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Abstract

We consider the problem of optimally placing water qualépsors in municipal water networks under the
assumption that sensors may fail. We give a non-linear ftatimn of the problem, then a linearization of
this formulation in the form of a mixed-integer program (NlIRVe explore the scalability limits of this for-
mulation, then use it as a bounding procedure for a local skedreuristic that optimizes the same objective:
minimizing the expected impact of a contamination evenis fi¢uristic can find optimal or near-optimal
solutions on networks with over ten thousand junctions.
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1 Introduction

Previous work by this research team and others has genesatsdr placement optimization models that
optimally placeperfectsensors in water distribution networks. This simplifyirgsamption has allowed us
to make significant progress in our understanding of thedumehtal optimization problem. However, it is
clearly an unrealistic assumption. If sensors may failpthesensor layout determined by a perfect-sensor
method will be flawed. Conceivably, for example, severadtipn scenarios of great expected impact could
be mitigated by the strategic placement of a single perietsa. However, it would be unwise to assume
that these potential injections are therefore mitigatdae 3ensor could fail, of course, and then the severe
impact would occur in its entirety.

In other work,Receiver Operator CurvgROC curves) are being generated to track the charactsristi
of various sensors at given locations throughout a watevar&t(Klise and McKenna, 2005; McKenna et al.,
2006). Assuming that the sensor returns continuous numaites, say for the level of total organic carbon,
the ROC curve plotsensitivity(the percentage of true positive events that are caughguserspecificity
where specificity is the probability of a false positive riegd A point on the ROC curve is determined only
after an event detection threshold has been set. For a pgital example, consider a threshold set at zero,
where greater values are indicative of contamination. idase, contaminant detection is signaled at every
time step. In other words, all true events are caught (thsitbgty is 100%) and all non-events are also
signaled as positives (the specificity is 0%). This holdstiwhiethe sensor is a random number generator or



an idealized perfect sensor. Dialing this threshold up tdiore values, and then high values, we generate
many points along this curve.

We assume that ROC curve information is available, and ttgarés have used human judgment to set a
threshold that gives the highest possible sensitivityegithat the specificity must be very high. That is, we
assume that false positive events are not tolerated moneotize every few months. Higher false positive
rates would probably cause a utility to start ignoring itesse events. At threshold values with such high
specificity, we may be forced to tolerate sensitivities ia 590% range or even lower. With sensors failing
to detect true events (givinglse negativesso frequently, it becomes increasingly important to makleir
failures before committing to a placement.

2 Problem Input

As in previous work (Berry et al., 2005, 2006) , we take asimjata a network model from which a program
such as EPANET can calculate hydraulics and perform waitgitgsimulations. In addition, we consider
an ensemble of contamination events described by contientratart time, duration, and location. New to
the imperfect sensor models are two additional input pararse

¢ We assign each node in the network tedection classFor example, some areas of the network may
experience large variations in water quality, while othees/ not. The first group of locations may be
characterized by ROC curves that predict lower sensitihiin the second group.

¢ We assigrfalse negative probabilitie® each class of potential sensor locations by appealingd©é R
curves.

With these data we can find an optimal or near-optimal salutiothe sensor placement problem, as-
suming that a sensor placed at a location will fail to detetrtia event with the false negative probability
associated with that location.

In Section 3, we review the MIP formulations for our basic risd- those that assume perfect sensors.
Then in Section 4 we give our new model for handling imperttsors. The latter is an extension of the
basic model.

3 TheBaselmperfect-Sensor MIP Model

In this section we review our base integer programming @@ntilation of the sensor placement optimiza-
tion problem. We assume a fixed budgetpoensors, each of which can be placed at any junction in a
distribution network. We do not allow installation of serson pipes at this time because that would re-
quire water quality information along the pipes. We rely aatev quality simulations from EPANET, which
does not currently provide contaminant concentrationriétion along pipes. We assume that sensors are
capable of detecting contaminants at any concentratial, land we assume that a general alarm is raised
when contaminant is first detected by a sensor, such thairgier consumption is prevented.

