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ABSTRACT

Parameterizations of triangulated surfaces are used in an increasing number of mesh processing applications for
various purposes. Although demands vary, they are often required to preserve the surface metric and thus minimize
angle, area and length deformation. However, most of the existing techniques primarily target at angle preservation
while disregarding global area deformation.
In this paper an energy functional is proposed, that quantifies angle and global area deformations simultaneously,
while the relative importance between angle and area preservation can be controlled by the user through a parameter.
We show how this parameter can be chosen to obtain parameterizations, that are optimized for an uniform sampling
of the surface of a model. Maps obtained by minimizing this energy are well suited for applications that desire an
uniform surface sampling, like re-meshing or mapping regularly patterned textures.
Besides being invariant under rotation and translation of the domain, the energy is designed to prevent face flips
during minimization and does not require a fixed boundary in the parameter domain. Although the energy is non-
linear, we show how it can be minimized efficiently using non-linear conjugate gradient methods in a hierarchical
optimization framework and prove the convergence of the algorithm.
The ability to control the tradeoff between the degree of angle and global area preservation is demonstrated for several
models of varying complexity.
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1. INTRODUCTION

Parameterization denotes the task of finding a two di-
mensional map for a surface in a higher dimensional
space. In computer graphics such maps have recently
gained much interest, since they are used in many ap-
plications ranging from re-meshing, texture mapping
and surface reconstruction to 3d painting systems, sur-
face editing [2] and geometry images [8].

Most of these applications demand parameterizing
maps (in the following also called parameterizations)
that preserve the metric structure of the surface, i.e.

respect area and angles of shapes. Unfortunately, in
general such an angle and area preserving parameter-
ization does not exist, thus angle preservation has to
be traded off against area preservation. Many exist-
ing methods focus on angle preservation only, which
often leads to large global area distortion resulting in
visually disturbing artifacts on textured surfaces even
if angular distortions are small.

Simultaneously optimizing angle and global area defor-
mation is often superior as shown in figure 1. Further-
more combined global area and angle optimization is



also important whenever an uniform surface sampling
is desired, as in 3D painting systems or surface editing
applications. However, by now only few approaches
considering both angular and area distortion simulta-
neously exist, all of which exhibit certain drawbacks.

1.1 Previous Work

Over the last years a lot of research has been done in
the area of surface parameterization. Besides methods
that optimize the parameterization for a given surface
signal like Balmelli et al.[1] and Sander et al.[21], most
approaches aim at minimizing a metric distortion.

In the context of parameterization, harmonic maps
[6, 5] were first used by Eck et al.[4]. To compute
harmonic maps, Eck et al. derive appropriate weights
for a system of edge springs which can be efficiently
solved. However, the texture coordinates for bound-
ary vertices must be fixed a priori and harmonic maps
may contain face flips (adjacent faces in texture space
with opposite orientation) which violate the bijectiv-
ity of a parameterization. Based on earlier work by
Tutte[27], Floater[7] proposes a different set of weights
for the edge spring model that guarantees bijectivity
if the texture coordinates of the boundary are fixed to
a convex polygon. Desbrun et al.[3] define a space of
measures spanned by a discrete version of the Dirichlet
energy [19], and a discrete authalic energy. While the
authalic energy remedies local area deformations, it re-
quires fixed boundaries and results cannot achieve the
quality of methods targeted at global length preserva-
tion such as Sander et al.[22].

In Hormann and Greiner[12] mostly isometric param-
eterizations are introduced that minimize a non-linear
energy. A variant of this energy is also used in this
paper. Mostly isometric parameterizations do not re-
quire boundary texture coordinates to be fixed and
avoid face flips. Furthermore, mostly isometric param-

Figure 1: A regularly patterned texture mapped by a
conformal map (left) and by a map computed with our
method with θ = 1 (right). While the conformal map
minimizes angular distortion, the map on the right also
takes global area deformation into account.

eterizations approximate mathematically well studied
continuous conformal maps, i.e. maps that perfectly
preserve angles.

Another approach to minimize angular distortion is
proposed by Sheffer and de Sturler[24]. They define
a non-linear energy in terms of the corner angles of
the mesh in texture space. Lévy et al.[17] formu-
late the discrete conformality problem as an uncon-
strained quadratic minimization problem and prove
the uniqueness and existence of its solution. Using
a standard numerical conjugate gradient solver they
are able to compute least squares approximations to
continuous conformal maps very efficiently without re-
quiring fixed boundary texture coordinates. However,
in seldom cases triangle flips may occur.

