Implementing IEEE 1451.1
In a Wireless Environment

Rick Schneeman, Computer Scientist
rschneeman@nist.gov

US Department of Commerce
National Institute of Standards and Technology (NIST)
Gaithersburg, Maryland 20899 USA

http://www.nist.gov/
mailto:rschneeman@nist.gov
http://www.doc.gov/
http://www.nist.gov/

Introduction

= Who we are: NIST mission is to help increase US
Industry competitiveness through advanced research,
standards, and technology collaboration

= Member of the Sensor Development and Application
Group (SDAG) within the Manufacturing Engineering
Laboratory (MEL) at NIST

= Member of the Working Group on the IEEE Standard
for a Smart Transducer Interface for Sensors and
Actuators ¥ Network Capable Application Processor
(NCAP) Information Model, or IEEE 1451.1 (“dotl”)

Implementing IEEE 1451.1 in a Wireless Environment HONME

Topics of Discussion

= Part 1. Provide a brief object-based overview of the
IEEE 1451.1 components, services, and block classes

s Part 2: Discuss the technical and architectural solutions
for the development and deployment of the NIST IEEE
1451.1 reference implementation

= Part 3: lllustrate the use of IEEE 1451.1 in an example
application using both the NIST C++ and Java reference
Implementations

= Part 4: Describe an IEEE 802.11b (11Mbps) wireless
environment used for application testing and
demonstration

Implementing IEEE 1451.1 in a Wireless Environment HONME

IEEE 1451 Overview/Goals

Provide standardized communication interfaces for smart
transducers, both sensors and actuators. In the form of a
standard hardware and software definition/specification.

Simplify the connectivity and maintenance of transducers
to device networks through such mechanisms as common
Transducer Electronic Data Sheet (TEDS) and
standardized Application Programming Interfaces (API)

Allow plug-and-play with 1451 compatible transducers
among different devices using multiple control networks

Give sensor manufacturers, system integrators, and end-
users the ability to support multiple networks and
transducer families in a cost effective way

Implementing IEEE 1451.1 in a Wireless Environment HONME

Part 1: IEEE 1451.1 Overview/Goals

“The specifications provide a comprehensive data model
for the factory floor, and a simple application framework to
build interoperable distributed applications...” Dr. Jay
Warrior, Agilent Technologies, Chair IEEE 1451.1 WG

In general, IEEE 1451.1 accomplishes this by providing: ;
+ Transducer application portability (software reuse)
+ Plug-and-play software capabilities (components)
+ Network independence (network abstraction layer)

The standard specifies these capabilities
by defining software interfaces for:

+ Application functions in the NCAP that
Interact with the network that are
Independent of any network

+ Application functions in the NCAP that
Interact with the transducers that are
Independent of any specific transducer
driver interface

Implementing IEEE 1451.1 in a Wireless Environment

EEN

I

(|
QoL 106

Z |

» [EEE

Standard for a Smart Transducer

Interface for Sensors and Actuators—
Network Capable Application
Processor (NCAP) Information Model

Haargy s

System Block Diagram

IEEE 1451 Smart Transducer Interface Networ kq

Smart Transducer
Interface Module
(STIM)

1451.2
Interface

Network Capable
Application N
Processor

(NCAP)

1451.1
Object Model

= |[EEE 1451.1 software architecture is defined using three
different models or views of the transducer device
environment:

¢ An Object Model, defines transducer device specific
abstract objects — or, classes with attributes, methods,
and state behavior

¢ A Data Model, defines information encoding rules for
transmitting information across both local and remote
object interfaces

¢ A Network Communication Model, supports a
client/server and publish/subscribe paradigm for
communicating information between NCAPs

Implementing IEEE 1451.1 in a Wireless Environment HONME

Inside an IEEE 1451.1 Object

IEEE 1451.1 objects look similar to
other object-oriented class definitions;
they are comprised of instance data,
other classes, code for implementing

Interface

Class attribute access and

Internal operations or methods, and invocaton operations

state behavior machines

Defines services and interfaces
required for distributed smart devices
(.e., object discovery, invocation,
synchronization) via attribute access
and operations

