

Sensor Manufacturers

- Standard physical interfaces
- One set of standard interfaces to design and support
- Multi-level products developed based on TEDS.
- Standard calibration specification and data format

End Users

- Sensors are simple to use basically just "plug and play"
- Based on the TEDS, software can automatically provide:
 - physical units
 - readings with significant digits as defined in the TEDS
 - complete transducer specifications
 - installation details such as instruction, ID, & location of the sensor

For More Information

- Contact: Kang Lee at kang.lee@nist.gov
- Visit IEEE 1451 and related websites:
- 1451: http://ieee1451.nist.gov
- 1451.2: http://grouper.ieee.org/groups/1451/2
- 1451.4: http://grouper.ieee.org/groups/1451/4
- 1451.5: http://grouper.ieee.org/groups/1451/5
- 1451.3: http://www.ic.ornl.gov/p1451/p1451.html

IEEE 1588: http://ieee1588.nist.gov

Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems