
I llllllllllllllll llllllllllllllllllll llllllllll Ill1 1111
LABORATORIES

TECHNICAL LIBRARY

Ope rat o r 4 pl i tt i ng

871 85 and Live

ation unlimited.

ational laboratories

djcalde
Pencil

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any.agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 3783 1

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: revorts@adonis.osti. qov
Online ordering: httu://www.doe.eov/bridqe

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 221 6 1

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@,ntis. fedworld.gov
Online order: ht~://www.ntis.~ov/hel~/orde~ethods.as~?loc=7~-O#online

2

http://fedworld.gov

SAND2002-1448
Unlimited Release

Printed August 2002

On the Accuracy of Operator Splitting Methods
for Problems with Multiple Time Scales

Louis A. Romero
Computational Mathematics and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1111

Abstract
In this paper we investigate the accuracy of operator splitting schemes when
applied to operators that can be written as the sum of two operators each with
its own characteristic time scale. When these time scales differ significantly it
is shown that operator-splitting techniques can give much better accuracy than
fully implicit methods. In order to get this benefit out of operator splitting
one must integrate the fast operator more accurately than the slow operator.
Both an analysis and numerical experiments are given to justify this statement.
The analysis is used to construct a second order operator splitting scheme that
works for arbitrary nonlinear equations.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of Energy under Contract DEAC04-94AL85000.

3

1 Introduction
There are several different reasons for using operator-splitting. The technique
was first used in order to simplify the linear algebra involved in integrating multi-
dimensional partial differential equations implicitly [l]. By splitting the multi-
dimensional operator into a sum of one dimensional operators, and successively
integrating these operators each time step, one obtains the stability of a fully
implicit method while only doing the linear algebra on one dimensional systems.

More recently it has become standard to use operator-splitting on problems
involving chemical reactions and diffusion (or some other transport mechanism
). In these problems the ”fast ” time scale for the chemistry, t f , is typically
much shorter than the ’’slow” time scale for the transport, t,. In this paper we
will refer to the ratio of these two scales by

When e is small, the matrices that arise by integrating the equations fully im-
plicitly are often very poorly conditioned, causing problems for standard matrix
iterative solvers. Operator splitting overcomes this problem since if one splits
the chemistry from the diffusion (or other transport mechanism) the resulting
matrices are better conditioned. Also, as pointed out in [2] , by using operator-
splitting one can use ones favorite technique for each individual operator. This
can simplify the building and modifying of a large code.

It should also be pointed out that when one ignores the transport mecha-
nisms, there is no coupling between the temperature and species concentrations
at different grid cells. This means that the equations governing the chemistry
can be integrated much quicker than the fully coupled equations involving both
chemistry and transport.

There appears to be confusion in the literature as to how operator splitting
affects the accuracy of the solutions. The situation is especially unclear when
E is small. In this case the operator with the fast time scale is frequently in-
tegrated with much smaller time steps than the operator with the slow time
scale. Some authors imply that if one could efficiently invert the linear system
for the two operators together , then there would be no advantage to doing
operator splitting. However, other authors imply (incorrectly) that one can ob-
tain meaningful results by integrating each operator on its own time scale. If
the fast operator is easy to integrate compared to the full system of equations,
this would clearly be beneficial. Unfortunatley, as pointed out in [2] , in order
to obtain meaningful results one must integrate the slow operator using a time
step small compared to t f .

Given this restriction on the slow time step, it might appear that there is
no advantage to integrating the fast operator more accurately than the slow
operator. In this case one would be as well off integrating the equations fully
implicitly (assuming one could invert the fully coupled equations as quickly as

C

4

the split equations). We will show that there is in fact an advantage gained in
accuracy by using operator splitting. This results from the fact that if we were
to use a first order method to integrate the equations fully implicily out to a
time on the order oft,, then we would need to take a time step that is small
compared to Etf. We will show that we can obtain accurate solutions using
operator splitting when we integrate the fast operator using a time step that is
small compared to ~ t f , but using a time step for the slow operator that need
only be small compared to t f . As E approaches zero, one can obtain solutions
much more efficiently using operator splitting than by using a fully implicit
technique. It should be emphasized that this advantage of operator splitting
remains even if one could invert the fully coupled equations as efficiently as the
split operators.

Most of the theoretical analysis of operator-splitting is based on the as-
sumption that the same time step is taken for both operators. However, for
chemically reacting flow problems one often takes a much shorter time step for
the chemistry than for the diffusion. In this paper we present an analysis based
on the assumption that the fast operator is integrated exactly. This is clearly
not the case in practice, but the fast operator is often integrated with sufficiently
high accuracy compared to the slow operator that it is a reasonable assumption.
The analysis shows that when the fast time scale is integrated exactly one can
achieve better accuracy using operator-splitting than a fully implicit technique.
Here we are comparing the implicit method when it uses the same time step as
is used for the slow operator in the operator-splitting scheme. Note that these
benefits of operator-splitting go away if the two time scales do not differ greatly,
and if one does not integrate the fast time scale with more accuracy than the
slow time scale.

The analysis in this paper is for arbitrary linear systems that can be split into
a slow and a fast operator. We make a change of variable using the fundamental
matrix solution to the fast operator. Substituting this new variable into the
differential equation we end up with a modified differential equation. We show
that applying a backwards Euler scheme to this modified equation is identical
to using operator-splitting on the original equation, but with the fast operator-
integrated exactly. This way of deriving operator splitting allows us to see
why one obtains better accuracy using operator-splitting than integrating the
equations fully implicitly. It also suggests how to obtain higher order splitting
schemes. By applying the trapezoidal rule to the modified equation one comes
up with a second order splitting scheme that is similar to the method presented
in [3]. The method presented here requires less computation since it involves
only one implicit solve each time step.

It is shown both theoretically and by numerical experiments that the second
order splitting method offers significant improvements over a fully implicit sec-
ond order method as e + 0. However, it should be pointed out that in order to
get significant benefits out of this technique one must integrate the equations
out to a time that is on the order of $. This shows that the benefits on accuracy

5

for a second order splitting method are not as significant as they are for a first
order method.

The technique of consistant operator splitting has been proposed [4] in order
to improve the efficiency of the standard operator splitting technique as one
approaches a steady state. It is interesting to see whether this technique has the
same improvement in accuracy over the fully implict method that the standard
operator splitting technique has as E + 0. Numerical experiments show that the
method of consistant operator splitting also does well as E + 0. The author does
not have a convincing argument to show that this behavior should be expected.

We present a second order technique that results from a very minor mod-
ification of the first order splitting technique. Both the theory and numerical
experiments confirm that this technique is second order, however, it is found
that this method does not have any advantages over the fully implicit method
a s E - k O .

We now present a brief summary of the paper. In section 2 we derive the
modified equation and show how the standard form for operator splitting can
be derived by applying a backwards Euler method to the modified equation. In
section 3) we show how higher order operator splitting methods can be derived
for linear systems by applying higher order Adams methods to the modified
equation. We specifically apply the trapezoidal rule to the modified equation
to derive a second order operator splitting method, and explain how it can
easily be generalized to nonlinear problems. In section 4) we summarize the
methods that are tested numerically, in section 5) we present the results for
several linear test problems, and in section 6) we present results obtained by
applying the different techniques to the nonlinear test problem known as the
Brusselator [6]. In section 7) we summarize our results.

2 The Modified Equation
Suppose we have an equation of the form

Here g,& and f , are n dimensional vectors, and A0 and AI are n x n ma-
trices. The equations of interest frequently arise from a spatial discretization of
a partial differential equation. We will not concern ourselves with the spatial
discretization errors, but assume that we are interested in finding accurate so-
lutions to eqn. (1) The analysis that we are about to present is easier to follow
if one ignores the inhomogeneous terms and one assumes that the matrices are
not dependent on time. We will present the general analysis, but suggest that
the reader keep in mind the simpler analysis that arises when we ignore the
inhomogeneous terms and the time dependence of the matrices.

Let &(t, t o) be the fundamental matrix solution to the differential equation

6

e

when E = 0. That is, &(t, t o) satisfies

(2 4

Q (t o , t o) = 1. (2b)

d
zQ(t, t o) = Ao(t)Q(t, t o) ,

In what follows we will make use of the semi-group property of the funda-
mental matrix

Q(t, t o) = &(t, a)Q(a, t o) . (3)
We now make a change of variable from ~ (t) to the variable Z (t) that is

defined through the equation

:(t) = Q(t,to) (d t) + 1; Q-'(. , to)&(3d~)

- (1:)

(4)

This substitution is motivated by the fact that when E = 0 x (t) is a solution

If :(t) is to satisfy eqn. (l), then z(t) must satisfy
to the equations if we put g (t) = constant.

2 = ~Q-'(t,to)Ai(t)Q(t,t~) ~ (t) + Q-l(~,to)&(r)dr +~Q-l (t , to) . f~

(5)
Assuming that we can integrate the fast equations exactly, we can determine

the solution :(t) by integrating eqn. (5) to determine ~ (t) and then using (4) to
find ~ (t) . If we use the backwards Euler method to integrate eqn. (5) we find

- ~ + l = - Zn + A ~ E Q - ~ to) (Al (~+~) :n+l + f, (L + ~)) (sa>

where
ta+l = tn + At, (6b)

(64

and,

- xn+l = Q(tn+l, t o) (p+l + lot*+1 &--lk-, to&(r)dr)

If we multiply both sides of eqn. (sa) by &(tn+l, t o) we find that

Q(L+i, t o) (Z" - z") = ~AtAi(tn+i):~+~ + €fl(tn+i)
A direct application of eqn. (4) shows that in terms of the original variable

- x we have

7

where

Now using eqn. (3) we get

- p + 1 / 2 = &(tn+lttn) (. + l;+' ~-1(T7tn)&(T)d7)

Note that the vector gn+1/2 is obtained by integrating the equation

- j: = A0 (t k + & (t)
from t , to tn+l with an initial condition of g(tn) = gn.
Note that in order to arrive at the answer gn+' using the modified equation

we carry out exactly the procedure that is used in operator-splitting. We first
integrate the fast equations from t , to tn+l with an initial value of gn. This
gives us our intermediate solution gn+f . Here we have assumed that we have
integrated these equations exactly. We now integrate the slow equations out
one time step using an initial value of gn+t.

Note that if we integrate the equations (1) using a fully implicit backwards
Euler method out to a time T = 9, then in order to have an absolute error of
less than 6 we must choose the time step small enough so that

Tl At- < K16
E

Here K1 is a constant that is nearly independent of At and E .