Specifies Object Interfaces and
behavior using the Object Model

The Object Model is formally descrlbed
using the implementation independent
Interface Description Language (IDL)

Implementing IEEE 1451.1 in a Wireless Environment

< >

Subscriptions

>

Publications

Client Invocation

>

Server Response

Implementation

0 0¢

Class Data
|
|

Contained Objects

Algorithm
Code

e

State Behavior

Types of IEEE 1451.1 Classes

= Four Object classes are found in an IEEE 1451.1 system:

¢ Block Classes (building blocks of the system)

» NCAP Block (network communication and configuration)

» Function Block (application-specific functionality)

» Transducer Block (transducer device driver interface w/app)
¢ Component Classes (common application constructs)

» Parameter (contains structured information, network variables)

» Action (time-based system state altering activity)

» File (supports downloading new code to device)

» Component Group (addressing collections of related entities)
+ Service Classes (system and network services)

» Client Ports (implements client-side communication endpoint)

» Publisher Ports (implements publishing endpoint)

» Subscriber Ports (implements subscription endpoint)

» Mutex/Condition Service (provides application/NCAP synch)

¢ Non-IEEE 1451.1 Classes
Implementing IEEE 1451.1 in a Wireless Environment

Conceptual View of an IEEE 1451.1 NCAP

= Uses a “backplane” or “card cage” concept

= NCAP centralizes and “glues” all the system and
communications facilities together

= Network communication viewed through the NCAP as ports
= Function block application code is “plugged” in as needed
= Transducer blocks map the physical transducer to the NCAP

+ [Transducer —— Physical
@6’ Block ——- Transducer
S
< : —
[Functon —— Transducer Interface
Network Ports Block —

T

Communication Interface
Client/Server and Publish/Subscribe

Implementing IEEE 1451.1 in a Wireless Environment HONME

[Function [— | Parameters, Actions,

Block % Files, and other objects

IEEE 1451.1 Communication Model

= Provides two styles of

Inter-NCAP
communication

Client/Server: A tightly
coupled, point-to-point
model for one-to-one
communication
scenarios — typically
used for configuration,
attribute accessors,
and operation
Invocations.

Process Process
Chent
whject
Saver Ohjedt
Oparations:
operatiot cormespotuditg to
Chiend Poxt serwver_ operation_id
Antribanbes :
zerverlispatchaddress 1
Operations: Indemal:
Exacutae | execute_:m-:hde P Parforml =arwvar operat :i.q:-:n_:i.d.-
4 Serwer operation_id, SACLWAL input argumants,
=arwvaeI input_arguments, sarwvar cubput arguments)
Terver oubput argquments 1
“ Network i
IEEE1451-05

Client objects “Execute()” or invoke operations over the network
against a Server NCAP. Server NCAP objects “Perform()” the
operation based on the ID and return the results to the client.

Implementing IEEE 1451.1 in a Wireless Environment

IEEE 1451.1 Communication Model (cont.)

= Publish/Subscribe: A
loosely coupled,

model for many-to-

Process Fublisher ohject Process Subsaiber vhject
many and one-to-
many communication | | [eouneea Prw—
scenarios —typically | || ey | lamguea,
used for broadcastlng npﬁmwﬁ:.lbll:.catiﬂn:tar'ic Dpﬁmmz;:abscript:f.ﬂn:'{'lilj;fi;
or multicasting caithacit)

measurement data
and configuration
management (i.e., .
node or NCAP
discovery) information

= The Publisher is the sending object, it invokes “Publish()”
method and does not need to be aware of any receiving
objects. Subscribers issue AddSubscriber() method to register

Interest in something on that subscription.
Implementing IEEE 1451.1 in a Wireless Environment

MNetwork

IEEE1 45106

Part 2: Implementing IEEE 14511 =

= An IEEE 1451.1 C++ Reference Implementation
provides a concrete representation of the abstract
Smart Transducer Information Model (IEEE Std
1451.1-1999, Dated 18 April 2000). The NIST
Implementation is called “1451.1 Lite”, asitis a
subset of the complete specification.