We model a water distribution network as a gr&ph= (V, E'), where vertices iV’ represent junctions,
tanks, or other sources, and edgesFirepresent pipes, pumps, and valves. In higher-granuléiry,
skeletonized) network models, each vertex may represesttine neighborhood or other geographic region.
We assume that demands follow a small set of patterns, &g pattern per hour throughout the day. Each
pattern represents the demand during a particular timevadten a “typical” day. Because each pattern
holds steady for one or more hours, we assume the gross flawatbastics induced by these demands
holds steady during the time period associated with tha¢pat



Let A denote the set of contamination scenarios against whicimsoseonfiguration consisting ¢f
sensors is intended to protect. A contamination scenangists of individual contamination events, each
of which can be characterized by quadruples of the formt,,t¢, X), wherev, € V is the origin of the
contamination event, andt, are the contamination event start and stop times Jansithe contamination
event profile, e.g., arsenic injected at a particular cotmagan at a given rate. The quadtuples can easily
be extended to account for multiple coordinated contarunavents. Let andi} respectively denote the
start and stop times of the contamination event for scemaridhe impact of a given contamination scenario
can be evaluated using water quality analysis software, ERANET (Rossman, 1999)) to compute the
contaminant concentration at each junction in the netwarknftime ¢t¢ to an arbitrary point;, > t2 in
the future. The results of such an analysis are expresseunstof concentration time-series for each
v; € V, with samples at regular (arbitrarily small) intervals hiit [¢t2,¢;]. Our discussion throughout the
paper assumes that when contamination scenarios consisiltiple events, these events involve identical
contaminant types. It should be clear from our definitionaitamination events that this is not necessarily
true, and thus the approach described here naturally dezxesta

It is usually straightforward to compute the total impaff(t), the total network-wide impact of a con-
tamination scenaria at any given time > t?. A key characteristic of our base formulation is that it ceps
a wide range of possible definitions of impact including dapan exposed to contamination, volume of
contaminant released from the network, total length of mmimated pipe, etc. In general, impact increases
monotonically with time to detection. Let,; denote the earliest timeat which a hypothetical sensor at
junctionv; can detect contaminant due to a contamination scemarlbno contaminant ever reaches,
then,; = t*, wheret* denotes the stop time imposed on the water quality simuistiotherwise;y,;
can be easily computed from). We next definel,; = d,(74;), i.€., the total impact of a contamination
scenaria: if the contaminant is first detected by a sensar;afFinally, letq denote a “dummy” location that
corresponds to failed detection of contamination scenarithe impact,,, is defined as the total impact of
contamination scenarioif it is not detected beforé".

Our formulation models the placement pfsensors on a st C V' vertices, with the objective of
minimizing the expected impact of a sdtof contamination scenarios. A likelihoad, > 0 is assigned to
each contamination scenawoe A, such that_ ., a, = 1. Let £, be the subset of vertices iU {¢}
that could possibly be contaminated by scenari®he design objective is then expressed as:

Z Qg Z daiTais

(IGA Zeﬁa

wherex,; is an indicator variable with value equal toif location 7 raised the alarm (i.e., first detected
contaminant) for contamination scenati@nd0 otherwise. Ifz,; = 1, we say that location withessegor
is a witness for) contamination event

Our complete base model formulation — which we denote by BSReasily expressed as the following
MIP:

(BSP) minimize ) aq Y duiTai

acA iELa
Sier. Tai=1 Ya€ A
Tai < S; VGEA,iGEa_{q}

where YienSi <P
si € {0,1} Vie L
0<z,u <1 Yae A,i € L,

The binary decision variable; for each potential sensor locatiéne L equalsl if a sensor is placed at
locationi and0 otherwise. The first set of constraints assures that exan#ysensor raises the alarm for
(witnesses) each contamination scenario. The second qgitase that a location cannot raise any alarm
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unless there is an installed sensor. The last constraiot@¥ the limit on the total number of sensors. The
objective function chooses the best (lowest impact, diggdiven the constraints) sensor as a withess for
each contamination scenario

BSP was first described by Berry et al. (2004). Remarkabky,BBP is identical to the well-known
p-median facility location problem (Mirchandani and Francdi990). In the»-median problemp facilities
(e.g., central warehouses) are to be locatechquotential sites such that the sum of distandgsbetween
each ofn customers (e.qg., retail outletgland the nearest facilityis minimized. In contrasting the BSP and
p-median problems, we observe equivalence between (1) rseqsd facilities, (2) contamination scenarios
and customers, and (3) contamination impacts and distal¢ese the BSP allows placement at mostp
sensorsp-median formulations generally enforce placement op &cilities; in practice, the distinction is
irrelevant unlesg approaches the number of possible locations.