If we use the backwards Euler method to integrate the equations (5) out to
the same time T , then in order to achieve an absolute error of less than 6 we
must choose At so that

Tl Ate- < K26
E

When integrating the original equation (1) out to a time that is O($) it
is necessary to have Ate be small . When integrating the equation (5) out to
the same time one can achieve the same absolute error with the less stringent
requirement of making At be small. Once one has obtained the solution z from
integrating the modified equation, one can then obtain the solution g using
eqn. (4). Since we have shown that using operator-splitting (integrating the
fast operator exactly) is equivalent to applying the backwards Euler method to
(5) it is clear that one obtains better accuracy using operator-splitting than by
integrating the equations fully implicitly. The bigger the difference in the time
scales , the more efficient it becomes to use operator splitting. It should be
pointed out that in order to accurately integrate the modified equations out to
a time that is on the order of the slow time scale it is still necessary to take
time steps that are small compared to the fast time scale.

8

3 Higher Order Splitting Methods
In this section we obtain higher order operator splitting methods by applying
higher order Adams methods to eqn. (5) . These methods are valid for any linear
problem, but it is not clear how to generalize them to an arbitrary nonlinear
problem. This difficulty arises since the schemes distinguish between the homo-
geneous and non-homogeneous terms in the equations. For a nonlinear problem
it is not clear how to make this distinction. However, for the particular case of
the trapezoidal rule applied to eqn. (5) we can write the resulting method in a
way that can be generalized to nonlinear problems.

When integrating the equation

- x = g(z, t)

the general p-step Adams scheme uses

P

- Xn+' = - Xn at f f k g (g n " ' - k , - t n + l - k)

k=O

where,

and f f k are suitably chosen constants.

tn+l-k = tn + &(I- I C) ,

When we apply an Adams method to eqn. (5) we get

where

If we now write this in terms of we get

r k = Q(tn+l, t o) Q - ' (t n + l - k , t o) = Q(L, t n + l - k) (9c)
We have used the semi-group property in eqn. (3) in order to arrive at this

result.

9

Note that the vector gnf1I2 is obtained by integrating the equation

- 2 = Ao(t)a: + fo(t)

from t , to tn+l with an initial condition of :(tn) = :".

equation

from t,+l-k to tn+l with an initial condition of :(t,+l-k) = g.

Also, note that multiplying a vector g by l?k is equivalent to integrating the

- X = Ao(t):

It is clear that this scheme is a generalization of operator splitting.
In general it is not clear how to generalize these methods so they can be

used on nonlinear problems. In particular, one has to know how to integrate
the homogeneous part of the fast equations all by themselves. For a nonlinear
problem it is not clear what is meant by this.

We now apply the trapezoidal rule to eqn. (5) and show that in this case the
method can be straightforwardly generalized to nonlinear problems. We argue
that the method also keeps its second order accuracy for nonlinear problems.

When we apply the trapezoidal rule to eqn. (5) we find that

This can be rewritten as

This scheme can be described as follows.

0 Starting with the vector gn take half of a first order explicit time step
using the slow operator. This gives us a vector 2.

0 Using 2 as a starting value, integrate the fast equations from t , to tn+l.
This gives us the vector :*.

0 Using the vector g* as a starting value take half of a first order implicit
time step using the slow operator.

10

Note that the regular trapezoidal rule can be considered as taking half a
time step explicitly followed by half a time step implicitly. This scheme does
the same thing except it integrates the fast equations in between these two steps.

The statement of the above algorithm holds whether the equations are linear
or nonlinear. The second order accuracy should persist for nonlinear problems.
This follows since if we have a nonlinear system

d
d t -
--2 = F (z)

then we can linearize this system over the interval (t n , tn+l) .

d
-x dt- = E(&") + Ez(gn)g - + O ((A t) 2)

We can get a second order scheme by doing a second order integration of
these linearized equations on each interval.

It should be noted that the method described in this section is similar to
the method described by Strang in [3]. In the method described by Strang one
takes half of a time step using a fully implicit second order method on the slow
operator, then takes a full time step on the fast operator, and once more takes
a fully implicit half time step on the slow operator. In the paper by Strang he
does not discuss fast and slow operators, and he assumes that the same time
step is taken for both operators. This algorithm generalizes when we integrate
the chemistry very accurately to the following.

0 Integrate the slow equations for half a time step using a second order
implicit scheme such as the trapezoidal rule. This takes our initial vector
- xn into a new vector 2.

0 Now integrate the fast equations over a whole time step using 2 as the
initial value. This gives us a vector g*.

0 Using g* as an inital value, integrate the slow equations over half a time
step using a second order fully implicit method. This gives us the final
answer

Both the method described by Strang and the method introduced at the
beginning of this section can be written as

Zn+l = L1 - ~ t / 2 ~ A t ~ % t f 2 : ~

Here L i t / 2 and L i t f 2 are numerical approximations that integrate the slow
equations forward half a time step; and Mat is a numerical approximation that
integrates the fast equations forward a full time step. In Strangs method the
operator and both come from applying a second order implicit method to
the slow equations. In the method described in this section the operator

11

comes from using the first order forward Euler method to integrate the slow
equations over half a time step. The operator Lit ,2 comes from using the first
order backwards Euler formula to integrate the slow equations over half a time
step.

Note that if we use a second order implicit method to integrate the equations
(1) out to a time 9 with an accuracy of 6, then we must choose our time step
so that

(At)2 < Kid€.

If we integrate eqn. (5) out to the same time and require the same accuracy we
need only require that

(At)2 < K26

We see that the second order operator splitting method allows us to take
a larger time step for the slow operator than when we use the fully implicit
method. In order to get as good answers out of the implicit method one must
chosse a times step that is about ,/Z as small as when using the operator splitting
method. We see that the difference between the second order splitting method
and the second order implicit method is not as pronounced as for the first order
methods unless we integrate out to a time that is on the order of 3.

4 The Methods to be Tested
We now describe 7 different codes that we will test in order to illustrate the
accuracy of operator-splitting methods. When testing these codes we will com-
pare the results when the time step At is constant and the same for all of the
codes. In the codes that use a form of operator-splitting the fast equations
are integrated using a library ordinary differential equation solver with the ab-
solute error tolerance set to 1.d - 9. When comparing fully implicit methods
to operator-splitting methods we take the same time step on the fully implicit
method as we do on the slow time for the operator-splitting method.

In this paper we are only concerned with the accuracy of operator-splitting
methods, not in the speed ups in the linear algebra. All of the codes described
in this section are tested only on one dimensional partial differential equations.
The linear systems are solved using a banded matrix solver from LINPACK.
Newtons method is used to solve the nonlinear equations arising in the fully
implicit methods.

We will now state the time stepping algorithms for the various schemes.
When describing these schemes we will assume we are solving the system of
equations

12

In the description of the following algorithms gn and gn+l are the solutions

In most of the operator splitting methods we make use of the function
at the times t , and tn+l; and At = tn+l - t,.

g(t, t^, g) which is given by

d
--z = &(&)

g(i , i, g) = g
dt-

We now describe the algorithms we have tested. There are two fully implicit
codes.

IMP1 This is a fully implicit code that uses the backwards Euler method
to integrate the system of ordinary differential equations.

gn+' - gn = At (&(gn+l) + El($+'))

IMP2 This is a fully implicit scheme that uses the trapezoidal rule.

1
- 2

xn+l - 2 n - - -At (&(E"+') +Fl(zn+l) +&($j +E,(:")) -

We also test the following three operator splitting methods.

SPLIT1 This is an operator splitting scheme that uses the backwards
Euler method to integrate the modified equations in eqn. (5). As already
pointed out, this scheme is equivalent to applying a first order operator-
splitting method to the equations (1) with the fast equations integrated
very accurately.

where,

SPLIT2 This is an operator scheme that uses the trapezoidal rule to inte-
grate the modified equations (5). This is equivalent to applying the second
order operator splitting scheme described in the last section. This schcme
has second order accuracy.

STRANG This code uses the second order operator splitting scheme de-
scribed in [3] and in the last section.

Finally, we test a first and a second order consistant operator splitting
method.

13

0 CONSIST1 This code uses the consistant operator splitting method de-
scribed in [4] and below.

where

- 4(tn) = ."

0 CONSIST2 This code uses a second order consistant operator splitting
method described below.

4(tn+l) xn+1/2 =
- -

where 4 is the same function used for the first order consistant splitting
method.

It is a straightforward exercise to confirm that the scheme used in CONSIST2
is second order for the general linear system described in eqn. (1). The second
order consistant splitting method requires no more work than the first order,
but the author is not aware of it being described previously in the literature.

5 Some Linear Test Problems
In this section we test the codes on several linear reaction diffusion equations.
The equations are not motivated by any physical system, but are merely used
to illustrate the how the different methods behave as the reaction and diffusion
time scales grow apart.

All of the equations in this section arise from a second order spatial dis-
cretization of the equation

dT d2T d
dt dz2 dt
- = E - - T - f (t , 2) + g(t , 2)

T (0 , t) = T(l , t) = 0.

T(2,O) = sin(n2)

14

These equations can be written as

dT
- = LOT + ELIT + ~ O (Z , t) at

where

d2T
L1T(z,t) = -

d Z 2

and
f o k , t) = d t , 2).

We obtain a system of ordinary differential equations by dividing up the
interval [0,1] in N equally spaced intervals and defining the solution Ti(t) at each
grid point. We end up with a system of equations of the form in eqn. (1) where
A0 is a diagonal matrix representing the operator LO, AI is a tridiagonal matrix
approximating the operator L1, and &(t) is a vector obtained by discretizing
the function f o (z , t) at the grid points.

Note that we have included a spatial dependence in the operator LO in order
to avoid having the operators LO and L1 commute. If the operators commuted
it would be a poor test problem for operator-splitting methods since in that case
we rigorously get the same answers whether we integrate the equations together
or one at a time.

In each of the test problems we use a time step of

1
LSTEP x 10 At =

for the slow operator. This means that when applying one of the operator
splitting methods we integrate the fast equations for an interval of a t , and then
we correct our solution using the slow operator. When using a fully implicit
method we use a time step of At. We integrate all of the equations from t = 0
to t = E . This means that as we decrease E we are always integrating the
equations out to a time that is the same when scaled according to the slow time
scale t,.

In order to determine the error in our answers we first integrate the equations
using the second order operator splitting code SPLIT2 with a very small time
step (a large value of LSTEP). The fact that LSTEP was taken large enough
is confirmed by looking at how the solutions with smaller values of LSTEP
compare to this solution. We compare different solutions by looking at the error
in the flux at the left hand boundary. Let TI (t) be the numerical approximation
to the solution at the first grid point, that is

1
Ti (t) M T (~ A Z , t)

15

where
1

A2=’
N ’

The flux at the boundary is approximated by

We will denote the flux at the left hand boundary obtained from the very ac-
curate time integration of the discretized partial differential equation as $m (t) .
For a finite value of LSTEP we calcuate the normalized error as

where NSTEPS is the number of time steps that were taken in order to reach
:, and t k is the time at the kth time step.

In all of the studies in this section we will use LSTEP = 1 when we are
comparing the codes for different values of E . We will use E = & when we change
LSTEP in order to check the rate of convergence of the different schemes.

5.1 Problem 1
We set

d

dt
- f (t7 2) = zcos(t) - ET2

g(t) = 0.

Note that when we just consider the term involving &f in the equations
we get an osillatory solution that has an exponential growth. We have chosen
this growth so that it is just balanced by the exponential decay from the lowest
order mode in the diffusion equation. When we integrate the full system we
expect to get solutions that are oscillatory and that have relatively little growth
or decay.

Table 1 shows the errors for the different codes at different values of E . All of
these results are for LSTEP = 1. For the first order methods the code CONS
gives the smallest error at all values of E . When E is smali, the fully implicit
code IMP gives a smaller error than the operator splitting code SPL1, but as E

decreases, the error in the implicit code increases severely, while the error in the
code SPLl actually decreases a bit. For small values of E the code SPLl gives
much smaller errors than the code IMP.

This is a clear example of what we would like to illustrate. When we fix the
time step and decrease the ratio of the time scales E the error in the implicit
method increases when we integrate the equations out to a time that is on the

.

16

order of the slow time scale. When we do the same for the splitting method
SPL1, this does not happen. Our numerical experiments show that this does
not happen for the consistant splitting code CONS.

This effect is not quite as pronounced when we compare the second order
implicit code IMP2 to the second order splitting codes SPLB and STR. The
error in the code IMP2 is smaller than the erros from SPL2 and STR when E

is large, but as E decreases, the error of the code IMP2 increases slightly , but
the error in the codes SPL2 and STR decrease fairly significantly . Note that
the second order consistant method CONS2 behaves much like the fully implicit
method.

Table 1:
f IMPl SPLl CONS IMP2 SPL2 STR CONS2
10 9.41 D-2 6.89 D-1 1.80 D-2 2.91 D-4 8.50 D-3 2.03 D-3 1.45 D-3
20 1.71 D-1 3.02 D-1 1.46 D-2 2.92 D-4 2.04 D-3 5.27 D-4 1.57 D-3
40 3.78 D-1 1.38 D-1 1.83 D-2 2.76 D-4 3.23 D-4 2.14 D-4 1.79 D-3
80 9.93 D-1 6.15 D-2 1.49 D-2 3.59 D-4 6.34 D-5 1.15 D-4 1.76 D-3
160 3.48 D+O 2.89 D-2 6.70 D-3 4.01 D-4 4.16 D-5 6.13 D-5 1.71 D-3
320 2.72 D+l 1.39 D-2 1.55 D-3 4.13 D-4 2.73 D-5 3.31 D-5 1.70 D-3

Table 2 shows how each of the error in each of the methods decreases as we
decrease the stepsize. All of these errors were for = 40. .It is clear that the first
order methods IMP,SPLl, and CONS are all showing first order convergence.
Similarly the methods IMP2, SPLB ,STR, and CONS2 are all showing second
order convergence.

Table 2:
lSTEP IMPl SPLl CONS IMP2 SPL2 STR CONS2
1 3.78 D-1 1.38 D-1 1.83 D-2 2.76 D-4 3.23 D-4 2.14 D-4 1.79 D-3
2 1.70 D-1 6.66 D-2 1.09 D-2 6.89 D-5 8.07 D-5 5.37 D-6 4.53 D-4
4 8.09 D-2 3.28 D-2 5.93 D-3 1.71 D-5 2.00 D-5 1.37 D-5 1.14 D-4
8 3.95 D-2 1.63 D-2 3.08 D-3 4.17 D-6 4.82 D-6 3.67 D-6 2.87D-5

5.2 Problem 2
This problem is the same as the last one except we force the partial differential
with a source that is oscillatory and decays slowly in time. In particular we set

d
d t
- f (t , 2) = zcos(t) - €7r2

17

Table 3 shows the errors for the different codes. The trends for this problem
are almost identical to those for the last problem. Table 4 shows how the errors
decrease as one increases LSTEP.