= A subset of the IEEE 1451.1 implementation has also
been developed in Java to provide an architecture
neutral NCAP configuration tool.

= The C++ implementation uses the open-source
Adaptive Communication Environment (ACE) from the

Washington University at St. Louis.
Implementing IEEE 1451.1 in a Wireless Environment

|
I

Using ACE Framework for IEEE 14511 i ==d:

ACE is an object-oriented framework
for implementing portable real-time

communication software patterns in PROCESY/

C++.
o SERVLCE ||

All core distribution, concurrency, and gy [| MG | CONIG-
communication patterns that underlie
the NIST developed IEEE 1451.1
implementation are derived from the
ACE library.

Provides an object-oriented abstraction A7l ;
of operating system services for real- THRRADS |

time network and communications e R R
support. SUBSYSTRM SUBSYSTEM SUBSYSTEM
Presently used by major Rl POSTX 400 W) sevnces

communication companies including:
Hughes, Lucent, Ericsson, Siemens,
and Boeing among others

Implementing IEEE 1451.1 in a Wireless Environment HONVE

ACE Framework Components

= The Adaptive Communication Environment (ACE) is an object-oriented
framework that implements core concurrency and distribution patterns for
real-time communication software. ACE includes the following components:

» Concurrency and Synchronization

» Interprocess communication (IPC)

» Memory Management, Timers and Signals

» File System management

» Thread Management

» Event demultiplexing and handler dispatching

» Connection establishment and service initialization

» Static and dynamic configuration and reconfiguration of software

» Distributed communication services —haming, logging, time
synchronization, event routing and network locking. etc.

= Notice that the ACE components mimic the object requirements found in the
IEEE 1451.1 specification; therefore, the mapping was clear but
cumbersome because of the specificity of the standard.

Implementing IEEE 1451.1 in a Wireless Environment HONME

= ACE uses well-established object-oriented “patterns”, or
common design elements, including:

¢ Reactor pattern (efficient event de-multiplexing and dispatching)
o Active Object (multi-threaded execution object)

¢ Activation Queues (decouples method invocation/execution)

¢ Method Objects (queue able objects for execution of commands)
o Future Objects (resultant objects of method object execution)

= All of these patterns have concrete representations in ACE,
such as ACE_Tasks as an Active Object, etc.

= The low-level C++ TCP/IP socket “wrapper” routines were not
used because this would mitigate using the advanced features
of the object-oriented framework

Implementing IEEE 1451.1 in a Wireless Environment HONME

= |IEEE 1451.1 “Entity” class forms the base class for all network
and block services in the standard. The “Entity” class inherits
the ACE “service handler” class, which integrates event-driven
“Active” object patterns with TCP/IP communication endpoints
and synchronization.

= ACE “service handler” interface supports real-time event-
driven input/output on multicast/unicast TCP/IP sockets,
providing an efficient networking scheme.

= The IEEE 1451.1 standard specifies a data encoding
sequence for passing parameters between objects. An on-the-
wire network-based data representation for marshaling these
parameters is required for each control network used. For
TCP/IP networks, NIST used a CORBA compliant
Implementation of the Common Data Representation (CDR)
library found in ACE.

Implementing IEEE 1451.1 in a Wireless Environment HONME

Key ACE Architectural Areas Leveraged

= Internally, the NIST IEEE 1451.1 code uses the CDR base
types as well. This reduces the amount of encoding and
marshaling overhead needed from converting base types to
the CDR types during marshaling activities.

= Blocks and Ports use
ACE “Tasks” for their
multithreaded state
machine behavior. Each
Block/Port class
Implementation provides
a virtualized svc() routine
to support each blocks
defined state machine.