Finally, we use a slightly revised formulation of BSP in te@mand our computational experiments.
We have observed that for any given contamination scenatioere are often many total impacts; that
have the same value. If the contaminant reaches two jursctibapproximately the same time, then these
two junctions could witness the contamination event withghme impact values. For example, this occurs
frequently when we use a coarse reporting time-step witkwtter quality simulation. This observation has
led us to consider the following generalization of BSP:

(cBSP) minimize > g Y daia
a€A  ief,
ZiE[ﬁa Tgi = 1 Va e A
Tai < S; + Zjeca\ﬁa:daj:dai s; YacAjiel,
where dierSi <D
s; € {0,1} Vie L
0<ze <1 Va e Aie L,

where £, C L, such thatd,; # dg; forall i,5 € L. This revised formulation treats sensor placement
locations as equivalent if their corresponding contanimaimpacts are the same for a given contamination
event. In doing so, the fundamental structure of this foatioh changes only slightly, but this IP may
require significantly less memory (by eliminating dupledy; values). However, it is important to note that
¢BS P andBS P have the same set of feasible solutions, so they can be ufiad the same optimal sensor
placements. In preliminary experimentd3.S P was often ten times smaller th@S P, and corresponding
reductions in optimization runtime have been observed.

We can achieve further reduction in problem size by stromggress aggregatiangrouping witnesses
whose impacts are close to each other, but not equal. Thectopshe group is the impact of its worst
member (conservatively). The optimal solution to this feabis only approximately optimal for the original
problem. We can trade off size of formulation (and speed hitem) for approximation quality.

For simplicity of presentation, our subsequent discuseithrefer to B.S P when describing these two
formulations. However, theBS P is the actual MIP model used in teva-sp.

4 ROC-Based | mperfect Sensor Model

As suggested above, the new model presented in this seciomas that each sensor location has a false
negative probability and a false positive rate. We assulatesinsor failures are independent. We expect that
the performance of a sensor will depend on its environmértari also depend on the components within
the sensor (if the sensor is really a package of multiplesmarisors). However, for this first discussion,
we will assume that there is only one type of sensor and onipalldixed number of environments (say,
low, medium, and high water quality variation). Though d resawork may have many microenvironments
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depending upon the sensitivity of the sensor, we expecirfietly at least, those who generate input data
will use this kind of course granularity. We assume we caivegrobabilities for false negatives and false
positives (false alarm rate) from sources of sensor uriogytdata, such as ROC curves or vendor-specific
time-between-failure information. We treat false negagiand false positives separately in Sections 4.1 and
4.2, respectively.

4.1 False Negatives

In the base sensor placement formulatiat(P), we place sensors to minimize the expected impact taken
over the given contamination scenarios. Each scenario lsaggke (best) witness if sensors are perfect.
Given a probability of detection (or sensitivity) at juratij, p;, we can change the precise impact for
a scenario to an expected impact. For scenarigort the potential witnesses by increasing impact (better
witnesses have lower impact on the network and populaticet)C,; C £, be the set of junctions preceding
and including junctiory in the ordered witness list for the contamination scenarfwitnesses that would
be at least as good as locatiph Let z,; be the probability that a sensor placed at junctias the first to
detect the contamination scenario. Thus:ithgare no longer binary, but are still bound betweeand 1.
The objective function doesn’t change.

Computing the witness probabilities directly involves gwots of the sensor-placement variables and is
therefore nonlinear:

voj=pjs; [ (1—pisi),
i€La;—{j}

Ignoring the sensor-placement variabie$or the moment, this expression is the probability thatla t
witnesses that are better thafail times the probability that the sensor at locatjosucceeds in detecting the
event. We multiply by the sensor-placement variables toaaicfor actual placement (a previous witness
doesn't have to fail if it has no sensor; locatiprannot succeed if it has no sensor).

We now describe one way to linearize these constraints ®eth. If the number of sensors and
environments (number of probabilities/behaviors) is tams then this linearization does not explode com-
binatorially. We demonstrate this for three classes ofrermnents, which we equivalently call sensor types.
This shows reasonable generality without being too cunabees Let the three false negative probabilities
for typesl, 2, and3 bep., ps, andp,, respectively.