Table 3:
$ IMPl SPLl CONS IMP2 SPL2 STR CONS2
10 4.63 D-2 5.12 D-1 4.67 D-2 3.57 D-4 5.95 D-3 1.53 D-3 2.75 D-3
20 1.05 D-1 2.19 D-1 3.13 D-2 3.46 D-4 1.37 D-3 4.79 D-4 1.67 D-3
40 2.58 D-1 9.87 D-2 2.60 D-2 3.00 D-4 2.09 D-4 2.13 D-4 1.54 D-3
80 6.86 D-1 4.33 D-2 1.83 D-2 2.13 D-4 6.39 D-5 1.14 D-4 1.44 D-3
160 8.92 D-1 2.00 D-2 8.78 D-3 1.58 D-4 4.16 D-5 6.11 D-5 1.38 D-3
320 6.50 D-1 9.53 D-2 2.34 D-3 1.29 D-4 2.73 D-5 3.32 D-5 1.36 D-3

Table 4:
lSTEP IMPl SPLl CONS IMP2 SPL2 STR CONS2
1 2.58 D-1 9.87 D-2 2.60 D-2 3.00 D-4 2.09 D-4 2.13 D-4 1.54 D-3
2 1.18 D-1 4.82 D-2 1.45 D-2 7.49 D-5 5.20 D-5 5.34 D-5 3.90 D-4
4 5.68 D-2 2.38 D-2 7.67 D-3 1.87 D-5 1.29 D-5 1.36 D-5 9.80 D-5
8 2.78 D-2 1.18 D-2 3.93 D-3 4.72 D-6 3.05 D-6 3.69 D-6 2.47 D-5

5.3 Problem 3
In the two previous problems we have balanced the decay from the diffusion
with growth from the term involving -$f. In this problem we will not try to
balance the decay from the diffusion. We set

d
dt
- f (t , z) = zcos(t)

g(t , .) = e--zcos(+-et

Table 5 shows the errors for the different methods on this problem. Once
again we see that errors in the fully implicit methods grow relative to the op-
erator splitting methods, as E decreases. There is one difference between this
and the previous problems. In this problem the operator splitting method SPLl
does better than IMP and CONS even when E is not small.

Table 6 confirms that we are getting the expected order of convergence for
the different methods.

5.4 Problem 4
We solve a problem similar to the last one except we force the equations with a
growing oscillatory term rather than a decaying one.

18

Table 5: f IMPl SPLl CONS IMP2 SPL2 STR c0n52
10 9.80 D-3 4.79 D-3 8.37 D-3 2.40 D-4 1.02 D-4 1.68 D-2 2.30 D-4
20 1.27 D-2 3.72 D-3 6.80 D-3 2.40 D-4 8.50 D-3 4.26 D-3 1.53 D-4
40 1.86 D-2 3.94 D-3 4.72 D-3 2.05 D-4 7.11 D-5 1.08 D-3 1.02 D-4
80 3.93 D-2 3.04 D-3 2.88 D-3 1.60 D-4 5.15 D-5 2.74 D-4 8.57 D-5
160 8.63 D-2 2.11 D-3 1.89 D-3 1.22 D-2 3.52 D-5 7.57 D-5 8.06 D-5
320 2.04 D-1 1.43 D-3 1.29 D-3 9.52 D-5 2.42 D-5 3.20 D-5 7.90 D-5

Table 6:
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52
1 1.86 D-2 3.94 D-3 4.72 D-3 2.05 D-4 7.11 D-5 1.08 D-3 1.02 D-4
2 9.23 D-2 1.99 D-2 2.40 D-3 5.11 D-5 1.77 D-5 2.70 D-4 2.56 D-5
4 4.60 D-3 1.00 D-3 1.21 D-3 1.72 D-5 4.32 D-6 6.76 D-5 6.32 D-6
8 2.30 D-3 5.02 D-4 6.08 D-4 3.09 D-6 9.99 D-7 1.69 D-5 1.52 D-6

d
dt
- f (t , z) = zcos(t)

--zsin(t)+€t d t 7 z) = e

Table 7 shows the results for the different methods. As for the last problem
note that the code SPLl does better than IMP even when E is not small. It is
does a little better than CONS for the larger values of E , and a little worse for
the smaller values of E .

Table 7: $ IMPl SPLl CONS IMP2 SPL2 STR c0n52
10 8.86 D-3 4.90 D-3 8.94 D-3 1.72 D-4 4.14 D-5 1.89 D-2 1.65 D-4
20 1.18 D-2 3.32 D-3 6.42 D-3 1.95 D-4 5.35 D-5 4.97 D-5 1.13 D-4
40 1.68 D-2 3.54 D-3 4.12 D-3 1.82 D-4 5.99 D-5 1.21 D-3 8.18 D-5
80 3.43 D-2 2.87 D-3 2.64 D-3 1.49 D-4 4.87 D-5 3.07 D-4 6.91 D-5
160 7.45 D-2 2.03 D-3 1.78 D-3 1.13 D-4 3.44 D-5 7.87 D-5 6.60 D-5
320 1.72 D-1 1.40 D-3 1.23 D-3 8.44 D-5 2.42 D-5 3.30 D-5 6.57 D-5

Table 8 shows that each of the methods are getting their predicted order of
convergence.

5.5 Problem 5

The previous problems showed that the operator splitting code SPLl worked
better than the fully implicit code IMP even for relatively large values of E when

19

Table 8:
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52
1 1.65 D-2 3.54 D-3 4.12 D-3 1.82 D-4 5.99 D-5 1.21 D-3 8.18 D-5
2 8.35 D-3 1.79 D-3 2.10 D-3 4.54 D-5 1.48 D-5 3.02 D-4 2.04 D-5
4 4.17 D-3 8.98 D-4 1.06 D-3 1.13 D-5 3.60 D-6 7.55 D-5 5.02 D-6
8 2.08 D-2 4.51 D-4 5.35 D-4 2.76 D-6 8.46 D-7 1.88 D-5 1.22 D-6

the operotar LO gives us a growth that cancels out the decay due to diffusion.
For this problem we will include a term in Lo that adds an additional decay to
that due to diffusion. In particular we set

d
dt
- f (t , 2) = zcos(t) + ET2

S(t, z) = e - = w) + f t

Table 9 shows the results for the different methods. This problem behaves
much like the first two problems. In particular, the codes IMP and CONS do
better than SPLl when E is not small. As E decreases the splitting codes SPLl
and CONS lowere their errors, while the fully implicit code IMP raises its errors.