Implementing IEEE 1451.1 in a Wireless Environment

<< enter state machine of the fblock
int tempFBlock: svc{ woid)

while (1)
{

A7 get current state of underlvying Block
ret = IEEE1451 Block: GetBlockMajorState(bms)
zyitch (bms)

caze BL _UNINITIALIZED:breal:
caze BL INACTIVE brealk:
#« 1f the block iz in the active =tate, then
caze BL_ACTIVE:
A get current state of underlving FElock
ret = IEEE1451 FunctionBlock: :GetFunctionBlockStatei(fbs);
<« enter the fblock substate =ztate machine
=witch {(fbh=)
{
ca=z= FB STOPPED:breal:
ca=ze FB _IDLE: breal:
case FB _RUNNING: breal:
caze FB RESERVED: breal

breal ;
caze BL _RESERVED:breal:
default :brealk;
h
¥

A7 compller issue
return 0;

¥

Progress to Date

Majority of the design in place (using inheritance and composition of
ACE services with 1451.1 code base)

70-75% of IEEE 1451.1 C++ code complete, all IEEE 1451.1 methods
have placeholders, network encoding still under development

Core subset (.1 Lite) nearly complete, consists of a shared library under
Linux/FreeBSD & VxWorks and a dynamic link library (DLL) under
WIN32/NT

Because the ACE framework is being used, a single source code-base
that is 100% portable to Linux/FreeBSD, NT, VxWorks, and other
POSIX or WIN32-based operating systems has been developed

At this time, there is minimal access to the underlying STIM or
microprocessor hardware via device drivers, (most 1/0 such as
temperature, pressure, or actuator data has been provided by the
NCAP via simulation)

Java implementation consist of most blocks and communication ports.
A CDR encoding from the Zen Project at University of California, Irvine
has been integrated and is interoperable with C++ version.

Implementing IEEE 1451.1 in a Wireless Environment HONME

Lessons Learned on Implementation

= The standards' low-level attempt to redefine the RPC
(Remote Procedure Call) mechanisms for network
communication preclude and limit the implementer's ability
to optimize the amount and types of communication
patterns that can be used in normal real-time object-
oriented network communication software design.

= Many object-oriented patterns are disallowed because of
arbitrary inheritance chain and class partitioning.

= Partitioning forces the designers and implementers of the
software to create overloaded and convoluted classes in
order to pigeon hole the standard into certain middleware
and object-oriented frameworks.

Implementing IEEE 1451.1 in a Wireless Environment HONME

Lessons Learned on Implementation

= Large number of deployed NCAPs could be problematic for
system configuration, initialization, and maintenance unless
highly sophisticated configuration tools are developed.
However, software vendors can provide those tools.

= Modern middleware provides similar service-oriented class
characteristics; an OS adaptation layer standard definition
approach would ease integrating application functionality.

Implementing IEEE 1451.1 in a Wireless Environment HONME

Lessons Learned on Implementation

= The backward or legacy approach to preserving other
device bus application interaction complicates and makes
the standard over specify itself.

= Implementations of the standard (in C++) are cumbersome
and very large for many small embedded systems. A
subset standard (IEEE 1451.1 Lite) should be considered
for the applications that only need a small subset of the
current 1451.1 standard specification.

= NIST implementations unique use of CDR streams as the
underlying data typing mechanism provides a less complex
asynchronous and synchronous communication
marshaling routines.

Implementing IEEE 1451.1 in a Wireless Environment HONME

|IEEE 1451.1 Benefits

= Using P1451.1 provides:

+ an extensible object-oriented model for smart
transducer application development and deployment

o application portability achieved through agreed upon
application programming interfaces (API)

o network neutral interface allows the same application
to be plug-and-play across multiple network
technologies

¢ leverages existing networking technology, does not re-
Implement any control network software or protocols

¢ a common software interface to transducer hardware
1/0

Implementing IEEE 1451.1 in a Wireless Environment HONME

Part 3: Looking at an IEEE 1451.1 Application

= A minimal IEEE 1451.1 application consist of a few classes:

o An NCAP Block (consolidates system and communication
housekeeping)

¢ A Transducer Block (provides the software connection to the
transducer device)

+ A Function Block (provides the transducer application
algorithm (i.e., obtain and multicast temperature data every
second)

¢ Parameters (contains the network accessible variables that
hold and update the data)

¢ Ports (network communication objects for publishing and
subscribing to information or interacting with other NCAPs
using client/server

Implementing IEEE 1451.1 in a Wireless Environment HONME

A C++ |EEE 1451.1 Application =
(NCAP Block)

I
I

B IOQL-106]

NIST CENTENNIAL

Creating a NCAP object
starts with defining a TCP
server port assignment.