Consider injection scenari@. This injection will have only one witness, but what the weis is now
depends not only on the placement of the sensors but alscediptbbabilistic) instantiations of the false
negatives. Let's assume the set of potential witnessesijfetiona, £, are sorted by increasing impact, so
the best witness is first in the list. If there is a sensor atfilgt location and the sensor detects injection
a, then it is the witness. No other sensors have an opporttmite a witness. If the first sensor fails, then
the second sensor has an opportunity to be the witness. u€deeds, then it is the witness with no other
locations having a chance, and so on. Thus the possibleroatcof the random sensing events are disjoint.

For ease of exposition, we define a set of auxiliary variablggo be the probability that all sensors
in L,; fail to detect injectiorz. This probability considers both sensor placement detésand detection
failure. In the actual IP model, we express the in terms of other variables. To compute thg, with
a polynomial number of variables, we take advantage of thallsmmber of sensor types. We do not
care which individual locations if,; have sensors, we only care about the number of each typeaat h
sensors. In particular, if there ajaype-1 sensors (with sensitivity,,), k& type2 sensors (with sensitivity
pg), andl type-3 sensors (with sensitivity, ), then we have

Zai = (1 _pa)j(l _pﬁ)k(l _pw)l-



We now give constraints that allow the IP to determine thesents. This will require a number of
related classes of new variables:

e Letc,ji; be a binary variable that isif and only if the IP places sensors so that locatidis have
exactlyj type-1 sensorsk type2 sensors, antitype-3 sensors.

Let £, C L,; be the typet locations inC,;.

Let Efi C L,; be the type2 locations inL,;.

Let £, C L,; be the type3 locations inL,;.

Letc? . equal 1 if there arg type-1 sensors inC,; and O otherwise.

aij

Let Cfik equal 1 if there aré type2 sensors irC,; and O otherwise.
e Letc), equal 1 if there arétype3 sensors irC,; and 0 otherwise.

Any givenL,; and sensor placemesy, has a specific count of sensor types. So exactly one ef,the
is equal tol. We do not need to enforce this explicitly since it will be iileg by the other constraints.
We do, however, explicitly enforce this constraint on théi¢gator counts for the separate sensor types:

|£g;]
chij =1 1)
=0
22|
anﬁij =1 (2
k=0
1£3,]
ZCZU =1 (3)
1=0

Equations 1-3 specify (decide) the number of sensors of g@ehin £,;. We make sure the individual
sensor placement decisions give the correct counts of gpeh t

|£

Yo = D sm (4)
7=0 meLs,

122

S = Y sm (5)
k=0 meﬁfi

1£7.]

D di; = D Sm (6)
=0 meﬁzi

For example, in equation 4, the left side is equal to the nurobéype-1 sensors selected by tlag;;
variables and the right side is the number of tyipecations that receive a sensor.
We now link the indicator variables for the individual sengges to the overall count variables:



e 1L,

Caij = Z Z Caijkt; 0 < J < [LG; (7)
k=0 [=0
15,1 1£3;]

A = DY Caij, 0 <k < 1£7| (8)
7=0 [=0
lcey | 122

= DD Caikt, 0 <L <L, 9)
=0 k=0

For example, Equation 7 enforces that{f; is 1 for somej (the IP has decided there will hetype-1
sensors inC,;), then the indicator variable specifying all counts;;,y = 1 must have the appropriate
type-1 count (' = 7).

Finally, we finish by linking across pairs of types:

|£5i
Loteyi—1 < Y e 0<k<|L00<1 <L), (10)
j=0
1201
ool —1 <> caiji, 0 < j <|Lg],0 <1< L, (11)
k=0
£,
Cgij+c§ik_1 < D i, 0< < |LG,0< k< s (12)
1=0
For example, Inequality 10 only has an effect if the IP hasd#gtthere will bek type2 sensors and
type-3 sensors inC,;). In this case, then the indicator variable specifying alintsc,;;.» = 1 must have

the appropriate typ&-and type3 counts &’ = k andl’ = [).
Once the (complete) count variables are correctly set, weompute the,;:

G181 16% |
Zai = D O > Caijii(l = pa) (1= pg)*(1 = py)’ (13)

7=0 k=0 [=0

We are now prepared to compute (via constraints) the witpessabilitiesz,;. We can compute the
first witness probability directly, since the first sens@ I@ng as it exists), has an opportunity to sense the
event. It succeeds with probabilipy (wherep; is one of the three sensing probabilities ps, p- .

