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Abstract 
In this paper we investigate the accuracy of operator splitting schemes when 
applied to operators that can be written as the sum of two operators each with 
its own characteristic time scale. When these time scales differ significantly it 
is shown that operator-splitting techniques can give much better accuracy than 
fully implicit methods. In order to  get this benefit out of operator splitting 
one must integrate the fast operator more accurately than the slow operator. 
Both an analysis and numerical experiments are given to justify this statement. 
The analysis is used to construct a second order operator splitting scheme that 
works for arbitrary nonlinear equations. 

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin 
Company, for the United States Department of Energy under Contract DEAC04-94AL85000. 
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1 Introduction 
There are several different reasons for using operator-splitting. The technique 
was first used in order to simplify the linear algebra involved in integrating multi- 
dimensional partial differential equations implicitly [l]. By splitting the multi- 
dimensional operator into a sum of one dimensional operators, and successively 
integrating these operators each time step, one obtains the stability of a fully 
implicit method while only doing the linear algebra on one dimensional systems. 

More recently it has become standard to use operator-splitting on problems 
involving chemical reactions and diffusion (or some other transport mechanism 
). In these problems the ”fast ” time scale for the chemistry, t f ,  is typically 
much shorter than the ’’slow” time scale for the transport, t,. In this paper we 
will refer to the ratio of these two scales by 

When e is small, the matrices that arise by integrating the equations fully im- 
plicitly are often very poorly conditioned, causing problems for standard matrix 
iterative solvers. Operator splitting overcomes this problem since if one splits 
the chemistry from the diffusion (or other transport mechanism) the resulting 
matrices are better conditioned. Also, as pointed out in [2] , by using operator- 
splitting one can use ones favorite technique for each individual operator. This 
can simplify the building and modifying of a large code. 

It should also be pointed out that when one ignores the transport mecha- 
nisms, there is no coupling between the temperature and species concentrations 
at different grid cells. This means that the equations governing the chemistry 
can be integrated much quicker than the fully coupled equations involving both 
chemistry and transport. 

There appears to be confusion in the literature as to  how operator splitting 
affects the accuracy of the solutions. The situation is especially unclear when 
E is small. In this case the operator with the fast time scale is frequently in- 
tegrated with much smaller time steps than the operator with the slow time 
scale. Some authors imply that if one could efficiently invert the linear system 
for the two operators together , then there would be no advantage to doing 
operator splitting. However, other authors imply (incorrectly) that one can ob- 
tain meaningful results by integrating each operator on its own time scale. If 
the fast operator is easy to integrate compared to  the full system of equations, 
this would clearly be beneficial. Unfortunatley, as pointed out in [2] , in order 
to obtain meaningful results one must integrate the slow operator using a time 
step small compared to  t f .  

Given this restriction on the slow time step, it might appear that there is 
no advantage to integrating the fast operator more accurately than the slow 
operator. In this case one would be as well off integrating the equations fully 
implicitly (assuming one could invert the fully coupled equations as quickly as 

C 
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the split equations). We will show that there is in fact an advantage gained in 
accuracy by using operator splitting. This results from the fact that if we were 
to use a first order method to integrate the equations fully implicily out to  a 
time on the order oft,, then we would need to take a time step that is small 
compared to Etf. We will show that we can obtain accurate solutions using 
operator splitting when we integrate the fast operator using a time step that is 
small compared to ~ t f ,  but using a time step for the slow operator that need 
only be small compared to t f .  As E approaches zero, one can obtain solutions 
much more efficiently using operator splitting than by using a fully implicit 
technique. It should be emphasized that this advantage of operator splitting 
remains even if one could invert the fully coupled equations as efficiently as the 
split operators. 

Most of the theoretical analysis of operator-splitting is based on the as- 
sumption that the same time step is taken for both operators. However, for 
chemically reacting flow problems one often takes a much shorter time step for 
the chemistry than for the diffusion. In this paper we present an analysis based 
on the assumption that the fast operator is integrated exactly. This is clearly 
not the case in practice, but the fast operator is often integrated with sufficiently 
high accuracy compared to the slow operator that it is a reasonable assumption. 
The analysis shows that when the fast time scale is integrated exactly one can 
achieve better accuracy using operator-splitting than a fully implicit technique. 
Here we are comparing the implicit method when it uses the same time step as 
is used for the slow operator in the operator-splitting scheme. Note that these 
benefits of operator-splitting go away if the two time scales do not differ greatly, 
and if one does not integrate the fast time scale with more accuracy than the 
slow time scale. 

The analysis in this paper is for arbitrary linear systems that can be split into 
a slow and a fast operator. We make a change of variable using the fundamental 
matrix solution to the fast operator. Substituting this new variable into the 
differential equation we end up with a modified differential equation. We show 
that applying a backwards Euler scheme to this modified equation is identical 
to using operator-splitting on the original equation, but with the fast operator- 
integrated exactly. This way of deriving operator splitting allows us to see 
why one obtains better accuracy using operator-splitting than integrating the 
equations fully implicitly. It also suggests how to obtain higher order splitting 
schemes. By applying the trapezoidal rule to the modified equation one comes 
up with a second order splitting scheme that is similar to the method presented 
in [3]. The method presented here requires less computation since it involves 
only one implicit solve each time step. 

