
Rick Schneeman, Computer Scientist
rschneeman@nist.gov

US Department of Commerce
National Institute of Standards and Technology (NIST)
Gaithersburg, Maryland 20899 USA

Implementing IEEE 1451.1
in a Wireless Environment

http://www.nist.gov/
mailto:rschneeman@nist.gov
http://www.doc.gov/
http://www.nist.gov/


Implementing IEEE 1451.1 in a Wireless Environment 2

Introduction
n Who we are: NIST mission is to help increase US

industry competitiveness through advanced research,
standards, and technology collaboration

n Member of the Sensor Development and Application
Group (SDAG) within the Manufacturing Engineering
Laboratory (MEL) at NIST

n Member of the Working Group on the IEEE Standard
for a Smart Transducer Interface for Sensors and
Actuators  Network Capable Application Processor
(NCAP) Information Model, or IEEE 1451.1 (“dot1”)



Implementing IEEE 1451.1 in a Wireless Environment 3

n Part 1: Provide a brief object-based overview of the
IEEE 1451.1 components, services, and block classes

n Part 2: Discuss the technical and architectural solutions
for the development and deployment of the NIST IEEE
1451.1 reference implementation

n Part 3: Illustrate the use of IEEE 1451.1 in an example
application using both the NIST C++ and Java reference
implementations

n Part 4: Describe an IEEE 802.11b (11Mbps) wireless
environment used for application testing and
demonstration

Topics of Discussion



Implementing IEEE 1451.1 in a Wireless Environment 4

n Provide standardized communication interfaces for smart
transducers, both sensors and actuators. In the form of a
standard hardware and software definition/specification.

n Simplify the connectivity and maintenance of transducers
to device networks through such mechanisms as common
Transducer Electronic Data Sheet (TEDS) and
standardized Application Programming Interfaces (API)

n Allow plug-and-play with 1451 compatible transducers
among different devices using multiple control networks

n Give sensor manufacturers, system integrators, and end-
users the ability to support multiple networks and
transducer families in a cost effective way

IEEE 1451 Overview/Goals



Implementing IEEE 1451.1 in a Wireless Environment 5

Part 1: IEEE 1451.1 Overview/Goals
n “The specifications provide a comprehensive data model

for the factory floor, and a simple application framework to
build interoperable distributed applications…”  Dr. Jay
Warrior, Agilent Technologies, Chair IEEE 1451.1 WG

n In general, IEEE 1451.1 accomplishes this by providing:
u Transducer application portability (software reuse)
u Plug-and-play software capabilities (components)
u Network independence (network abstraction layer)

IEEE 1451 Smart Transducer Interface
System Block Diagram

P
h

ys
ic

al
 w

o
rl

d

Smart Transducer
Interface Module

(STIM)

ADC

DAC

DI/O

?

XDCR

XDCR

XDCR

XDCR

Address
Logic

Transducer 
Electronic
Data Sheet

Network Capable
Application
Processor

(NCAP)

Transducer
Independent
Interface

1451.2
Interface

1451.1
Object Model

Network

n The standard specifies these capabilities
by defining software interfaces for:

u Application functions in the NCAP that
interact with the network that are
independent of any network

u Application functions in the NCAP that
interact with the transducers that are
independent of any specific transducer
driver interface



Implementing IEEE 1451.1 in a Wireless Environment 6

IEEE 1451.1 Overview/Goals (Cont.)

n IEEE 1451.1 software architecture is defined using three
different models or views of the transducer device
environment:
u An Object Model, defines transducer device specific

abstract objects – or, classes with attributes, methods,
and state behavior

u A Data Model, defines information encoding rules for
transmitting information across both local and remote
object interfaces

u A Network Communication Model, supports a
client/server and publish/subscribe paradigm for
communicating information between NCAPs



Implementing IEEE 1451.1 in a Wireless Environment 7

n IEEE 1451.1 objects look similar to
other object-oriented class definitions;
they are comprised of instance data,
other classes, code for implementing
internal operations or methods, and
state behavior machines

n Defines services and interfaces
required for distributed smart devices
(i.e., object discovery, invocation,
synchronization) via attribute access
and operations

n Specifies Object interfaces and
behavior using the Object Model

n The Object Model is formally described
using the implementation independent
Interface Description Language (IDL)