Create a Tag, this is used
to identify the NCAPto |
others on the network

Build a Dispatch Address
for clients to use to talk to —
NCAP

Instantiate the

-

Temperature NCAP

Register the dispatch
address with this NCAP

Initialize the NCAP state —3

Tell NCAP to go “Active”—_

v

or start running

Implementing IEEE 1451.1 in a Wireless Environment

VI T I I T I I I T I T ITI I I TSI I T I I TIII T I T I I T T I
/7 Start the client NCAP System initialization process. ...
S LSS LSS

s/ declare a return code cbject for 1451 methods
OpReturnCode ret;

s7 build a local client-server address & port based on this NCAP
ObjectTag localHost

UIntegerlt localPort;

ccconfiglocaliddress(localHost, localPort);

/7 need an object tag for the client-server NCAP oda
ObjectTag ncapTag("tempNCAP-HCAPElock"):

/7 create a generic client-server object dispatch address for this HCAP
rs

/7 the port iz dummied to 10002 to allow local debugging on the sans

// machine of the tempncap <--» configtool
ObjectDispatchiddress ncapaddr(localHost.fast_rep(), 10002-#%localPort®/, ncapTag):
// create a set of object properties including the ncap client-server address
ObjectProperties ncapprops(ncapTag, "owner", ncapaddr. "ncapobi'):

// create the NIST NCAP

cout << "Creating a NIST Temperature HCAP" ¢<¢ endl:
tenpHCAP* ptemplCAP = new tempNCAP(ncapprops,

"NIST" "N2*

"01a", "NIST MfgID# 85073,

ST
"Velorks5h 4");

/¢ Register NCAP with itself to nake operations on it Hetwork Visible (HCAP iz owner)

ret = ptemplCAP-»RegisterObject (*ptenpNCAP, #ptenpNCAP, ncapaddr);

1f (ret majorReturnCode 1= MJ_COMPLETED)
cout <¢ "Could not RegisterObjecti)" << endl:

/7 initialize the ncap state (start the thread-task)

ret = ptemplCAP-:Initialize();

/7 put the NCAP into the Active Statel
ptenpHCAP->GoActive();

A C++ |EEE 1451.1 Application
(Transducer Block)

-
| B
—

HEER
|b!!i:31
W I100Z- 1061

z

IST CENTENNI AL

Creating a Transducer
Block starts with defining
a Tag for this object

Optionally, another
Dispatch address can be
generated for this NCAP

Create a set of Object
Properties that give this
object special identity

Instantiate the
Transducer Block ———

Register the Transducer -
Block with the NCAP

\

Initialize the TBlock state — | ~

Tell TBlock to go “Active™
or start running

e 4

Implementing IEEE 1451.1 in a Wireless Environment

s/ get the state of the NCAP, should be INACTIVE!
NCAPBlockState ncapState:
ret = ptempNCAP-»GetNCAPBlockStatel{ncapState) ;

s7 print state information
1f (ret.majorBeturnCode == MI_COMPLETED)

cout ¢¢ "NCAP Block State = " << ((ncapState == 4) 7 "FB _INITIALIZED" . "OTHER") << end.
s7 tell ncap to go active now

//ptenpCAP-»Gokctive():

ISP ISPy
£747 create a transducer block
FEEES S A

ObjectTag thlockTag(" tempHCAP-TElock") ;

ObjectDispatchiddress thlockaddr(localHost fast_rep(), 10003, tblockTag);
s+ create a set of object properties including the ncap multicast address
<7 firet entry of object properties iz vhat registerObject keys on. ...