It is shown both theoretically and by numerical experiments that the second 
order splitting method offers significant improvements over a fully implicit sec- 
ond order method as e + 0. However, it should be pointed out that in order to 
get significant benefits out of this technique one must integrate the equations 
out to  a time that is on the order of $. This shows that the benefits on accuracy 
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for a second order splitting method are not as significant as they are for a first 
order method. 

The technique of consistant operator splitting has been proposed [4] in order 
to improve the efficiency of the standard operator splitting technique as one 
approaches a steady state. It is interesting to see whether this technique has the 
same improvement in accuracy over the fully implict method that the standard 
operator splitting technique has as E + 0. Numerical experiments show that the 
method of consistant operator splitting also does well as E + 0. The author does 
not have a convincing argument to show that this behavior should be expected. 

We present a second order technique that results from a very minor mod- 
ification of the first order splitting technique. Both the theory and numerical 
experiments confirm that this technique is second order, however, it is found 
that this method does not have any advantages over the fully implicit method 
a s E - k O .  

We now present a brief summary of the paper. In section 2 we derive the 
modified equation and show how the standard form for operator splitting can 
be derived by applying a backwards Euler method to the modified equation. In 
section 3) we show how higher order operator splitting methods can be derived 
for linear systems by applying higher order Adams methods to  the modified 
equation. We specifically apply the trapezoidal rule to the modified equation 
to derive a second order operator splitting method, and explain how it can 
easily be generalized to  nonlinear problems. In section 4) we summarize the 
methods that are tested numerically, in section 5 )  we present the results for 
several linear test problems, and in section 6 )  we present results obtained by 
applying the different techniques to the nonlinear test problem known as the 
Brusselator [6].  In section 7) we summarize our results. 

2 The Modified Equation 
Suppose we have an equation of the form 

Here g,& and f ,  are n dimensional vectors, and A0 and AI are n x n ma- 
trices. The equations of interest frequently arise from a spatial discretization of 
a partial differential equation. We will not concern ourselves with the spatial 
discretization errors, but assume that we are interested in finding accurate so- 
lutions to  eqn. (1) The analysis that we are about to present is easier to follow 
if one ignores the inhomogeneous terms and one assumes that the matrices are 
not dependent on time. We will present the general analysis, but suggest that 
the reader keep in mind the simpler analysis that arises when we ignore the 
inhomogeneous terms and the time dependence of the matrices. 

Let &(t, t o )  be the fundamental matrix solution to the differential equation 
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when E = 0. That is, &(t, t o )  satisfies 

( 2 4  

Q ( t o , t o )  = 1. (2b) 

d 
zQ(t, t o )  = Ao(t)Q(t, t o ) ,  

In what follows we will make use of the semi-group property of the funda- 
mental matrix 

Q(t,  t o )  = &(t, a)Q(a, t o ) .  (3) 
We now make a change of variable from ~ ( t )  to  the variable Z ( t )  that is 

defined through the equation 

:(t) = Q(t,to) (d t )  + 1; Q-'( . , to)&(3d~) 

- ( 1: ) 

(4) 

This substitution is motivated by the fact that when E = 0 x ( t )  is a solution 

If :(t) is to satisfy eqn. (l), then z(t) must satisfy 
to the equations if we put g ( t )  = constant. 

2 = ~Q-'(t,to)Ai(t)Q(t,t~) ~ ( t )  + Q-l(~,to)&(r)dr +~Q-l ( t , to ) . f~  

( 5 )  
Assuming that we can integrate the fast equations exactly, we can determine 

the solution :(t) by integrating eqn. (5) to determine ~ ( t )  and then using (4) to 
find ~ ( t ) .  If we use the backwards Euler method to integrate eqn. ( 5 )  we find 

- ~ + l =  - Zn + A ~ E Q - ~  to) (Al (~+~) :n+l  + f, ( L + ~ ) )  (sa> 

where 
ta+l = tn  + At, (6b) 

(64  

and, 

- xn+l = Q(tn+l, t o )  ( p+l + lot*+1 &--lk-, to&(r)dr)  

If we multiply both sides of eqn. (sa) by &(tn+l, t o )  we find that 

Q(L+i, t o )  (Z" - z") = ~AtAi(tn+i):~+~ + €fl(tn+i) 
A direct application of eqn. (4) shows that in terms of the original variable 

- x we have 

7 



where 

Now using eqn. (3) we get 

- p + 1 / 2  = &(tn+lttn) (. + l;+' ~-1(T7tn)&(T)d7) 

Note that the vector gn+1/2 is obtained by integrating the equation 

- j: = A0 ( t k  + & ( t )  
from t ,  to tn+l with an initial condition of g(tn) = gn. 
Note that in order to arrive at the answer gn+' using the modified equation 

we carry out exactly the procedure that is used in operator-splitting. We first 
integrate the fast equations from t ,  to tn+l with an initial value of gn. This 
gives us our intermediate solution gn+f .  Here we have assumed that we have 
integrated these equations exactly. We now integrate the slow equations out 
one time step using an initial value of gn+t. 

Note that if we integrate the equations (1) using a fully implicit backwards 
Euler method out to a time T = 9, then in order to have an absolute error of 
less than 6 we must choose the time step small enough so that 

Tl At- < K16 
E 

Here K1 is a constant that is nearly independent of At and E .  

If we use the backwards Euler method to  integrate the equations (5)  out to 
the same time T ,  then in order to achieve an absolute error of less than 6 we 
must choose At so that 

Tl Ate- < K26 
E 

When integrating the original equation (1) out to a time that is O($)  it 
is necessary to have Ate be small . When integrating the equation ( 5 )  out to 
the same time one can achieve the same absolute error with the less stringent 
requirement of making At be small. Once one has obtained the solution z from 
integrating the modified equation, one can then obtain the solution g using 
eqn. (4). Since we have shown that using operator-splitting (integrating the 
fast operator exactly) is equivalent to applying the backwards Euler method to 
(5) it is clear that one obtains better accuracy using operator-splitting than by 
integrating the equations fully implicitly. The bigger the difference in the time 
scales , the more efficient it becomes to  use operator splitting. It should be 
pointed out that in order to accurately integrate the modified equations out to 
a time that is on the order of the slow time scale it is still necessary to  take 
time steps that are small compared to the fast time scale. 
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3 Higher Order Splitting Methods 
In this section we obtain higher order operator splitting methods by applying 
higher order Adams methods to  eqn. (5) .  These methods are valid for any linear 
problem, but it is not clear how to generalize them to an arbitrary nonlinear 
problem. This difficulty arises since the schemes distinguish between the homo- 
geneous and non-homogeneous terms in the equations. For a nonlinear problem 
it is not clear how to make this distinction. However, for the particular case of 
the trapezoidal rule applied to eqn. ( 5 )  we can write the resulting method in a 
way that can be generalized to nonlinear problems. 

When integrating the equation 

- x = g(z, t )  

the general p-step Adams scheme uses 

P 

- Xn+' = - Xn at f f k g ( g n " ' - k ,  - t n + l - k )  

k=O 

where, 

and f f k  are suitably chosen constants. 

tn+l-k = tn + &(I- I C ) ,  

When we apply an Adams method to eqn. ( 5 )  we get 

where 

If we now write this in terms of we get 

r k  = Q(tn+l, t o ) Q - ' ( t n + l - k ,  t o )  = Q(L, t n + l - k )  (9c) 
We have used the semi-group property in eqn. (3) in order to arrive at this 

result. 

9 



Note that the vector gnf1I2 is obtained by integrating the equation 

- 2 = Ao(t)a: + fo(t) 

from t ,  to tn+l with an initial condition of :(tn) = :". 

equation 

from t,+l-k to tn+l with an initial condition of :(t,+l-k) = g. 

Also, note that multiplying a vector g by l?k is equivalent to integrating the 

- X = Ao(t): 

It is clear that this scheme is a generalization of operator splitting. 
In general it is not clear how to generalize these methods so they can be 

used on nonlinear problems. In particular, one has to know how to integrate 
the homogeneous part of the fast equations all by themselves. For a nonlinear 
problem it is not clear what is meant by this. 

We now apply the trapezoidal rule to eqn. ( 5 )  and show that in this case the 
method can be straightforwardly generalized to nonlinear problems. We argue 
that the method also keeps its second order accuracy for nonlinear problems. 

When we apply the trapezoidal rule to  eqn. (5) we find that 

This can be rewritten as 

This scheme can be described as follows. 

0 Starting with the vector gn take half of a first order explicit time step 
using the slow operator. This gives us a vector 2. 

0 Using 2 as a starting value, integrate the fast equations from t ,  to tn+l. 
This gives us the vector :*. 

0 Using the vector g* as a starting value take half of a first order implicit 
time step using the slow operator. 
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Note that the regular trapezoidal rule can be considered as taking half a 
time step explicitly followed by half a time step implicitly. This scheme does 
the same thing except it integrates the fast equations in between these two steps. 

The statement of the above algorithm holds whether the equations are linear 
or nonlinear. The second order accuracy should persist for nonlinear problems. 
This follows since if we have a nonlinear system 

d 
d t  - 
--2 = F ( z )  

then we can linearize this system over the interval ( t n ,  tn+l) .  

d 
-x dt-  = E(&") + Ez(gn)g - + O ( ( A t ) 2 )  

We can get a second order scheme by doing a second order integration of 
these linearized equations on each interval. 

It should be noted that the method described in this section is similar to 
the method described by Strang in [3]. In the method described by Strang one 
takes half of a time step using a fully implicit second order method on the slow 
operator, then takes a full time step on the fast operator, and once more takes 
a fully implicit half time step on the slow operator. In the paper by Strang he 
does not discuss fast and slow operators, and he assumes that the same time 
step is taken for both operators. This algorithm generalizes when we integrate 
the chemistry very accurately to the following. 

0 Integrate the slow equations for half a time step using a second order 
implicit scheme such as the trapezoidal rule. This takes our initial vector 
- xn into a new vector 2. 

0 Now integrate the fast equations over a whole time step using 2 as the 
initial value. This gives us a vector g*. 

0 Using g* as an inital value, integrate the slow equations over half a time 
step using a second order fully implicit method. This gives us the final 
answer 

Both the method described by Strang and the method introduced at the 
beginning of this section can be written as 

Zn+l = L1 - ~ t / 2 ~ A t ~ % t f 2 : ~  

Here L i t / 2  and L i t  f 2  are numerical approximations that integrate the slow 
equations forward half a time step; and Mat is a numerical approximation that 
integrates the fast equations forward a full time step. In Strangs method the 
operator and both come from applying a second order implicit method to 
the slow equations. In the method described in this section the operator 

11 



comes from using the first order forward Euler method to  integrate the slow 
equations over half a time step. The operator Lit ,2  comes from using the first 
order backwards Euler formula to integrate the slow equations over half a time 
step. 