Inside an IEEE 1451.1 Object

Class attribute access and
invocation operations

Class Data

Contained Objects

  Algorithm
Code

State Behavior

Subscriptions

Publications

Client Invocation

Server Response

Interface Implementation



Implementing IEEE 1451.1 in a Wireless Environment 8

n Four Object classes are found in an IEEE 1451.1 system:
u Block Classes (building blocks of the system)

« NCAP Block (network communication and configuration)
« Function Block (application-specific functionality)
« Transducer Block (transducer device driver interface w/app)

u Component Classes (common application constructs)
« Parameter (contains structured information, network variables)
« Action (time-based system state altering activity)
« File (supports downloading new code to device)
« Component Group (addressing collections of related entities)

u Service Classes (system and network services)
« Client Ports (implements client-side communication endpoint)
« Publisher Ports (implements publishing endpoint)
« Subscriber Ports (implements subscription endpoint)
« Mutex/Condition Service (provides application/NCAP synch)

u Non-IEEE 1451.1 Classes

Types of IEEE 1451.1 Classes



Implementing IEEE 1451.1 in a Wireless Environment 9

n Uses a “backplane” or “card cage” concept
n NCAP centralizes and “glues” all the system and

communications facilities together
n Network communication viewed through the NCAP as ports
n Function block application code is “plugged” in as needed
n Transducer blocks map the physical transducer to the NCAP

Conceptual View of an IEEE 1451.1 NCAP

Network Ports

NC
AP

 B
loc

k

Function
Block

Function
Block

Function
Block

Transducer
Block

Physical
Transducer

Communication Interface
Client/Server and Publish/Subscribe

Transducer Interface

Parameters, Actions,
Files, and other objects



Implementing IEEE 1451.1 in a Wireless Environment 10

n Provides two styles of
inter-NCAP
communication

n Client/Server: A tightly
coupled, point-to-point
model for one-to-one
communication
scenarios – typically
used for configuration,
attribute accessors,
and operation
invocations.

IEEE 1451.1 Communication Model

n Client objects “Execute()” or invoke operations over the network
against a Server NCAP. Server NCAP objects “Perform()” the
operation based on the ID and return the results to the client.



Implementing IEEE 1451.1 in a Wireless Environment 11

IEEE 1451.1 Communication Model (Cont.)

n Publish/Subscribe: A
loosely coupled,
model for many-to-
many and one-to-
many communication
scenarios – typically
used for broadcasting
or multicasting
measurement data
and configuration
management (i.e.,
node or NCAP
discovery) information

n The Publisher is the sending object, it invokes “Publish()”
method and does not need to be aware of any receiving
objects. Subscribers issue AddSubscriber() method to register
interest in something on that subscription.



Implementing IEEE 1451.1 in a Wireless Environment 12

Part 2: Implementing IEEE 1451.1
n An IEEE 1451.1 C++ Reference Implementation

provides a concrete representation of the abstract
Smart Transducer Information Model (IEEE Std
1451.1-1999, Dated 18 April 2000). The NIST
implementation is called “1451.1 Lite”, as it is a
subset of the complete specification.

n A subset of the IEEE 1451.1 implementation has also
been developed in Java to provide an architecture
neutral NCAP configuration tool.

n The C++ implementation uses the open-source
Adaptive Communication Environment (ACE) from the
Washington University at St. Louis.



