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Abstract 

The idea of internal mass terms introduced in ref. [l], is shown not to be an appropriate 

hypothesis when it is placed in connection with the components of the generalized (matrix) 

vierbeins being proportional to the Riemannian (gravitational) vierbeins. It would result 

in an undesirable canceling of the Electromagnetic and the Yang-Mills components in the 

generalized metric. Another hypothesis is introduced where the wave function 11, is Taylor 

expanded in a small parameter p. 
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I. Introduction. 

In the second part of the work entitled: “The Dirac Equation in a non-Fliemannian manifold”, 

ref. [I], a generalized Dirac equation was obtained as an application of the geometrical prop- 

erties of a tangent space local to a non-Riemannian manifold of the Einstein-Schroedinger 

(ES) nonsymmetric theory [2]. This generalized Dirac equation describes a spin l/2 particle 

of mass m, with a wave function 4(z), placed in the above non-Kemannian manifold, and 

under the influence of an (n-dimensional) Yang-Mills field [4]. This is written as: 

r+,*-,*=o 3 

&it; +=(I , P P (1.1) 

where, 

V,=O,,+A,+C,+r, , 

Vf,=a,+A,-C,,-r, . (1.2) 

These arc the (covariant) differential operators acting on the wave function +, where AN, C,,, 

rr are the connections for the Dirac, complex and Yang-Mills - internal spaces, respectively. 

In (1.1) the generalized Dirac -y-matrices arc defined as: 

rp = E:7” , j’= Etz7” , 

where the generalized (matrix) vierbeins can be expanded in terms of the internal axes as: 

E:(Z) = kg070 + k,‘iri , 

Et:(r) = kimono + k*fiTi , 

i = 1, . . . ) n* - 1 ) 

0.4) 

where n is the dimension of the symmetry group, here SU(n) (as in the Yang-Mills theory). 

With the idea of making a possible interpretation of the theory, two suppositions were 

then made. One of them is that the mass term ~1 in the Dirac equation also be a matrix-like 

term: 

P = fwn + PiC . (1.5) 
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This has the effect splitting the Dirac equation into ma parts, one corresponding to each of 

the Dirac-space axes. 

The second supposition determines the amplitude of each of the (split) Dirac equations. 

This is done by the following definitions’: 

k:, = k:,, + +& , k:,, = PM& 

PO = POR + %3I , par = Ph3 
(W 

and 

kii = i(pX)‘n$ gi = i(p~)lmi 

I = 1, . ...72 - 1 

(1.7) 

In this case p is considered a parameter, and X is a constant with the (minimal) value of l/p, 

A - & = 2.58 x 1032n-’ , 

where the maximal value for 1 p 1 is 1 p I=[ + I= 3.8 x 10e3’n, in the normalization used 

in ref. [3]. 

Therefore, when the above quantities are placed in the Dirac equation (l.l), we obtain: 

[k$,Rr’=V& - pc&]ro + ipX[n:oy=V,$ - m&o + i(pA)2[n:;~“V,$ - m;$]~i = 0 . (1.9) 

In the limit of the parameter p -+ 0, we would get the standard Dirac equation in the 

presence of gravitation, electromagnetism, and Yang-Mills fields. 

Suppose now that: 

k&,, = nio = nz; - hf: , 

and 

Tn.0 = 7ni G ,lLOR ) 

for each i, and where hg and hoR are taken as the vierbeins and mass term of General 

Relativity. This situation will produce projections of the Dirac equation on the internal space 

axes proportional to the one obtained in GR. The intensity, or amplitude, of this projection 

will be determined by the parameter p. However, it is easy to show that this special choice 

cancels the antisymmetrical parts of the generalized metric of the theory, which means the 

*With these definitions we split the generalized Dirac equation in d + 1 parts 
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electromagnetic and Yang-Mills terms of the matrix metric would be eliminated. This is not 

desirable, as it would imply the canceling of the related terms in the Lagrangian density 

used for the Action principle. 

II. An interpretation of the Dirac equation through 

the expansion of +. 

Let us propose now, that the mass term be maintained on the unitary axis (r,,), and that 

the wave function be expanded in powers of the parameter p, which is supposed to be small. 

The expansion of 4 can be written as: 

442) = @o(z) + p/l(~) + ;P%(=) + ... (2.1) 

Also, the Dirac equation (1.1) can be expanded in terms of its components on the internal 

axis as: 

rok:&‘V,4,1+ d&y”Vpll, - TO& + Tik:i+‘,+ = 0 . (2.2) 

NOW placing (2.1) in (2.2), and separating terms in orders of p, we obtain the following 

system of equations: 

1: n(k:mr”V,$ - p$o) = 0 (2.3) 

P: ~o(~n:oYV,+o + k:of,Ry”V,+l - ~1111) = 0 (2.4) 

P ’ : ~in&YV,?lro + ~o(~~$~“V,$JI + ~kL~YV~#tl- f&l) = 0 (2.5) 

3. P . . ..and 80 on... 

Therefore, in the limit p -+ 0 we would obtain the Dirac equation as in General Relativity. 

The advantage of this proposition in comparison to the former splitting of the mass 

term, is that the zero-order wave function $0 corresponds exactly to the GR-Dirac equation 

in presence of the Electromagnetism and Yang-Mills fields, when we take kfoR as being 

equivalent to the vierbeins of GR. The other equations should be interpreted as being the 

result of a more exact Dirac equation, that is corrections to the Dirac equation obtained in 

a Gauge theory local to a curved Riemsnnian space-time. 
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