Note that if we use a second order implicit method to integrate the equations 
(1) out to a time 9 with an accuracy of 6, then we must choose our time step 
so that 

(At)2 < Kid€. 

If we integrate eqn. (5) out to the same time and require the same accuracy we 
need only require that 

(At)2 < K26 

We see that the second order operator splitting method allows us to take 
a larger time step for the slow operator than when we use the fully implicit 
method. In order to get as good answers out of the implicit method one must 
chosse a times step that is about ,/Z as small as when using the operator splitting 
method. We see that the difference between the second order splitting method 
and the second order implicit method is not as pronounced as for the first order 
methods unless we integrate out to  a time that is on the order of 3. 

4 The Methods to be Tested 
We now describe 7 different codes that we will test in order to illustrate the 
accuracy of operator-splitting methods. When testing these codes we will com- 
pare the results when the time step At is constant and the same for all of the 
codes. In the codes that use a form of operator-splitting the fast equations 
are integrated using a library ordinary differential equation solver with the ab- 
solute error tolerance set to 1.d - 9. When comparing fully implicit methods 
to operator-splitting methods we take the same time step on the fully implicit 
method as we do on the slow time for the operator-splitting method. 

In this paper we are only concerned with the accuracy of operator-splitting 
methods, not in the speed ups in the linear algebra. All of the codes described 
in this section are tested only on one dimensional partial differential equations. 
The linear systems are solved using a banded matrix solver from LINPACK. 
Newtons method is used to solve the nonlinear equations arising in the fully 
implicit methods. 

We will now state the time stepping algorithms for the various schemes. 
When describing these schemes we will assume we are solving the system of 
equations 
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In the description of the following algorithms gn and gn+l are the solutions 

In most of the operator splitting methods we make use of the function 
at the times t ,  and tn+l; and At = tn+l - t,. 

g(t, t^, g) which is given by 

d 
--z = &(&) 

g( i ,  i, g) = g 
dt- 

We now describe the algorithms we have tested. There are two fully implicit 
codes. 

IMP1 This is a fully implicit code that uses the backwards Euler method 
to integrate the system of ordinary differential equations. 

gn+' - gn = At (&(gn+l) + El($+')) 

IMP2 This is a fully implicit scheme that uses the trapezoidal rule. 

1 
- 2  

xn+l - 2 n - - -At (&(E"+') +Fl(zn+l) +&($j +E,(:")) - 

We also test the following three operator splitting methods. 

SPLIT1 This is an operator splitting scheme that uses the backwards 
Euler method to integrate the modified equations in eqn. (5). As already 
pointed out, this scheme is equivalent to applying a first order operator- 
splitting method to the equations (1) with the fast equations integrated 
very accurately. 

where, 

SPLIT2 This is an operator scheme that uses the trapezoidal rule to inte- 
grate the modified equations (5). This is equivalent to applying the second 
order operator splitting scheme described in the last section. This schcme 
has second order accuracy. 

STRANG This code uses the second order operator splitting scheme de- 
scribed in [3] and in the last section. 

Finally, we test a first and a second order consistant operator splitting 
method. 
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0 CONSIST1 This code uses the consistant operator splitting method de- 
scribed in [4] and below. 

where 

- 4(tn) = ." 

0 CONSIST2 This code uses a second order consistant operator splitting 
method described below. 

4(tn+l) xn+1/2 = 
- - 

where 4 is the same function used for the first order consistant splitting 
method. 

It is a straightforward exercise to confirm that the scheme used in CONSIST2 
is second order for the general linear system described in eqn. (1). The second 
order consistant splitting method requires no more work than the first order, 
but the author is not aware of it being described previously in the literature. 

5 Some Linear Test Problems 
In this section we test the codes on several linear reaction diffusion equations. 
The equations are not motivated by any physical system, but are merely used 
to illustrate the how the different methods behave as the reaction and diffusion 
time scales grow apart. 

All of the equations in this section arise from a second order spatial dis- 
cretization of the equation 

dT d2T d 
dt dz2 dt 
- = E -  - T - f ( t ,  2) + g(t ,  2 )  

T ( 0 , t )  = T(l ,  t )  = 0. 

T(2,O) = sin(n2) 
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These equations can be written as 

dT 
- = LOT + ELIT + ~ O ( Z ,  t )  at 

where 

d2T 
L1T(z,t) = - 

d Z 2  

and 
f o k ,  t )  = d t ,  2). 

We obtain a system of ordinary differential equations by dividing up the 
interval [0,1] in N equally spaced intervals and defining the solution Ti(t) at each 
grid point. We end up with a system of equations of the form in eqn. (1) where 
A0 is a diagonal matrix representing the operator LO, AI is a tridiagonal matrix 
approximating the operator L1, and &(t) is a vector obtained by discretizing 
the function f o ( z ,  t )  at the grid points. 

Note that we have included a spatial dependence in the operator LO in order 
to avoid having the operators LO and L1 commute. If the operators commuted 
it would be a poor test problem for operator-splitting methods since in that case 
we rigorously get the same answers whether we integrate the equations together 
or one at a time. 