In addition, some methods exists which compute pa-
rameterizations over a non planar domain. Haker et
al.[9] compute conformal maps from a spherical do-
main onto a three dimensional surface. In Lee et al.[16]
a mesh simplification [10] is used to parameterize a sur-
face over a base mesh. A similar approach is taken by
Khodakovsky et al.[14] but with emphasis on globally
smooth derivatives.

Besides angle preserving methods, only a few ap-
proaches explicitly optimize global area or global
length distortion: Maillot et al.[18] minimize an edge
length distortion, but cannot guarantee the absence
of face flips. The authors also propose an area pre-
serving energy and combine both energies in a convex
combination. Sander et al.[22] minimize the average
or maximal singular value of the Jacobian to prevent
undersampling of the surface. However, since they
only penalize undersampling, oversampling of a trian-
gle may nevertheless occur. To optimize for a uniform
sampling Sorkine et al.[26] minimize the maximum of
the maximal singular value and the inverse of the min-
imal singular value, which penalizes both under- and
oversampling. While they obtain impressive results,
their functional is not differentiable and thus not suit-
able for fast non-linear minimization techniques as the
conjugate gradient method for example.

Iterative smoothing of an overlay grid is proposed by
Sheffer and de Sturler[25] as a post-processing step for
angle preserving parameterization algorithms. How-
ever, it is not clear what impact the post-processing
has on the angle preservation.

1.2 Contribution

In this paper, we propose a metric energy that simul-
taneously measures angular and global area deforma-
tions imposed by a parameterization. On surfaces with
non zero Gaussian curvature, the unavoidable defor-
mation of angles and areas is traded off by the energy
in an user-controlled way. Furthermore, we show how



this functional can be used to optimize parameteriza-
tions for a uniform surface sampling.

It is designed to prevent face flips during optimization
and does not require fixed boundary texture coordi-
nates. Furthermore it is invariant under rotation and
translation of the domain. Although the derived en-
ergy is non-linear, it is differentiable and well suited for
a hierarchical minimization as proposed by Hormann
et al.[13]. We show how angle and global area opti-
mized parameterizations can be computed efficiently
with guaranteed convergence using non-linear conju-
gate gradient methods.

Usually models are cut into charts before being pa-
rameterized. In the present paper we do not tackle
this problem, but our method can be combined with
any charting and seaming algorithm available like the
ones introduced in [23, 17, 22].

Besides face flips the bijectivity of the parameteriza-
tion can also be violated if the texture mesh intersects
itself. Although the method proposed here does not
prevent these self intersections, they occur only in sel-
dom cases and can be handled in a post processing
step as proposed in [24].

2. ISOMETRIC DISTORTION

2.1 General Setup and Notation

Given an orientable 2-manifold surface patch S ⊂ Rk

a parameterization is defined as a homeomorphism

φ : Ω ⊂ R2 → S

(u, v) 7→ φ(u, v)

from the parameter space Ω into S. In the following
we consider the problem of finding a parameterization
for a set S that has a triangulation

M′ = {[1 . . . n], T , (pi)i=1...n}

where [1 . . . n] denotes the vertices, T ⊂ [1 . . . n]3 rep-
resents triangles and pi is the location of vertex i in
S. Furthermore, we require the inverse parameteriza-
tion ψ := φ−1 to be linear within the triangles of M′.
Such a mapping ψ is uniquely determined by its values
((ui, vi))i=1...n := (ψ(pi))i=1...n on the mesh vertices
and

M = {[1 . . . n], T , ((ui, vi))i=1...n}
is a parameter domain triangulation for the image
ψ(S). The inverse parameterization ψ maps vertices
and faces of M′ onto vertices and faces of M respec-
tively. In the following ∆M′((l,m, n)) with (l,m, n) ∈
T denotes the triangle (pl, pm, pn) in S. Analogously,
∆M(T ) will be used to denote triangles in Ω.

Since a homeomorphism respects the topology and as
we assume a planar domain Ω ⊂ R2 the surface patch
is required to have genus zero.

2.2 Measuring Distortion

Given a differentiable parameterization

φ : Ω ⊂ R2 → S ⊂ Rk

the first fundamental form Iφ, which captures the met-
ric structure of S, is defined as

Iφ = ∇tφ · ∇φ =

(
a b
b c

)

with a =

wwww∂φ

∂u

wwww2

, b =

〈
∂φ

∂u
,
∂φ

∂v

〉
and c =

wwww∂φ

∂v

wwww2

.