ObjectProperties tblockprops(tblockTag, “"owner", tblockaddr, "tblockobj");

/7 create a specialized transducer block for the temperaturs HCAP
cout ¢¢ "Creating a generic Transducer Block . " << endl;
tenpTBlock *ptempTBlock = new tempTBlockitblockprops, ptempHCAP):

/7 Register NCAP with itself to make operations on 1t Network Visible (NCAP is owner)
ret = ptempNCAP-:RegisterObject (*ptempTBlock, #*ptemplCAP, thlockaddr);
if (ret.majorReturnCode 1= MJ_COMPLETED]

cout ¢¢ "Could not RegisterObject()" <¢{ endl:

¢ initialize the ncap state {start the thread<taslk)
ret = ptemplBlock-:Initialize();

/7 prime the thlock application before starting
ptenpTBlock-Gohctivel();

o o o b B B st

£777 create a function block
ISP SIS ISP

ObjectTag fblockTag(" tempNCAP-FElock") ;

s

A C++ IEEE 1451.1 Application

(Function Block)

-
| B
—

HEER
B
W I100Z- 1061

z

IST CENTENNI AL

Creating a Function Block
starts with defining a Tag for
this object

Optionally, another Dispatch
address can be generated for |
this NCAP

Create a set of Object
Properties that give this object
special identity

e

FELEEE LSS LSS

A447 create a function block
P P AR AR

ObjectTag fblockTag(" tenplCAP-FBlock");
______.thgctDispatchﬁddress tblockiddr{localHost fast_rep(), 10003, fblockTag);
/7 create a set of object properties including the ncap multicast address
/7 first entry of object properties is what registerObject keys on.. ..
/thjectProperties tblockprops(fblockTag, "owner", fblockiddr, "fblockobi"};
/¢ create a generic function block for the application
cout ¢¢ "Creating a Publiszher Function Block " << endl;

tenpFBlock #ptempFBlock = new tempFBlock(fhblockprops, ptempTBlock):
/////){O%BmpFBlock ptenpFBlock(fblockprops, ptempTBlock);

/7 Register the FBlock to make operations on 1t Network Visible (HCAP block is owner)

63125////// ret = ptenplCAP-:Registerlbject (*ptenpFBlock, *ptempHCAP, fbhlockiddr):
! : 1f {ret.naj Code = MJ_COMPLETED)
|nStant|ate the FU nCt|On BIO = ma]D{CDulﬁnngteRegisterOhject(]l" ¢¢ endl;

Register the Function Block
with the NCAP

Initialize the Function Block

Tell Transducer Block to go
“Active”

Manually “Start()” the
application or do it later from a
network invocation

Implementing IEEE 1451.1 in a Wireless Environment

7 initialize the ncap state (start the thread- task)

//////, rety = ptenpFBlock->Initialize();
///////;%i;rime the fblock application before starting
ptenpFBlock-»GoActivel);

/4 now actually start the application
ptenpFBlock-»Start();

A get_the state of the NCAP again, should he ACTIVE!
ret~ ptenpHCAP-:GetNCAPBlockState(ncapState);

/¢ print state information
1f (ret.majorReturnCode == MJ_COMPLETED)
cout <¢ "NCAP Block State = " <¢ {{ncapState == 4) ? "NE_INITIALIZED"
/7 process events in the lese environment
NCAP WAIT CN_EVENTS

. "OTHER") << end!

i

HEER
B
W I100Z- 1061

A C++ IEEE 1451.1 Application (Ports) i ==

Ports are used throughout

z

the appllcatlon |n the void tempFBlock: :SetupFBlockData()
. {
/¢ declare a return code chject for iese 1451 method calls
NCAP, Function Block (ool
and Tra‘nSducer BIOCk ObjectTag mtag('multicast tag"):
I I ¢ create a general multicast object dizpatch address for this NCAP
ThIS Port SnapShOt IS ObjectDispatchiddress ncast_addr{ ACE_DEFAULT MULTICAST ADDR,
ACE_DEFAULT_MULTICAST PORT,
used to multicast e
tem perature data from 47 create a set of object properties including the ncap multicast address