In each of the test problems we use a time step of 

1 
LSTEP x 10 At = 

for the slow operator. This means that when applying one of the operator 
splitting methods we integrate the fast equations for an interval of a t ,  and then 
we correct our solution using the slow operator. When using a fully implicit 
method we use a time step of At. We integrate all of the equations from t = 0 
to t = E .  This means that as we decrease E we are always integrating the 
equations out to a time that is the same when scaled according to the slow time 
scale t,. 

In order to determine the error in our answers we first integrate the equations 
using the second order operator splitting code SPLIT2 with a very small time 
step ( a large value of LSTEP). The fact that LSTEP was taken large enough 
is confirmed by looking at how the solutions with smaller values of LSTEP 
compare to this solution. We compare different solutions by looking at the error 
in the flux at the left hand boundary. Let TI ( t )  be the numerical approximation 
to the solution at the first grid point, that is 

1 
Ti ( t )  M T (  ~ A Z ,  t )  
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where 
1 

A2=’  
N ’  

The flux at the boundary is approximated by 

We will denote the flux at the left hand boundary obtained from the very ac- 
curate time integration of the discretized partial differential equation as $m (t) .  
For a finite value of LSTEP we calcuate the normalized error as 

where NSTEPS is the number of time steps that were taken in order to reach 
:, and t k  is the time at the kth time step. 

In all of the studies in this section we will use LSTEP = 1 when we are 
comparing the codes for different values of E .  We will use E = & when we change 
LSTEP in order to check the rate of convergence of the different schemes. 

5.1 Problem 1 
We set 

d 

dt 
- f (t7 2) = zcos(t) - ET2 

g(t) = 0. 

Note that when we just consider the term involving &f in the equations 
we get an osillatory solution that has an exponential growth. We have chosen 
this growth so that it is just balanced by the exponential decay from the lowest 
order mode in the diffusion equation. When we integrate the full system we 
expect to get solutions that are oscillatory and that have relatively little growth 
or decay. 

Table 1 shows the errors for the different codes at different values of E .  All of 
these results are for LSTEP = 1. For the first order methods the code CONS 
gives the smallest error at all values of E .  When E is smali, the fully implicit 
code IMP gives a smaller error than the operator splitting code SPL1, but as E 

decreases, the error in the implicit code increases severely, while the error in the 
code SPLl actually decreases a bit. For small values of E the code SPLl gives 
much smaller errors than the code IMP. 

This is a clear example of what we would like to illustrate. When we fix the 
time step and decrease the ratio of the time scales E the error in the implicit 
method increases when we integrate the equations out to  a time that is on the 

. 
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order of the slow time scale. When we do the same for the splitting method 
SPL1, this does not happen. Our numerical experiments show that this does 
not happen for the consistant splitting code CONS. 

This effect is not quite as pronounced when we compare the second order 
implicit code IMP2 to the second order splitting codes SPLB and STR. The 
error in the code IMP2 is smaller than the erros from SPL2 and STR when E 

is large, but as E decreases, the error of the code IMP2 increases slightly , but 
the error in the codes SPL2 and STR decrease fairly significantly . Note that 
the second order consistant method CONS2 behaves much like the fully implicit 
method. 

Table 1: 
f IMPl SPLl CONS IMP2 SPL2 STR CONS2 
10 9.41 D-2 6.89 D-1 1.80 D-2 2.91 D-4 8.50 D-3 2.03 D-3 1.45 D-3 
20 1.71 D-1 3.02 D-1 1.46 D-2 2.92 D-4 2.04 D-3 5.27 D-4 1.57 D-3 
40 3.78 D-1 1.38 D-1 1.83 D-2 2.76 D-4 3.23 D-4 2.14 D-4 1.79 D-3 
80 9.93 D-1 6.15 D-2 1.49 D-2 3.59 D-4 6.34 D-5 1.15 D-4 1.76 D-3 
160 3.48 D+O 2.89 D-2 6.70 D-3 4.01 D-4 4.16 D-5 6.13 D-5 1.71 D-3 
320 2.72 D+l 1.39 D-2 1.55 D-3 4.13 D-4 2.73 D-5 3.31 D-5 1.70 D-3 

Table 2 shows how each of the error in each of the methods decreases as we 
decrease the stepsize. All of these errors were for = 40. .It is clear that the first 
order methods IMP,SPLl, and CONS are all showing first order convergence. 
Similarly the methods IMP2, SPLB ,STR, and CONS2 are all showing second 
order convergence. 

Table 2: 
lSTEP IMPl SPLl CONS IMP2 SPL2 STR CONS2 
1 3.78 D-1 1.38 D-1 1.83 D-2 2.76 D-4 3.23 D-4 2.14 D-4 1.79 D-3 
2 1.70 D-1 6.66 D-2 1.09 D-2 6.89 D-5 8.07 D-5 5.37 D-6 4.53 D-4 
4 8.09 D-2 3.28 D-2 5.93 D-3 1.71 D-5 2.00 D-5 1.37 D-5 1.14 D-4 
8 3.95 D-2 1.63 D-2 3.08 D-3 4.17 D-6 4.82 D-6 3.67 D-6 2.87D-5 

5.2 Problem 2 
This problem is the same as the last one except we force the partial differential 
with a source that is oscillatory and decays slowly in time. In particular we set 

d 
d t  
- f ( t ,  2 )  = zcos(t) - €7r2 
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Table 3 shows the errors for the different codes. The trends for this problem 
are almost identical to those for the last problem. Table 4 shows how the errors 
decrease as one increases LSTEP. 