Since Iφ is a symmetric positive definite 2x2 matrix in
every ω ∈ Ω it induces a scalar product on R2 which
describes the lengths and angles of vectors in R2 after
being mapped by Iφ.

In the following we briefly review an angle preserving
condition in terms of Iφ and formulate a similar con-
dition for global area preservation. In section 2.5 an
energy functional E on the space of valid parameteri-
zations is proposed that quantifies both angle and area
deformation.

2.3 Conformal Maps

A result dating back to 1851 known as the Rie-
mann mapping theorem guarantees for surface patches
homeomorphic to a disk the existence of a confor-
mal differentiable parameterization with continuous
derivatives. A parameterization is said to be confor-
mal if for every ω ∈ Ω

Iφ(ω) = λ(ω) · I (1)

where I denotes the 2x2 identity matrix.

In other words the derivatives of the iso-u and iso-
v curves passing through φ(ω) are orthogonal and of
the same magnitude. Thus conformal mappings pre-
serve the angles. Denoting the maximal and minimal
eigenvalue of Iφ by λmax and λmin respectively, the
conformality can equivalently be expressed as

λmax

λmin
= 1

Since 0 < λmin ≤ λmax, one is the minimal value of
the ratio of the eigenvalues and we choose to minimize
this ratio to optimize angular distortion.

2.4 Area Distortion

The conformality condition allows the directional
derivatives to be uniformly scaled by a factor λ(ω) that
may vary if we travel from point to point on the sur-
face. If this factor does not equal one, a shape in the



domain appears stretched or shrinked when mapped
onto the surface and its area is distorted.

Since λ(ω) is continuous, around every ω ∈ Ω a suffi-
ciently small neighborhood exists, where the variation
of λ(ω) is arbitrarily small. Thus, area is locally but
not globally preserved by a conformal map. Conformal
maps are therefore well suited for applications where
angle preservation is required, but global area preser-
vation is less important.

If in addition to angles, area is to be preserved glob-
ally, the magnitude of the directional derivatives has
to be fixed leading to the notion of isometry. A pa-
rameterization is said to be isometric if

λ(ω) = 1

for all ω ∈ Ω. Stated differently the first fundamental
form equals the identity matrix in every point.

Isometry is stronger than conformality in the sense
that it requires the tangent vectors to the iso param-
eter curves to be orthogonal and have unit length in
every point of the surface. An isometric parameter-
ization preserves angles and area globally. Unfortu-
nately, isometric parameterizations exist only for sur-
faces with zero Gaussian curvature. In the general
case of non zero Gaussian curvature, angle and area
preservation have to be traded off.

To find the area deformation imposed by a map φ,
we consider a sufficiently small axis aligned square in
Ω of area A. The image of this square is a trapezoid
spanned between the directional derivatives in u and v
whose area is given by A·

√
det Iφ and thus φ preserves

area if and only if √
det Iφ = 1

2.5 A Combined Energy

To enforce the area preservation condition proposed
above, we choose f(x) = x + 1

x
as objective function,

since it is convex and attains its minimum in one. Fur-
thermore it grows to infinity for both x→∞ or x→ 0.
In the case of the area deformation energy

Earea(ω) := f(
√

det Iφ(ω)) =
√

det Iφ(ω)+
1√

det Iφ(ω)

which is obtained by substituting
√

det Iφ(ω) for x,
this property ensures that the orientation of all faces is
preserved during the minimization and thus face flips
cannot occur.

Using the same objective function for the angle defor-
mation yields the conformal energy

Eangle(ω) := f(

√
λmax

λmin
) =

√
λmax

λmin
+

√
λmin

λmax

that was proposed by Hormann in [11] and which is
nothing but the MIPS energy that was used in [12]
to compute angle preserving maps. The additional
square root is used because the eigenvalues measure
scale squared instead of scale.

Although a minimization of the area deformation en-
ergy alone is possible in theory, it causes severe numer-
ical problems. The reason for this lies in the invariance
of Earea under shears: Since a shear does not change
the area of a triangle, during the optimization of Earea

triangles may be arbitrarily sheared. Unfortunately
such an extremely sheared triangle causes numerical
problems in the minimization algorithm. We have thus
decided to choose a combined energy as follows:

Ecombined(ω) := Eangle(ω) · (Earea(ω))θ

where the parameter θ varies between 0 and ∞ and
controls the relative importance of area and angle
preservation. Our algorithm was able to minimize
the combined energy function at least for values of
θ < 2. However, for higher values of θ numerical prob-
lems prevented the minimization of the energy in some
cases. These problems are due to very tall and narrow
texture triangles caused by shearing. Minimizing the
energy on such triangles has a bad condition.