Implementing IEEE 1451.1 in a Wireless Environment 13

Using ACE Framework for IEEE 1451.1

n ACE is an object-oriented framework
for implementing portable real-time
communication software patterns in
C++.

n All core distribution, concurrency, and
communication patterns that underlie
the NIST developed IEEE 1451.1
implementation are derived from the
ACE library.

n Provides an object-oriented abstraction
of operating system services for real-
time network and communications
support.

n Presently used by major
communication companies including:
Hughes, Lucent, Ericsson, Siemens,
and Boeing among others



Implementing IEEE 1451.1 in a Wireless Environment 14

ACE Framework Components
n The Adaptive Communication Environment (ACE) is an object-oriented

framework that implements core concurrency and distribution patterns for
real-time communication software. ACE includes the following components:

« Concurrency and Synchronization
« Interprocess communication (IPC)
« Memory Management, Timers and Signals
« File System management
« Thread Management
« Event demultiplexing and handler dispatching
« Connection establishment and service initialization
« Static and dynamic configuration and reconfiguration of software
« Distributed communication services –naming, logging, time

synchronization, event routing and network locking. etc.
n Notice that the ACE components mimic the object requirements found in the

IEEE 1451.1 specification; therefore, the mapping was clear but
cumbersome because of the specificity of the standard.



Implementing IEEE 1451.1 in a Wireless Environment 15

Key ACE Architectural Areas Leveraged

n ACE uses well-established object-oriented “patterns”, or
common design elements, including:
u Reactor pattern (efficient event de-multiplexing and dispatching)
u Active Object (multi-threaded execution object)
u Activation Queues (decouples method invocation/execution)
u Method Objects (queue able objects for execution of commands)
u Future Objects (resultant objects of method object execution)

n All of these patterns have concrete representations in ACE,
such as ACE_Tasks as an Active Object, etc.

n The low-level C++ TCP/IP socket “wrapper” routines were not
used because this would mitigate using the advanced features
of the object-oriented framework



Implementing IEEE 1451.1 in a Wireless Environment 16

Key ACE Architectural Areas Leveraged

n IEEE 1451.1 “Entity” class forms the base class for all network
and block services in the standard. The “Entity” class inherits
the ACE “service handler” class, which integrates event-driven
“Active” object patterns with TCP/IP communication endpoints
and synchronization.

n ACE “service handler” interface supports real-time event-
driven input/output on multicast/unicast TCP/IP sockets,
providing an efficient networking scheme.

n The IEEE 1451.1 standard specifies a data encoding
sequence for passing parameters between objects. An on-the-
wire network-based data representation for marshaling these
parameters is required for each control network used. For
TCP/IP networks, NIST used a CORBA compliant
implementation of the Common Data Representation (CDR)
library found in ACE.



Implementing IEEE 1451.1 in a Wireless Environment 17

Key ACE Architectural Areas Leveraged

n Internally, the NIST IEEE 1451.1 code uses the CDR base
types as well. This reduces the amount of encoding and
marshaling overhead needed from converting base types to
the CDR types during marshaling activities.

n Blocks and Ports use
ACE “Tasks” for their
multithreaded state
machine behavior. Each
Block/Port class
implementation provides
a virtualized svc() routine
to support each blocks
defined state machine.



Implementing IEEE 1451.1 in a Wireless Environment 18

Progress to Date

n Majority of the design in place (using inheritance and composition of
ACE services with 1451.1 code base)

n 70-75% of IEEE 1451.1 C++ code complete, all IEEE 1451.1 methods
have placeholders, network encoding still under development

n Core subset (.1 Lite) nearly complete, consists of a shared library under
Linux/FreeBSD & VxWorks and a dynamic link library (DLL) under
WIN32/NT

n Because the ACE framework is being used, a single source code-base
that is 100% portable to Linux/FreeBSD, NT, VxWorks, and other
POSIX or WIN32-based operating systems has been developed

n At this time, there is minimal access to the underlying STIM or
microprocessor hardware via device drivers, (most I/O such as
temperature, pressure, or actuator data has been provided by the
NCAP via simulation)

n Java implementation consist of most blocks and communication ports.
A CDR encoding from the Zen Project at University of California, Irvine
has been integrated and is interoperable with C++ version.



Implementing IEEE 1451.1 in a Wireless Environment 19

Lessons Learned on Implementation

n The standards' low-level attempt to redefine the RPC
(Remote Procedure Call) mechanisms for network
communication preclude and limit the implementer's ability
to optimize the amount and types of communication
patterns that can be used in normal real-time object-
oriented network communication software design.

n Many object-oriented patterns are disallowed because of
arbitrary inheritance chain and class partitioning.

n Partitioning forces the designers and implementers of the
software to create overloaded and convoluted classes in
order to pigeon hole the standard into certain middleware
and object-oriented frameworks.