Tgl = P151 (14)

Because there is only one witness for each injection (ouésoane disjoint), we have the following set
of constraints:

7
Zai =1 =) war,Vi=1...[L,] (15)
r=1
This says that the probability we have not detected an evettidotime the first potential withesses
have had an opportunity to sense is equal to one minus thalpitity that one of these potential witnesses
succeeded. Because the IP has “computed” each of ttdirectly from the count variables and the value
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of wg; directly, these constraints completely determine therotligmess probability variables in order from
2 on up.

Thus the formulation for incorporating only false negagieelds constraints 1-15 to tii&S P formula-
tion. We can remove the constraintg; < s;, since those are implied by other constraints.

Unfortunately, this formulation has a large number of bjnaariables, so we must consider modifica-
tions to make it more practical. It's possible this versiafi ke tractable for two sensor types.

4.2 False Positives

We can consider false positives under both normal operatingitions and during (or right before) an event.

4.2.1 Limiting False Positives under Normal Operation

We can enforce a global limit on the false positive rate. Wauiase we have (independent) false positive
ratesf; for each possible sensor locationThese rates will be predicted by the ROC curves associated w
each possible sensor location. Thus we simply enforce tbe fesitive tolerance directly:

> fisi < p. (16)

i€l
4.2.2 Penalizing False Positive I nterference with Event Detection

We now consider the extremely unlikely case in which a falssitiye occurs during an injection event.
Recall that we have assumed that the event detection thdssace set to limit the false positive rates to
very low numbers, such as one per three months. Still, if sefglositive actually occurs during a real
injection event, it would be a potentially serious probldiwe assume that the water utility is willing and
able to send out only one truck to verify the event with a maeample, it would be a disaster if, during a
real injection, the truck responded to a false positive irepdnd went to an uncontaminated section of the
network. The utility would have apparent confirmation of lsdaalarm, when a real event was in progress.
Thus, we penalize such a false positive during an injectiofolring a worst case impact, as if the injection
had never been detected. This holds even if other sensergligtiect the injection.

Consider the faulty-sensor IP that handles false negatimesenforces a tolerance on false positives
during normal operation. We assume all optimal solutionth&d IP will have the false-positive constraint
(16) satisfied with equality. That is, in order to minimizepatt, the IP will almost certainly be pushing the
boundary on false positives. Therefore, we assume thaatbe positive rate in the sensor system is simply
the constanp. We can think of this as an arrival rate and compute (offlihe)drobability of a false positive
during any particular time interval (this is independenttad actual time; as with all Poisson processes, it
will depend only on the interval length). We denote this taibty p(¢), wheret is the length of the time
interval in minutes.

We can model the effect of false positives that occur durlrgwindow of the injection. However,
we currently only discuss the highest-order effect. If weuase a delay of a full day between responses,
then any false positive occurring within 24 hours of the étifn start time will remove any possibility of
detecting that injection. The probability of this #§1440), given that there ar@440 minutes in a day.
Therefore, we need only modify Equation 15, subtractmigi40) from the right side. This reflects the
initially reduced probability of witnessing injectian



5 A Local Search Heuristic for the Imperfect Sensor M odel

In Watson et al. (2005), variations of a GRASP local searalrigiic are applied to the sensor placement
problem under perfect-sensor assumptions (Resende amdWe004). These heuristics operate by iter-
atively improving an initial (possibly random) solutiom, this case a sensor placement, and then evaluating
every “neighboring” solution. The neighborhood operatmight consist, for example, of trying to replace
each sensor in the current solution with a sensor at somertlyriuncovered location. The best neighboring
solution then becomes the current solution, and the nerlolod search process is repeated until a locally
optimal solution is identified.

Fortunately, the structure of the data associated with mggnsor placement problems is remarkably
amenable to solution via the GRASP heuristic. In fact, dytire processing of many perfect-sensor problem
instances on many different networks, we have not seen arcagech our MIP formulations have found a
solution any better than the heuristic’s solution. To pardis differently, whenever the MIP has solved, it
has proven the heuristic solution to be optimal. This agplienetworks with thousands of nodes.

It is a straightforward matter to adapt the GRASP heuristibdandle the imperfect sensor case. The
only difference is that the objective value of each neighigpsolution is now computed using the imperfect
sensor objective. Efficient computation of these objectiakies is possible, but the data structures and
algorithms are beyond the scope of this conference paper.

As we shall see, the remarkable success of this local seatgiistic continues with the new imperfect
sensor model.