For the special choice of θ = 1, the combined energy
becomes the simple product

Eangle(ω) ·Earea(ω) = f(

√
λmax

λmin
) · f(

√
det Iφ(ω))

= f(λmax) + f(λmin)

where the fact det Iφ = λmin · λmax was used in the
second equation. As the eigenvalues λmax and λmin

measure the greatest and the smallest stretch respec-
tively that the parameterization φ imposes on a vector
of unit length, the energy obtained for θ = 1 enforces
an uniform sampling of the surface, and - similar to
the energy proposed by Sorkine et al. in [26] - penal-
izes oversampling (λmin < 1) as well as undersampling
(λmax > 1).

A parameterization φ can now be assigned a combined
area and angle distortion by integrating over the sur-
face patch S

E(φ) :=

∫
S

Ecombined(φ−1(p)) dp

2.6 Discretization

For the special case of a piecewise linear parameter-
ization over a triangulation, ∇φ and Iφ are constant
within each triangle of M which in turn causes the
energies Earea(ω), Eangle(ω) and Ecombined(ω) to be
constant within each triangle.
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Figure 2: The restriction of φ to a triangle ∆M(T )

As shown by Hormann in [11] the MIPS energy of the
linear map φ|∆M(T ) can be written using the notation
from figure 2 as

Eangle(T ) =
cotα|a|2 + cotβ|b|2 + cot γ|c|2

2 area(∆M(T ))

Furthermore we have for the linear map φ|∆M(T )√
det Iφ|∆M(T )

= |det∇φ|∆M(T )| =
area(∆M′(T ))

area(∆M(T ))

and therefore the area distortion measure within a tri-
angle is given by

Earea(T ) =
area(∆M′(T ))

area(∆M(T ))
+

area(∆M(T ))

area(∆M′(T ))

Finally the integral becomes the finite sum

E(φ) =
∑
T∈T

ET · area(∆M′(T )) (2)

where
ET := Eangle(T ) ·Earea(T )θ

only depends on the coordinates and texture coordi-
nates of the three vertices in T.

2.7 Properties

The distortion measure E derived in the previous sec-
tion has some important properties that should be
briefly mentioned:

1. Invariance under Rotation and Translation
Since E is defined in terms of Iφ which is in turn
defined in terms of ∇φ, it is invariant under the
translation φ(ω + t) of the domain by a constant
vector t. If the domain is transformed by some or-
thogonal transformation R, the first fundamental
form becomes

Iφ◦R = Rt∇tφ∇φR,

i.e. its eigenvalues and determinant do not
change. Depending only on the eigenvalues and
the determinant of the first fundamental form, E
is thus invariant under such a transformation R.
However, the distortion measure is not invariant
under uniform scalings.

2. Differentiability The partial derivatives
∂E

∂ui

and
∂E

∂vi
exist for any valid piecewise linear pa-

rameterization, allowing for an efficient mini-
mization of the functional in (ui, vi).

3. Infinite Error for Degenerate Mappings For
a valid parameterization, the mesh in the domain
M contains no triangles degenerated to a point
or a line and all faces are consistently oriented. If
a triangle in M tends to degenerate, the parame-
terization has to stretch an infinitesimal small tri-
angle onto the non-degenerated surface triangle.
As λmax measures the greatest stretch imposed
on a vector of unit length it tends to infinity as a
triangle tends to degenerate. This in turn causes
both the MIPS energy and the area distortion
energy to attain arbitrary high values.

Having this property, we can - following Sander
et al.[22] - continue the error functor on degen-
erated configurations ((ui, vi))i=1...n by assigning
them an infinitely high error. The minimization
then automatically avoids such degenerated con-
figurations, thus a consistent face orientation can
be guaranteed. The property described above en-
sures that the continuation on degenerated con-
figuration is continuous, which is essential for the
numerical minimization.