Table 9:
f IMPl SPLl CONS IMP2 SPL2 STR c0n52
10 5.15 D-3 2.96 D-2 4.39 D-3 1.08 D-4 5.48 D-4 3.29 D-2 1.45 D-4
20 7.51 D-3 1.51 D-2 3.40 D-3 1.34 D-4 1.43 D-4 8.53 D-3 7.50 D-5
40 9.63 D-3 7.36 D-3 2.54 D-3 1.43 D-4 5.01 D-5 2.13 D-3 4.83 D-5
80 1.23 D-2 3.69 D-3 1.93 D-3 1.30 D-4 4.11 D-5 5.39 D-4 3.67 D-5
160 2.59 D-2 2.13 D-3 1.44 D-3 1.05 D-4 3.09 D-5 1.35 D-4 2.75 D-5
320 5.54 D-2 1.39 D-3 1.06 D-3 8.08 D-5 2.24 D-5 3.75 D-5 2.18 D-5

Table 10 shows that the codes are all getting their predicted rates of conver-
gence.

Table 10:
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52
1 . 9.63 D-3 7.36 D-3 2.54 D-3 1.43 D-4 5.01 D-5 2.13 D-3 4.83 D-5
2 4.86 D-3 3.69 D-3 1.30 D-3 3.57 D-5 1.25 D-5 5.33 D-4 1.20 D-5
4 2.44 D-3 1.85 D-3 6.42 D-4 8.83 D-6 3.14 D-6 1.33 D-4 2.92 D-6
8 1.22 D-3 9.23 D-4 3.22 D-4 2.12 D-6 8.55 D-7 3.32 D-5 7.05 D-7

20

5.6 Problem 6
The previous problems have all had periodic terms in the equations, or terms
that are periodic with an exponential growth or decay. In this problem we
include several incommensurate frequencies in our equations.

d
d t
- f (t , z) = zcos(7rt) + z2cos(t)

c o s (6 t) g = e

Table 11 shows the results for for the different codes. Note that in this
problem there is no growth or decay coming from the operator LO, and as in
the previous problems where this was the case, the code SPLl performs better
than IMP even when E is not small. It performs almost identically to CONS for
all values of E .

Table 11: 5 IMPl SPLl CONS IMP2 SPL2 STR CONS2
10 2.14 D-2 1.10 D-2 1.19 D-2 8.22 D-4 4.20 D-4 1.78 D-2 4.69 D-4
20 1.74 D-2 6.15 D-3 6.94 D-3 6.44 D-4 2.62 D-4 4.52 D-3 2.85 D-4
40 2.40 D-2 4.80 D-3 5.11 D-3 4.49 D-4 1.70 D-4 1.12 D-3 1.94 D-4
80 5.33 D-2 3.04 D-3 3.08 D-3 3.30 D-4 1.05 D-4 2.90 D-4 1.45 D-4
160 1.24 D-1 1.58 D-3 1.54 D-3 2.46 D-4 6.13 D-5 9.05 D-5 1.25 D-4
320 3.27 D-1 8.01 D-4 7.49 D-4 1.96 D-4 3.34 D-5 3.68 D-5 1.21 D-4

Table 12 confirms the order of convergence for all of the methods.

Table 12:
KSTEP IMPl SPLl CONS IMP2 SPL2 STR CONS2
1 2.40 D-2 4.80 D-3 5.11 D-3 4.49 D-4 1.70 D-4 1.12 D-3 1.94 D-4
2 1.19 D-2 2.43 D-3 2.62 D-3 1.12 D-4 4.22 D-5 2.79 D-4 4.83 D-5
4 5.90 D-3 1.22 D-3 1.33 D-3 2.80 D-5 1.04 D-5 6.97 D-5 1.20 D-5
8 2.94 D-3 6.14 D-4 6.68 D-4 6.94 D-6 2.51 D-6 1.74 D-5 2.89 D-6

5.7
We have seen that for all of the linear test problems the codes IMP, SPLl , and
CONS show first order convergence as we decrease the step size At. As one
decreases E the accuracy of the splitting codes SPLl and CONS always imporve
when compared to the accuracy of IMP. When E is not small, the codes IMP
and CONS seem to do better than SPLl when there is growth or decay coming
from the operator LO. When this is not the case, the code SPLl does better
than IMP for all values of E , and is comparable to CONS for all values of E .

Summary of Linear Test Problems

21

Almost identical trends occur for the second order splitting methods al-
though the deterioration of the fully implicit method IMP2 is not as severe
when we let E get small. Also the second order splitting code CONS2 does not
behave any better than IMP2 as E gets small.