Implementing IEEE 1451.1 in a Wireless Environment 20

Lessons Learned on Implementation

n Large number of deployed NCAPs could be problematic for
system configuration, initialization, and maintenance unless
highly sophisticated configuration tools are developed.
However, software vendors can provide those tools.

n Modern middleware provides similar service-oriented class
characteristics; an OS adaptation layer standard definition
approach would ease integrating application functionality.



Implementing IEEE 1451.1 in a Wireless Environment 21

Lessons Learned on Implementation
n The backward or legacy approach to preserving other

device bus application interaction complicates and makes
the standard over specify itself.

n Implementations of the standard (in C++) are cumbersome
and very large for many small embedded systems. A
subset standard (IEEE 1451.1 Lite) should be considered
for the applications that only need a small subset of the
current 1451.1 standard specification.

n NIST implementations unique use of CDR streams as the
underlying data typing mechanism provides a less complex
asynchronous and synchronous communication
marshaling routines.



Implementing IEEE 1451.1 in a Wireless Environment 22

IEEE 1451.1 Benefits

n Using P1451.1 provides:
u an extensible object-oriented model for smart

transducer application development and deployment
u application portability achieved through agreed upon

application programming interfaces (API)
u network neutral interface allows the same application

to be plug-and-play across multiple network
technologies

u leverages existing networking technology, does not re-
implement any control network software or protocols

u a common software interface to transducer hardware
i/o



Implementing IEEE 1451.1 in a Wireless Environment 23

Part 3: Looking at an IEEE 1451.1 Application
n A minimal IEEE 1451.1 application consist of a few classes:

u An NCAP Block (consolidates system and communication
housekeeping)

u A Transducer Block (provides the software connection to the
transducer device)

u A Function Block (provides the transducer application
algorithm (i.e., obtain and multicast temperature data every
second)

u Parameters (contains the network accessible variables that
hold and update the data)

u Ports (network communication objects for publishing and
subscribing to information or interacting with other NCAPs
using client/server



Implementing IEEE 1451.1 in a Wireless Environment 24

A C++ IEEE 1451.1 Application
(NCAP Block)

n Creating a NCAP object
starts with defining a TCP
server port assignment.

n Create a Tag, this is used
to identify the NCAP to
others on the network

n Build a Dispatch Address
for clients to use to talk to
NCAP

n Instantiate the
Temperature NCAP

n Register the dispatch
address with this NCAP

n Initialize the NCAP state
n Tell NCAP to go “Active”

or start running



Implementing IEEE 1451.1 in a Wireless Environment 25

A C++ IEEE 1451.1 Application
(Transducer Block)

n Creating a Transducer
Block starts with defining
a Tag for this object

n Optionally, another
Dispatch address can be
generated for this NCAP

n Create a set of Object
Properties that give this
object special identity

n Instantiate the
Transducer Block

n Register the Transducer
Block with the NCAP

n Initialize the TBlock state
n Tell TBlock to go “Active”

or start running



Implementing IEEE 1451.1 in a Wireless Environment 26

A C++ IEEE 1451.1 Application
(Function Block)

n Creating a Function Block
starts with defining a Tag for
this object

n Optionally, another Dispatch
address can be generated for
this NCAP

n Create a set of Object
Properties that give this object
special identity

n Instantiate the Function Block
n Register the Function Block

with the NCAP
n Initialize the Function Block
n Tell Transducer Block to go

“Active”
n Manually “Start()” the

application or do it later from a
network invocation



Implementing IEEE 1451.1 in a Wireless Environment 27

A C++ IEEE 1451.1 Application (Ports)
n Ports are used throughout

the application in the
NCAP, Function Block
and Transducer Block

n This Port snapshot is
used to multicast
temperature data from
within the Function Block

n A Publication Topic and
Key are used to define
this on the network

n Instantiate the Port, in this
case an Event Generator
Port

n Set timer parameters for
how often to “fire” this
event



Implementing IEEE 1451.1 in a Wireless Environment 28

Executing an IEEE 1451.1 Application
n An embedded Temperature NCAP Application is running from a

remote location on the NIST Intranet
u As part of the system configuration, a NIST developed Java tool on a Notebook

issues a discovery multicast, finds the NCAP,  and starts the remote NCAP’s
Function Block

u The remote NCAP Function Block responds by publishing temperature data every
second as the Java tool records the information