3. MINIMIZING ISOMETRIC
DISTORTION

3.1 Hierarchical Optimization

To minimize the non-linear isometric energy described
in the previous section we use the hierarchical param-
eterization algorithm proposed by Hormann et al.[13].
A hierarchical approach is reasonable since it speeds
up the computation and helps to circumvent local min-
ima of the energy functional. Since in contrast to other
energies boundary vertices do not need to be fixed, the
proposed energy is well suited for a hierarchical opti-
mization.

The method proposed by Hormann et al. computes a
progressive mesh sequence [10] of M, grouping inde-
pendent splits in sets. These sets define a natural hi-
erarchy for the optimization, with each set containing
approximately 25% of the vertices of the subsequent
stage. For further details on the generation of the
split sets and the hierarchy please refer to Hormann
et al.[13].

The actual optimization of the energy functional E on
each level of the hierarchy uses a relaxation method,
which is further described in the next section. Algo-
rithm 1 shows a short overview over the basic steps of
the algorithm.



Listing 1: Basic steps of the optimization algorithm

// build sets of independent splits
sets = buildSets ();

// relax base mesh
mesh = baseMesh;
while(!convergence){

relax(mesh);
}

for(int i=0;i<sets. size (); i++){
// apply splits of the next set to the mesh
mesh.applyToMesh(sets[i]);

// find save texcoords for new vertices
generateSaveTexcoords();

// relax mesh
while(!convergence){

relax(mesh);
}

}

3.2 Vertex Relaxation

The texture coordinates (ui, vi) of vertex i affect only
those ET for which i is incident with T . More specifi-
cally only the partial sum

Ei :=
∑

T∈1-ring(i)

ET

of E is influenced by (ui, vi).

Given an initial configuration ((ui, vi))i=1...n, the ver-
tex relaxation consists of two steps: First all vertices
are ordered by the error Ei that they contribute to the
overall error. Then for each vertex i Ei is optimized
in (ui, vi) while keeping all other texture coordinates
fixed.

Since the functional provides partial derivatives, the
Polak Ribiere method [20] — a non-linear conjugate
gradient optimizer — was used to optimize Ei. This
method includes a line search as a subtask, which was
restricted to search for optimal vertex texture coor-
dinates (ui, vi) only within the kernel of the vertex’
1-ring. The kernel of a polygon with a counterclock-
wise directed boundary is the intersection of all the
half-planes lying to the left of the polygon’s edges (see
[16]). Since the faces of a meshM in the plane are con-
sistently oriented if and only if every vertex lies within
the kernel of its 1-ring, the relaxation does not cause
any face flips, provided that the initial configuration
is free of flips.

Minimizing the partial sum Ei of E in each step, the
relaxation decreases E monotonously and as the en-

ergy has a lower bound of zero, E is guaranteed to
converge, ensuring that the ’while’ loops in algorithm
1 terminate eventually.

3.3 Initial Vertex Placement

Since the surface patch is assumed to have genus zero,
the simplification produces a base mesh that consists
only of a single triangle. The texture coordinates of its
vertices are initialized to a congruent triangle in the
plane centered in the origin.

Whenever a set of splits is applied to the mesh during
the hierarchical optimization, texture coordinates for
the newly inserted vertices have to be found. In [13]
barycentric coordinates obtained by exponential map-
ping are stored for each vertex during the simplifica-
tion of the mesh. After a split these stored coordinates
are used to assign a texture coordinate to the newly
inserted vertex. However, in some cases the texture co-
ordinate obtained this way is invalid, i.e. some of the
triangles in the 1-ring are flipped. In order to ensure a
valid configuration for the subsequent relaxation step,
we take a different approach here.

To ensure a flipless configuration, the texture coordi-
nate of the new vertex has to be inside the kernel of
its 1-ring. One possible choice is certainly to use the
center of the kernel as an initial texture coordinate for
the new vertex. However, this choice requires the ex-
plicit computation of the 1-ring kernel. In contrast,
the intersection of a polygon kernel with a line does
not require the computation of the kernel. It is simply
the intersection of the line with the halfplanes defined
by the edges of the polygon.

To find a valid position for the new vertex, we re-
peatedly cast a ray from the texture coordinate of the
vertex that is to be split in a random direction and
intersect it with the 1-ring kernel. As soon as a non-
empty intersection is found we choose the center of
this intersection interval as an initial texture coordi-
nate for the new vertex. Usually one or two kernel-ray
intersections suffice to position the new vertex.