Table 3: 
$ IMPl SPLl CONS IMP2 SPL2 STR CONS2 
10 4.63 D-2 5.12 D-1 4.67 D-2 3.57 D-4 5.95 D-3 1.53 D-3 2.75 D-3 
20 1.05 D-1 2.19 D-1 3.13 D-2 3.46 D-4 1.37 D-3 4.79 D-4 1.67 D-3 
40 2.58 D-1 9.87 D-2 2.60 D-2 3.00 D-4 2.09 D-4 2.13 D-4 1.54 D-3 
80 6.86 D-1 4.33 D-2 1.83 D-2 2.13 D-4 6.39 D-5 1.14 D-4 1.44 D-3 
160 8.92 D-1 2.00 D-2 8.78 D-3 1.58 D-4 4.16 D-5 6.11 D-5 1.38 D-3 
320 6.50 D-1 9.53 D-2 2.34 D-3 1.29 D-4 2.73 D-5 3.32 D-5 1.36 D-3 

Table 4: 
lSTEP IMPl SPLl CONS IMP2 SPL2 STR CONS2 
1 2.58 D-1 9.87 D-2 2.60 D-2 3.00 D-4 2.09 D-4 2.13 D-4 1.54 D-3 
2 1.18 D-1 4.82 D-2 1.45 D-2 7.49 D-5 5.20 D-5 5.34 D-5 3.90 D-4 
4 5.68 D-2 2.38 D-2 7.67 D-3 1.87 D-5 1.29 D-5 1.36 D-5 9.80 D-5 
8 2.78 D-2 1.18 D-2 3.93 D-3 4.72 D-6 3.05 D-6 3.69 D-6 2.47 D-5 

5.3 Problem 3 
In the two previous problems we have balanced the decay from the diffusion 
with growth from the term involving -$f. In this problem we will not try to 
balance the decay from the diffusion. We set 

d 
dt 
- f ( t ,  z )  = zcos(t) 

g(t ,  .) = e--zcos(+-et 

Table 5 shows the errors for the different methods on this problem. Once 
again we see that errors in the fully implicit methods grow relative to the op- 
erator splitting methods, as E decreases. There is one difference between this 
and the previous problems. In this problem the operator splitting method SPLl 
does better than IMP and CONS even when E is not small. 

Table 6 confirms that we are getting the expected order of convergence for 
the different methods. 

5.4 Problem 4 
We solve a problem similar to the last one except we force the equations with a 
growing oscillatory term rather than a decaying one. 
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Table 5: f IMPl SPLl CONS IMP2 SPL2 STR c0n52 
10 9.80 D-3 4.79 D-3 8.37 D-3 2.40 D-4 1.02 D-4 1.68 D-2 2.30 D-4 
20 1.27 D-2 3.72 D-3 6.80 D-3 2.40 D-4 8.50 D-3 4.26 D-3 1.53 D-4 
40 1.86 D-2 3.94 D-3 4.72 D-3 2.05 D-4 7.11 D-5 1.08 D-3 1.02 D-4 
80 3.93 D-2 3.04 D-3 2.88 D-3 1.60 D-4 5.15 D-5 2.74 D-4 8.57 D-5 
160 8.63 D-2 2.11 D-3 1.89 D-3 1.22 D-2 3.52 D-5 7.57 D-5 8.06 D-5 
320 2.04 D-1 1.43 D-3 1.29 D-3 9.52 D-5 2.42 D-5 3.20 D-5 7.90 D-5 

Table 6: 
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52 
1 1.86 D-2 3.94 D-3 4.72 D-3 2.05 D-4 7.11 D-5 1.08 D-3 1.02 D-4 
2 9.23 D-2 1.99 D-2 2.40 D-3 5.11 D-5 1.77 D-5 2.70 D-4 2.56 D-5 
4 4.60 D-3 1.00 D-3 1.21 D-3 1.72 D-5 4.32 D-6 6.76 D-5 6.32 D-6 
8 2.30 D-3 5.02 D-4 6.08 D-4 3.09 D-6 9.99 D-7 1.69 D-5 1.52 D-6 

d 
dt 
- f ( t ,  z )  = zcos(t) 

--zsin(t)+€t d t 7 z )  = e 

Table 7 shows the results for the different methods. As for the last problem 
note that the code SPLl does better than IMP even when E is not small. It is 
does a little better than CONS for the larger values of E ,  and a little worse for 
the smaller values of E .  

Table 7: $ IMPl SPLl CONS IMP2 SPL2 STR c0n52 
10 8.86 D-3 4.90 D-3 8.94 D-3 1.72 D-4 4.14 D-5 1.89 D-2 1.65 D-4 
20 1.18 D-2 3.32 D-3 6.42 D-3 1.95 D-4 5.35 D-5 4.97 D-5 1.13 D-4 
40 1.68 D-2 3.54 D-3 4.12 D-3 1.82 D-4 5.99 D-5 1.21 D-3 8.18 D-5 
80 3.43 D-2 2.87 D-3 2.64 D-3 1.49 D-4 4.87 D-5 3.07 D-4 6.91 D-5 
160 7.45 D-2 2.03 D-3 1.78 D-3 1.13 D-4 3.44 D-5 7.87 D-5 6.60 D-5 
320 1.72 D-1 1.40 D-3 1.23 D-3 8.44 D-5 2.42 D-5 3.30 D-5 6.57 D-5 

Table 8 shows that each of the methods are getting their predicted order of 
convergence. 