6 Experiments

We have implemented our imperfect sensor optimization nsddehree different ways:
e As a non-linear mathematical program
e AsaMIP
e As a local search heuristic

In each of these implementations, we have omitted the |@gio@ated with false positive detection. This
logic could be included easily, but recall that we assumettiespecificity imposed by human interpreters
of ROC curves will be extremely high, making false positieetremely unlikely. In this context, we chose
for our experiments to handle false negatives only.

Details of our non-linear mathematical program are omjtesiare results. Open-source non-linear
solvers with default settings generally were not able teesthis formulation. Commercial solvers were
able to solve the “small” and “medium” instances descrilmefiection 6.2 below, but the resulting fractional
solutions are not globally optimal, and therefore are natelobounds on the optimal solution. With im-
proved non-linear global optimizers, this non-linear fatation may become a powerful tool for bounding.

We had more immediate success in finding bounds with therlmezh MIP formulation described in
Section 4, though this success was limited to networks witidreds of nodes rather than thousands. We
were able to use this model to find optimal solutions. Thesatisas matched those of the revised local
search heuristic, proving its output to be optimal for thiestances.

6.1 Evaluating Solutions

Recall the formulation of the objective function in our mtxde



Witness 1 2 3 none
Probability (,;) | 0.3 | 0.2 | 0.15| 0.35
Impact 100 | 200 | 300 | 5000

Table 1: Example computation of the objective function viritiperfect sensors. The expected impact of this
injection is0.3(100) + 0.2(200) + 0.15(300) + 0.35(5000).

Z Qg Z daiTai

acA €L,

In the context of perfect sensors, this says that the cossaligion is the sum over all possible injections
of the contaminant at each junction. Givenexactly one of the witness variables; is 1. In other words,

a perfect sensor at locatiarwitnesses the injection, and we are therefore certain (ape@uality of the
simulations) that the impact of that injectionds;. Note thatd,; may be an impact incurred after some
assumed response delay. Still, knowing that the sensorcatidm i is perfect, we know when to start the
response timer.

When we have imperfect sensors, this objective functiomtisrpreted differently. In particular, the
witness variables,; are now witness probabilities. For a trivial example, cdasiTable 1. A hypothetical
injection hits three nodes at locations that could host a@enAfter hitting these three, it may continue
to impact them for some time, and may hit other nodes that ¢test sensors. In the table, we see that a
hypothetical solver has found that location 1 has a 30% a@hahbeing the first witness of the contaminant,
location 2 has a 20% chance of being the first withess, lata&ibas a 15% chance, and there is a 35%
chance that all three will fail. The expected impact of thigction, therefore, is a discrete random variable,
and its expected value is

0.3(100) + 0.2(200) + 0.15(300) + 0.35(5000) = 1865.

The imperfect sensor solution, therefore, is an expectade\af the expected values of the impacts of the
individual injections.

A sensor placement found by any of our models (perfect or ifepesensors) may be evaluated in the
context of either perfect or imperfect sensors. Our metluggyofor measuring the value of the imperfect
sensor model will leverage this property.

6.2 Test Instances

We evaluate our models on three different water networkssmall” instance with about 400 nodes, a
“medium” instance with about 3000 nodes, and a “large” imsgawith about 11000 nodes. Figure 1 shows
morphed pictures of these networks to give some idea of thealogy without revealing true coordinates.
The latter are significantly different from those shown ie flictures. These are the same three instances
used in Berry et al. (2006). As in that work, for each instameecreate injection ensembles containing
injections at each non-zero demand node, for a single stet The injection duration is 24 hours, and the
strength is a large number of cells per liter (which we ontiémtionally).

For each instance, we consider two different sets of threertien classes:

¢ false negative probabilities 0.25, 0.5, and 0.75.
¢ false negative probabilities 0.7, 0.75, and 0.80.
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(a) (b)

Figure 1. Three network instances: (a) a “small” instancéhabout 400 nodes, (b) a “medium” instance
with about 3000 nodes, and (c) a “large” instance with abd00D nodes.

Network | Perf. Sens. Sol.(PSS$)PSS/Imp. Obj.| Imperf. Sens. Sol| %of PSS impact
small 63.25* 298.55 182.35* 61%
medium 1061.09* 2869.62 2288.43 80%
large 518.29 1070.62 720.82 67%

Table 2: Results for the number of people sickened duringladical event under sensor placement found
by perfect-sensor and imperfect sensor models. The thitorocogives impacts with sensors placed accord-
ing to the perfect sensor solution. The fourth column lisesresult of evaluating the perfect sensor solution
in the context of sensor failures. The fifth column shows trauation of the imperfect sensor solution, and
the fifth shows the benefit of using the imperfect sensor féatimn. The asterisks indicate solutions that
have been proven to be optimal by our MIP formulations.