4. RESULTS

We applied our method to various models which are
listed in table 1 together with the isometric distortion
as measured by our energy. In addition, the L2 and
L∞ distortions that were used in Sander et al.[22] are
listed. The timings were taken on an AMD Duron
800MHz with 256MB memory.

Our initial motivation was to compute parameteriza-
tions that not only preserve angles but also minimize
global area deformations. The results shown in Fig-
ure 4 were obtained for an angle/area weighting of
θ = 1. All of these surfaces have large areas of non zero



Model Vertices Error L2 L∞ Stages Time

MaxPlanck 25445 9.35 1.45 2.92 41 308.90
Venus 29322 4.55 1.21 1.77 41 300.46
Cat 4539 4.65 1.36 3.73 33 47.65
Horsehead 2893 4.85 1.36 3.53 32 33.79
Ear 2150 2.21 1.03 1.56 30 23.03

Table 1: Models and Statistics: In addition to our own energy, values of the L2 and L∞ energies are listed. Stages
corresponds to the number of independent split sets. Errors were normalized to the surface area. For all models we chose
θ = 1.

Figure 3: Parameterization obtained for a dented S-
shaped model with non-convex boundary and the cor-
responding mesh in texture space

Gaussian curvature but only small boundary loops and
thus can only be parameterized with high angle or
area distortions. As a reference conformal maps were
computed (right column of figure 4) using the LSCM
method proposed in Lévy et al.[17]. The comparison
shows that the maps obtained by our method trade
part of the angle preservation to improve global area
preservation as expected.

In Figure 5 the impact of the parameter θ on the
parameterization is shown. As expected intuitively,
a high value favors global area preservation, while
smaller values emphasize the preservation of angles.
For θ = 0 the resulting map is similar to those ob-
tained by the LSCM [17] or MIPS [12] method.

This observation can also be verified in the distortion
histograms for the horse head dataset shown in fig-
ure 6. As in Lévy et al.[17] the area distortions were
computed in each triangle as the ratio of texture area
to model area. The angle histogram shows the distri-
bution of the angles between the u and v directional
derivatives in each triangle. For values of θ close to
zero, the angle histogram shows a distinct peak, while
the deviation in the area histogram is much higher.
For higher values of θ this relation is reversed.

As mentioned above, the proposed energy does not
require boundary vertices to be fixed. Thus, for any
value of θ the minimization can also find an optimal
boundary forM. Figure 3 shows the parameterization
obtained for a S-shaped model and the corresponding
triangulation M in texture space.

In practice models are usually preprocessed by a chart
or seam cutting algorithm before a parameterizing al-
gorithm is applied. These cutting algorithms gener-
ate one or more charts with lower Gaussian curva-
ture and larger boundaries which facilitate parame-
terization. But since the resulting parameterization
heavily depends on the quality of the cutting method
used, the parameterizations presented in this paper
were obtained for uncut models. Only minor modifi-
cations were made to ensure a disk like topology. How-
ever, the preprocessing was only skipped for means of
demonstration and the results certainly improve a lot
by using a charting or seaming algorithm like those
proposed in Sheffer and Hart[23] or Lévy et al.[17].



Figure 4: These models are parameterized as they appear, without charting or seaming. The column on the left shows
the results obtained with our method for θ = 1.0. On the right a conformal mapping is shown.



Figure 5: The horse head model parameterized using different angle/area preservation tradeoffs. From left to right, the
values θ = 0.3, θ = 1.0, θ = 3.0

5. CONCLUSION

In this paper we have proposed an energy functional
that measures an isometric distortion of a parameteri-
zation. On surfaces for which no isometric parameter-
ization exists, the functional weights global area and
angle deformation in an intuitive and user-controlled
way. We also showed, how the functional can be used
to optimize for an uniform surface sampling.

Besides basic desirable properties, the functional can
be continuously continued on degenerated parameteri-
zations and does not depend on fixed boundary vertex
texture coordinates which makes it possible to com-
pute parameterizations without face flips and with op-
timal boundaries. Using conjugate gradient methods
and hierarchical optimization we showed how the func-
tional can be minimized efficiently.

In future works we would like to experiment with dif-
ferent edge collapse schedules in the generation of the
splits sets during hierarchical optimization, to further
speed up the computation of parameterizations. Fur-
thermore we would like to address the numerical prob-
lems for higher values of θ.
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Figure 6: Per triangle distortions in area and angle for the horse head dataset for (from top to bottom) θ = 0.3, θ = 1.0
and θ = 3.0, as shown in figure 5.
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