5.5 Problem 5 

The previous problems showed that the operator splitting code SPLl worked 
better than the fully implicit code IMP even for relatively large values of E when 
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Table 8: 
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52 
1 1.65 D-2 3.54 D-3 4.12 D-3 1.82 D-4 5.99 D-5 1.21 D-3 8.18 D-5 
2 8.35 D-3 1.79 D-3 2.10 D-3 4.54 D-5 1.48 D-5 3.02 D-4 2.04 D-5 
4 4.17 D-3 8.98 D-4 1.06 D-3 1.13 D-5 3.60 D-6 7.55 D-5 5.02 D-6 
8 2.08 D-2 4.51 D-4 5.35 D-4 2.76 D-6 8.46 D-7 1.88 D-5 1.22 D-6 

the operotar LO gives us a growth that cancels out the decay due to diffusion. 
For this problem we will include a term in Lo that adds an additional decay to 
that due to diffusion. In particular we set 

d 
dt 
- f ( t ,  2) = zcos(t) + ET2 

S(t, z) = e - = w ) + f t  

Table 9 shows the results for the different methods. This problem behaves 
much like the first two problems. In particular, the codes IMP and CONS do 
better than SPLl when E is not small. As E decreases the splitting codes SPLl 
and CONS lowere their errors, while the fully implicit code IMP raises its errors. 

Table 9: 
f IMPl SPLl CONS IMP2 SPL2 STR c0n52 
10 5.15 D-3 2.96 D-2 4.39 D-3 1.08 D-4 5.48 D-4 3.29 D-2 1.45 D-4 
20 7.51 D-3 1.51 D-2 3.40 D-3 1.34 D-4 1.43 D-4 8.53 D-3 7.50 D-5 
40 9.63 D-3 7.36 D-3 2.54 D-3 1.43 D-4 5.01 D-5 2.13 D-3 4.83 D-5 
80 1.23 D-2 3.69 D-3 1.93 D-3 1.30 D-4 4.11 D-5 5.39 D-4 3.67 D-5 
160 2.59 D-2 2.13 D-3 1.44 D-3 1.05 D-4 3.09 D-5 1.35 D-4 2.75 D-5 
320 5.54 D-2 1.39 D-3 1.06 D-3 8.08 D-5 2.24 D-5 3.75 D-5 2.18 D-5 

Table 10 shows that the codes are all getting their predicted rates of conver- 
gence. 

Table 10: 
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52 
1 .  9.63 D-3 7.36 D-3 2.54 D-3 1.43 D-4 5.01 D-5 2.13 D-3 4.83 D-5 
2 4.86 D-3 3.69 D-3 1.30 D-3 3.57 D-5 1.25 D-5 5.33 D-4 1.20 D-5 
4 2.44 D-3 1.85 D-3 6.42 D-4 8.83 D-6 3.14 D-6 1.33 D-4 2.92 D-6 
8 1.22 D-3 9.23 D-4 3.22 D-4 2.12 D-6 8.55 D-7 3.32 D-5 7.05 D-7 
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5.6 Problem 6 
The previous problems have all had periodic terms in the equations, or terms 
that are periodic with an exponential growth or decay. In this problem we 
include several incommensurate frequencies in our equations. 

d 
d t  
- f ( t ,  z )  = zcos(7rt) + z2cos(t) 

c o s ( 6 t )  g = e  

Table 11 shows the results for for the different codes. Note that in this 
problem there is no growth or decay coming from the operator LO, and as in 
the previous problems where this was the case, the code SPLl performs better 
than IMP even when E is not small. It performs almost identically to CONS for 
all values of E .  

Table 11: 5 IMPl SPLl CONS IMP2 SPL2 STR CONS2 
10 2.14 D-2 1.10 D-2 1.19 D-2 8.22 D-4 4.20 D-4 1.78 D-2 4.69 D-4 
20 1.74 D-2 6.15 D-3 6.94 D-3 6.44 D-4 2.62 D-4 4.52 D-3 2.85 D-4 
40 2.40 D-2 4.80 D-3 5.11 D-3 4.49 D-4 1.70 D-4 1.12 D-3 1.94 D-4 
80 5.33 D-2 3.04 D-3 3.08 D-3 3.30 D-4 1.05 D-4 2.90 D-4 1.45 D-4 
160 1.24 D-1 1.58 D-3 1.54 D-3 2.46 D-4 6.13 D-5 9.05 D-5 1.25 D-4 
320 3.27 D-1 8.01 D-4 7.49 D-4 1.96 D-4 3.34 D-5 3.68 D-5 1.21 D-4 

Table 12 confirms the order of convergence for all of the methods. 