6 A Nonlinear Test Problem
In this section we test our codes on the equations for a Bursselator [SI. These
equations are a system of nonlinear reaction diffusion equations that in cer-
tain parameter regimes give rise to oscillatory behavior. The equations for the
Brusselator are

dT d2T
- = naS2 + Q - (p + I)T + T ~ C dt

dC d2 C - = D ~ ~ + ~ T - T ~ c
at dX

along with the boundary conditions

T(0 , t) = T(1 , t) = Q (14c)

P C(0,t) = c(1,t) = -
CY

In order to begin integrating these equations we must also include some
initial conditions on the functions C(x, t) and T (x , t) . Before specifying these
initial conditions we mention that these equations have the steady state solutions

T (z , t) = Q

and
P C(X, t) = -.
CY

We will assume that

In this case the analysis in [6] shows that the steady solution has an oscillatory
instability provided

2T2E + CY2 + 1 - p < 0,

(a2 + 1 - p - 47%) (a2 + 1 - p) - 4CY2 < 0.

(154

(15b)
and,

We will use the constants

22

CY = .6,

and

It can be verified that with these values of a and f? the conditions in eqn. (15)
are satisfied provided E is small enough. When E is small enough we will get an
oscillatory solution. In this section we will test the various codes on how they
track the approach to this oscillatory solution.

p = 2.

We use the initial conditions

T(2, 0) = ff + 2(l - 2)

C(2,O) = - P + 2 2 (1 - 2) .

ff

As in the previous section we will define our time step as

At =
1

10 x LSTEP

and we will integrate our equations from t = 0 to t = $. When we are comparing
the different codes for different values of E we will choose LSTEP = 1. When
we are checking the convergence of the different codes by varying LSTEP we
will choose f = 40.

The error in the solution is computed as in the case of the linear test problems
except that there are now two unknowns, so we add the absolute values of the
errors in the flux for both C and T at the left hand boundary.

6.1 Problem 1
This problem solves the equations for the Brusselator with no forcing terms.
When f = 10 or 20 the steady state solution is stable and our solution e p
proaches this steady state. All of the cases where is bigger than 20 eventually
approach an oscillatory solution.

Table 13 shows errors in the different methods as we vary E . Note that as E

gets smaller the implicit method IMP1 steadily degenerates, but the operator
splitting code SPLl shows a slight improvement in its error.

Table 14 shows that all of the methods are in fact getting the expected order
o convergence.

References
[l] N.N. Yanenko, The Method of Fractional Steps, Springer ,1971

23

c

Table 13:
$ IMPl SPLl CONS IMP2 SPL2 STR c0n52
10 8.85 D-2 3.30 D-1 1.20 D-1 4.67 D-3 1.53 D-2 7.71 D-3 1.60 D-2
20 1.41 D-1 6.83 D-2 1.25 D-1 4.69 D-3 2.19 D-3 4.37 D-3 4.84 D-3
40 2.56 D-1 5.41 D-2 5.38 D-1 1.35 D-2 8.18 D-4 2.63 D-3 9.00 D-3
80 8.00 D-1 4.45 D-2 6.59 D-1 2.43 D-2 1.92 D-3 3.12 D-3 9.91 D-3
160 1.44 D+O 2.95 D-2 6.93 D-1 2.24 D-2 1.84 D-3 2.82 D-3 7.57 D-3

Table 14:
KSTEP IMPl SPLl CONS IMP2 SPL2 STR c0n52
1 2.56 D-1 5.41 D-2 5.38 D-1 1.35 D-2 8.18 D-4 2.63 D-3 9.00 D-3
2 1.24 D-1 2.80 D-2 2.87 D-1 3.38 D-3 2.01 D-4 6.55 D-4 2.24 D-3
4 6.06 D-2 1.42 D-2 1.46 D-1 8.45 D-4 4.99 D-5 1.64 D-4 5.59 D-4
8 3.00 D-2 7.17 D-3 7.39 D-2 2.11 D-4 1.24 D-6 4.12 D-5 1.40 D-5

[2] E.S. Oran and J.P. Boris, Numerical Simulation of Reactive Flow, Elsevier,
New York, 1987.

[3] Gilbert Strang, On the Construction and Comparison of Difference
Schemes, SIAM J. Numer. Anal., vol 5 no 3, pp 506-517 (1963).

[4] Not known yet

[5] I.S. Wichman, On the Use of Operator-Splitting Methods for the Equations

[6] Hermann Haken, Synergetics, Springer-Verlag, New York Heidelberg

of Combustion, Combustion and Flame , vol83, pp240-252,1991 .

Berlin, 1983

24

Distribution List:

1 MS0847
1 MS111O
1 MS111O
1 MS0847
5 MS111O
1 MS111O

1 MS 9018
2 MS 0899
1 MS 0612

1 MS 0161

Sudip Dosanjh, 09233
David Womble, 09214
Richard Lehoucq, 09214
Curt Ober, 09233
Louis Romero, 09214
John Shadid, 09233

Central Technical Files, 8945-1
Technical Library, 9616
Review & Approval Desk, 9612

Patent & Licensing Office, 11500
For DOE/OSTI

25

	On the Accuracy of Operator-Splitting Methods for Problems with Multiple Time Scales
	Abstract
	1 Introduction
	2 The Modified Equation
	3 Higher Order Splitting Methods
	4 The Methods to be Tested
	5 Some Linear Test Problems
	5.1 Problem 1
	5.2 Problem 2
	5.3 Problem 3
	5.4 Problem 4
	5.5 Problem 5
	5.6 Problem 6
	5.7 Summary of Linear Test Problems

	6 A Nonlinear Test Problem
	6.1 Problem 1

	References
	Distribution List