The network nodes were partitioned into three nearly eqizald groups in an arbitrary way (by node label
order).

The results presented in Section 6.3 are compiled undedinétadly unrealistic assumption that there
is zero response delay. In other words, the instant that sosémappens to detect the injection all impacts
stop accumulating. We discuss the implications of this raggion and removing it below.

We consider population to be highly correlated to demand: “Pleople sickened” figures below make
use of this assumption rather than census or billing data.

6.3 Results

We find that the ROC-based imperfect sensor MIP is scalabli tipe small instance of a few hundred
nodes, but not beyond that without further work. Howevee, litcal search heuristic can find provably
optimal solutions for these small instances. Further,ritfgad solutions for the medium and large instances
that are likely to be optimal or nearly optimal.

The key question is whether the extra effort involved in niodeimperfect sensors is justified. Are
sensor placements found by the perfect sensor models poogleywhen evaluated in the context of sensor
failures, to make the added complexity of the imperfect sensdel worthwhile? We explore this question
presently by discussing the results shown in Table 2. Thebewusnpresented in this table represent the
aggregate population sickened (but not necessary kilkgthdocontaminant, in this case a biological agent.
We use the Murray et al. (2006) health impacts model to calleithe expected number of people exposed
to and sickened by the agent.
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Network | num sampleg Perf. Sens. Sol.(PSS)Imperf. Sens. Sol} ROC-based MIP bound
small 5 0.14s 0.39s 13070s
medium 5 8.74s 247s NA
large 1 36.36s 2155s NA

Table 3: Running times for the local search heuristic in @gfgrt sensor and imperfect sensor forms. Note
that although the times increase for the imperfect sensam,fthey are still easily tractable even for large
networks. The number for the ROC-based MIP is the time ustibiver bound equals the heuristic solution.

Consider the small network. The expected impact over atiipns is about 63 people sickened. Taking
this same sensor placement, and calculating the expectgacimvhen sensors can fail, we find a more
realistic expected impact of about 298 people sickened. édewy the optimal solution, when failures are
allowed, is about 182 people sickened. Thus, placing sensith the imperfect sensor model saves an
expected 116 people from exposure over the perfect senstelmdfe obtain similar results for the medium
and large instances. Significant fractions of the people wbold have been exposed under the perfect
sensor model are spared under the imperfect sensor model.

Table 3 shows timing results for the local search heuristicROC-based MIP on these problems. Note
that the MIP takes many hours to establish a lower bound th&thes the heuristic solution, thus proving it
optimal. It becomes too large to solve at all for the mediumh lange instances. The heuristic, on the other
hand, easily handles even the largest of these instancessitian one hour.

We give three caveats concerning these results:

e Large numbers of sensors to be placed will decrease theeayppaavantage of the imperfect sensor
model.

e Long response delays will also decrease this advantage.

e Other objectives such as mass of contaminant consumedestt@{tcontamination may have smaller
relative advantages.

However, considering that sensor installations are vepessive, we don’t expect to be granted budgets
for hundreds of fixed sensors. As for the second point, a lesganse delay affects more than the relative
advantage of imperfect sensor models. If the delay exteagerta a day or two, the whole enterprise of
placing sensors becomes questionable. Much of the pdténfiact mitigated by sensors disappears with
long response delays. We plan to continue our comparisdanseba perfect and imperfect sensor models in
the presence of moderate response delays in the full paper.

We mention other objectives simply because we have andcaglgtience that the population exposed
numbers we have given show a greater relative advantagédantperfect sensor model than we see in
preliminary trials with other objectives. However, thogals were with larger numbers of sensors. We will
explore this issue further in the full paper.

7 Summary

We have presented a naturally non-linear formulation ofgtablem of optimally placing water sensors
when sensors may fail. We linearized this model to producdR &hd used that formulation to prove the
optimality of heuristic solutions generated for a smaltamee with several hundred nodes. We have also
demonstrated that the heuristic solutions can be geneeffiesncy and can add significant value in terms
of reduced expected impacts.
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