Implementing IEEE 1451.1 in a Wireless Environment 29

Part 4: Using IEEE 1451.1 in a Wireless
Environment

n The NIST C++ IEEE 1451.1 reference implementation uses
TCP/IP as its underlying control network.

n From TCP/IP, IP multicast and TCP unicast features are used
to implement publish/subscribe and client/server, respectively

n ACE is used to abstract the networking code from the
application; therefore it is highly adaptive to various protocols

n Wired 802.3 Ethernet has been used primarily for testing. No
changes were needed in ACE to support this protocol.

n Wireless 802.11b (11Mbps) Ethernet has also been used for
testing. Again, no changes were made to ACE as the TCP/IP
protocol is compatible with both 802.3 and 802.11b physical
mediums.



Implementing IEEE 1451.1 in a Wireless Environment 30

Using IEEE 1451.1 in a Wireless Environment
n Testing scenarios included using

a wired subnet connected to a
wireless extension of the subnet

n Wireless extension uses an
Agere (formerly Lucent) Orinoco
AP-1000 dual card “access point”

n Range extender antennas are
also connected to the access
point and each PC-CARD

n Each node on the wireless side
executes an IEEE 1451.1 NCAP
application

n Java Configuration tool executes
beyond the wireless net on the
wired subnet



Implementing IEEE 1451.1 in a Wireless Environment 31

Using IEEE 1451.1 in a Wireless Environment

n Limited testing scenarios confined to the office environment at NIST
n Experience has not been good due to range problems within our building.
n Structural barriers within the walls severely restrict the range available

from NCAP to access point
n Building constructed in the 60’s of solid concrete block with concrete

floors, offices
n Range using a wireless subnet is no greater than 20-25’ with antenna
n High-end of 11 Mbps range only reached with 15’
n All applications worked as advertised albeit with limited range.
n Multicasting through the bridge needed to be configured through the

access point
n Noticeable delay for multicast depending on how configured at access

point



Implementing IEEE 1451.1 in a Wireless Environment 32

Summary
n IEEE 1451.1 is a comprehensive and large standard that

adequately addresses the smart transducer industry need
for portability and network independent access.

n The standard however in addressing all the facets of the
smart transducer is complex and quite large.

n NIST has embarked on implementing a good deal of the
standard with emphasis on getting the communication and
infrastructure code in place in order to start using the code.

n Choosing and implementing the standard with a solid
object-oriented framework such as ACE provides a robust
environment for real-time network communication.

n Migrating the implementation to other middleware such as
CORBA for heavier weight uses will be reasonable to do

n Several projects at NIST will use the implementation for
supporting manufacturing related activities



Implementing IEEE 1451.1 in a Wireless Environment 33

Summary (cont)

n Continued testing in the wireless space is required
to gauge the effectiveness of the implementation.

n Bluetooth trials are forthcoming; however, the lack
of multicast support will severely impact the
applications – continued research here is a must

n Other lightweight middleware packages are going
to be isolated – XML and SOAP, etc; however,
these protocols do not support asynchronous
messaging or publish subscribe in efficient ways

n Slimmer implementations of the IEEE 1451.1 will
need to be experimented with for use with the
smaller micro platforms.



Implementing IEEE 1451.1 in a Wireless Environment 34

References

n More information about ACE can be found at:
www.cs.wustl.edu/~schmidt/ACE.html

n IEEE 1451.1-1999 Standard for a Smart
Transducer Interface for Sensors and
Actuators - Network Capable Application
Processor Information Model 2000, ISBN 0-
7381-1768-4

http://www.cs.wustl.edu/~schmidt/ACE.html

	Home: 