ObjectProperties ncast_props("tenp fblock", "owner", mcast_addr, "fhlockohi"d;

within the Function Block
OSSO ISP
1 1 1 47 Build PSK_PHYSICAL PARAMETRIC DATA
A PUbllcatlon TOpIC and ////////////7////////7//////////7//////////////////////
Key are used to define T 77 createapublisher topjg for FBlock Dats
. ic = new PublicationTopic{ " TempFBlock-Data");
this on the network
/7 create a g ublizher port for FBlock Data
1 : 1 cout ¢¢ "Creating a Ew neratorPublisherPort " << endl;
InStantlate the POI’t, In thIS tblock_data_pub port = new I EventGeneratorPublisherPort (ncast_props, *topic);
case an Event Generator — 77 set the PubSub key to PSK_PHYSICAL PARAMEMRIC DATA, neaning data

P O r t tblock_data_pub port-»SetPublicationkey(PSK _PHYSICAL PARAMETRIC DATAY;

¢ gvent pub haz been retrofitted (non-std) to include tine-based event generation

Set tlmer parameters for ¢ create a time pericd for publishing
L ” . TineRepresentation timerep;

hOW Often tO fll’e th|S //v'iimerep.seconds =dl:= i

even t \ inerep . nanoseconds ;

47 zet the tiner in the eventpublisher
tblock_data_pub port-:SetTimer(tinsrep);

}

Implementing IEEE 1451.1 in a Wireless Environment HONME

Executing an IEEE 1451.1 Application

= An embedded Temperature NCAP Application is running from a
remote location on the NIST Intranet

+ As part of the system configuration, a NIST developed Java tool on a Notebook

issues a discovery multicast, finds the NCAP, and starts the remote NCAP’s
Function Block

Z HEER
HICOT-1061

I15ST CENTENNIAL

o The remote NCAP Function Block responds by publishing temperature data every
second as the Java tool records the information

% D-\ncap\tempncaphD

Configuration Tool

= d:= \ncap\tempncap\tempncap cpp,. on line #: 33.o0f TemperatureNCAP{>

: d:\ncap-tempncap~tempncap.cpp. on line #: 258,0f TemperatureNCAP::openc
265> Active Object.
Creating a SubscriberPort
can’t disable loopbacks = Unknoun error

.= NB_ INITIRLIZED

on i : 34.0f tempTBlock::tempTBloc
: dincap~tempncap~tempthlock.cpp. on
Active Object
Creating a Pl.lbll_‘hel Function Block ...
in file: d:= \ncap\tempncap\tempfhlnck cpp. on
Creating a Parameter
in tempFBlock: npen(265) “Active Object .
: in file: d:“ncap“tempncap~tempfblock.cpp. on
Disconnect NCAFP Block State = NB _INITIALIZED
NCAP c(288> State Machine thread.
| i svc{l84> State Machine thread.
NCAP Commands in tempFBlock

c€215> (RBunning?» State Machine thread.
] Reading a Parameter
Start FElack =1

: 28@.0f templBlock::open<{265

z 34.of tempFBlock{>

: 152.0f tempFBlock::S8tart{>

temperature value = 285
R P 2 2 R P R P 2 N R PR B R R R P3P 2 R R R PE2E M2 MR
1 received PSK_REGUEST_ HNCAPBLOCK ANNOUMCEMENMT
Send Cornrnatd
| Topic: NCAPConfig MCAP Discovery PUB
- [Ia: 4
E xit Key: 4
r ! - _| Publication Contents:
;?JT;'T;:T?TPFB"""""DE"E :}‘ Octetﬂllay the first stringl23
Key: PSK_PHYSICAL PARAMETRIC_DATA p H zg-s
Fublication Cortents: Found: 1 NCAPS 1, H the last stringdbé
Float32: 70.893939 — £ Unused Argument
-]
1] | i

Implementing IEEE 1451.1 in a Wireless Environment HONME I

Part 4: Using IEEE 1451.1 in a Wireless
Environment

The NIST C++ IEEE 1451.1 reference implementation uses
TCP/IP as its underlying control network.