Table 12: 
KSTEP IMPl SPLl CONS IMP2 SPL2 STR CONS2 
1 2.40 D-2 4.80 D-3 5.11 D-3 4.49 D-4 1.70 D-4 1.12 D-3 1.94 D-4 
2 1.19 D-2 2.43 D-3 2.62 D-3 1.12 D-4 4.22 D-5 2.79 D-4 4.83 D-5 
4 5.90 D-3 1.22 D-3 1.33 D-3 2.80 D-5 1.04 D-5 6.97 D-5 1.20 D-5 
8 2.94 D-3 6.14 D-4 6.68 D-4 6.94 D-6 2.51 D-6 1.74 D-5 2.89 D-6 

5.7 
We have seen that for all of the linear test problems the codes IMP, SPLl , and 
CONS show first order convergence as we decrease the step size At. As one 
decreases E the accuracy of the splitting codes SPLl and CONS always imporve 
when compared to the accuracy of IMP. When E is not small, the codes IMP 
and CONS seem to do better than SPLl when there is growth or decay coming 
from the operator LO. When this is not the case, the code SPLl does better 
than IMP for all values of E ,  and is comparable to CONS for all values of E .  

Summary of Linear Test Problems 
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Almost identical trends occur for the second order splitting methods al- 
though the deterioration of the fully implicit method IMP2 is not as severe 
when we let E get small. Also the second order splitting code CONS2 does not 
behave any better than IMP2 as E gets small. 

6 A Nonlinear Test Problem 
In this section we test our codes on the equations for a Bursselator [SI. These 
equations are a system of nonlinear reaction diffusion equations that in cer- 
tain parameter regimes give rise to oscillatory behavior. The equations for the 
Brusselator are 

dT d2T 
- = naS2 + Q - ( p  + I )T  + T ~ C  dt 

dC d2 C - =  D ~ ~ + ~ T - T ~ c  
at dX 

along with the boundary conditions 

T(0 , t )  = T(1 , t )  = Q (14c) 

P C(0,t)  = c(1,t) = - 
CY 

In order to begin integrating these equations we must also include some 
initial conditions on the functions C(x,  t )  and T ( x ,  t ) .  Before specifying these 
initial conditions we mention that these equations have the steady state solutions 

T ( z , t )  = Q 

and 
P C(X, t )  = -. 
CY 

We will assume that 

In this case the analysis in [6] shows that the steady solution has an oscillatory 
instability provided 

2T2E + CY2 + 1 - p < 0, 

(a2 + 1 - p - 47%) (a2 + 1 - p) - 4CY2 < 0. 

(154 

(15b) 
and, 

We will use the constants 
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CY = .6, 

and 

It can be verified that with these values of a and f? the conditions in eqn. (15) 
are satisfied provided E is small enough. When E is small enough we will get an 
oscillatory solution. In this section we will test the various codes on how they 
track the approach to this oscillatory solution. 

p = 2. 

We use the initial conditions 

T(2,  0 )  = ff + 2(l - 2)  

C(2,O) = - P + 2 2 ( 1 -  2 ) .  

ff 

As in the previous section we will define our time step as 

At = 
1 

10 x LSTEP 

and we will integrate our equations from t = 0 to t = $. When we are comparing 
the different codes for different values of E we will choose LSTEP = 1. When 
we are checking the convergence of the different codes by varying LSTEP we 
will choose f = 40. 

The error in the solution is computed as in the case of the linear test problems 
except that there are now two unknowns, so we add the absolute values of the 
errors in the flux for both C and T at the left hand boundary. 

6.1 Problem 1 
This problem solves the equations for the Brusselator with no forcing terms. 
When f = 10 or 20 the steady state solution is stable and our solution e p  
proaches this steady state. All of the cases where is bigger than 20 eventually 
approach an oscillatory solution. 

Table 13 shows errors in the different methods as we vary E .  Note that as E 

gets smaller the implicit method IMP1 steadily degenerates, but the operator 
splitting code SPLl shows a slight improvement in its error. 

Table 14 shows that all of the methods are in fact getting the expected order 
o convergence. 
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Table 13: 
$ IMPl SPLl CONS IMP2 SPL2 STR c0n52 
10 8.85 D-2 3.30 D-1 1.20 D-1 4.67 D-3 1.53 D-2 7.71 D-3 1.60 D-2 
20 1.41 D-1 6.83 D-2 1.25 D-1 4.69 D-3 2.19 D-3 4.37 D-3 4.84 D-3 
40 2.56 D-1 5.41 D-2 5.38 D-1 1.35 D-2 8.18 D-4 2.63 D-3 9.00 D-3 
80 8.00 D-1 4.45 D-2 6.59 D-1 2.43 D-2 1.92 D-3 3.12 D-3 9.91 D-3 
160 1.44 D+O 2.95 D-2 6.93 D-1 2.24 D-2 1.84 D-3 2.82 D-3 7.57 D-3 

Table 14: 
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52 
1 2.56 D-1 5.41 D-2 5.38 D-1 1.35 D-2 8.18 D-4 2.63 D-3 9.00 D-3 
2 1.24 D-1 2.80 D-2 2.87 D-1 3.38 D-3 2.01 D-4 6.55 D-4 2.24 D-3 
4 6.06 D-2 1.42 D-2 1.46 D-1 8.45 D-4 4.99 D-5 1.64 D-4 5.59 D-4 
8 3.00 D-2 7.17 D-3 7.39 D-2 2.11 D-4 1.24 D-6 4.12 D-5 1.40 D-5 
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