From TCP/IP, IP multicast and TCP unicast features are used
to implement publish/subscribe and client/server, respectively

ACE is used to abstract the networking code from the
application; therefore it is highly adaptive to various protocols

Wired 802.3 Ethernet has been used primarily for testing. No
changes were needed in ACE to support this protocol.

Wireless 802.11b (11Mbps) Ethernet has also been used for
testing. Again, no changes were made to ACE as the TCP/IP
protocol is compatible with both 802.3 and 802.11b physical
mediums.

Implementing IEEE 1451.1 in a Wireless Environment HONME

Using IEEE 1451.1 in a Wireless Environment

Testing scenarios included using
a wired subnet connected to a
wireless extension of the subnet

Wireless extension uses an
Agere (formerly Lucent) Orinoco

AP-1000 dual card “access point”

Range extender antennas are
also connected to the access
point and each PC-CARD

Each node on the wireless side
executes an IEEE 1451.1 NCAP

application

Java Configuration tool executes
beyond the wireless net on the
wired subnet

Implementing IEEE 1451.1 in a Wireless Environment

Desktop
Computers

PCThus

RF Network
Clard
(PCT)

|y

802.11b DSSS\

Embedded Laptop
iﬁii ii Computers
T PCHICTA bus 4 PCHC A bus
4
RF Network EF Network
Card Card
(PCMCIA) (PCMCTA)
/{\/Sﬂz.llb Dsss
802,116 DSSY

Access Foint

Ethemet

Wired Netvwork

Using IEEE 1451.1 in a Wireless Environment

= Limited testing scenarios confined to the office environment at NIST
= EXxperience has not been good due to range problems within our building.

= Structural barriers within the walls severely restrict the range available
from NCAP to access point

= Building constructed in the 60’s of solid concrete block with concrete
floors, offices

= Range using a wireless subnet is no greater than 20-25’ with antenna
= High-end of 11 Mbps range only reached with 15’
= All applications worked as advertised albeit with limited range.

= Multicasting through the bridge needed to be configured through the
access point

= Noticeable delay for multicast depending on how configured at access
point

Implementing IEEE 1451.1 in a Wireless Environment HONME

Summary

IEEE 1451.1 is a comprehensive and large standard that
adequately addresses the smart transducer industry need
for portability and network independent access.

The standard however in addressing all the facets of the
smart transducer is complex and quite large.

NIST has embarked on implementing a good deal of the
standard with emphasis on getting the communication and
Infrastructure code In place in order to start using the code.

Choosing and implementing the standard with a solid
object-oriented framework such as ACE provides a robust
environment for real-time network communication.

Migrating the implementation to other middleware such as
CORBA for heavier weight uses will be reasonable to do

Several projects at NIST will use the implementation for
supporting manufacturing related activities

Implementing IEEE 1451.1 in a Wireless Environment HONME

Summary (cont)

Continued testing in the wireless space is required
to gauge the effectiveness of the implementation.

Bluetooth trials are forthcoming; however, the lack
of multicast support will severely impact the
applications — continued research here is a must

Other lightweight middleware packages are going
to be isolated — XML and SOAP, etc; however,
these protocols do not support asynchronous
messaging or publish subscribe in efficient ways

Slimmer implementations of the IEEE 1451.1 will
need to be experimented with for use with the
smaller micro platforms.

Implementing IEEE 1451.1 in a Wireless Environment HONME

References P ==l

= More information about ACE can be found at:
www.cs.wustl.edu/~schmidt/ACE.html

s |[EEE 1451.1-1999 Standard for a Smart

Transducer Interface for Sensors and
Actuators - Network Capable Application
Processor Information Model 2000, ISBN O-

/381-1768-4

Implementing IEEE 1451.1 in a Wireless Environment HONVE

http://www.cs.wustl.edu/~schmidt/ACE.html

	Home:

