Fine-Grain Power-Gating for Run-Time Leakage Power Reduction

Masaaki Kondo

The University of Electro-Communications

Background

Power efficiency

- □ A first class design constraint in today's computer systems
- Key to achieve good performance/cost ratio even for supercomputers
 - Electrical power costs \$\$\$
 - Size of the footprint
 - Reliability / availability

Current Research Project

- Innovative Power Control for Ultra Low-Power and High-Performance System LSIs
- 5 years project which started October, 2006
- Supported by JST (Japan Science and Technology Agency)
- Project Members (faculty members):
 - Prof. H. Nakamura (U. Tokyo): architecture [leader]
 - 🗆 Prof. M. Namiki (Thyo Uni
 - 🗆 Prof. H. Amano (Keid
 - Prof. K. Usami (Shibauk)
 - Prof. M. Kondo (Univ. of

CP-PACS: The world fastest supercomputer in 1995

Young Investigators Symposium 2008

Leakage Power

Leakage current

- Flows even when circuits are idle
- Expected to increase in the future
- Leakage reduction techniques
 - □ Standby time:
 - power-gating, DTCMOS, VTCMOS, …
 - Runtime:
 - Cache-decay, Drowsy-cache, …
- Leakage for logic parts (ALU, decode etc.) is still a matter

We are trying to reduce runtime leakage power of logic parts

Power-Gating

- Power-gating (PG) technique
 - □ Sleep transistors between GND and NMOS transistors of logics
 - Cuts power-supply to the logic blocks
 - Active/sleep mode controlled by sleep signals
 - □ Sleep transistors consist of High-Vth transistors
 - significant leakage power reduction

Strategies of Power-Gating

- Currently for a processor with 5-stage pipeline
- Two PG strategies
 - 1. Put each EX-unit in sleep mode operation-by-operation
 - 2. Put all the EX-units in sleep mode when cache misses occur

Challenges of Run-Time Power-Gating

- Wake-up latency when activating a execution-unit
 - □ The unit cannot be used immediately after waking-up
 - □ Pre-wakeup before the unit is actually needed to hide the latency
 - □ In MIPS pipeline, this latency is perfectly hidden
- Energy Overhead for sleep-mode control
 - □ Caused by dynamic energy to control sleep transistors
 - □ Important to consider for fine-grain power-gating

Energy Overhead of Run-Time Power-Gating

Sleep period should be longer than BEP

□ Otherwise, total energy consumption increases

Break Even Point of Each Unit

- BEP is short when the chip temperature is high
 - □ Leakage current is temperature dependent
- We need PG strategies with taking BEP length into account

PG Optimization by Compiler/OS

Compiler and OS enable/disable Power-gating

Depending on expected sleep period and BEP

- Compiler based technique
 - Extended ISA
 - Statically analyzes sleep period from instruction sequence

Operating System based technique

- □ A status register for each Ex-unit to enable/disable PG
- □ OS controls the status registers depending on the chip temperature

Implementation

- Real implementation
 - MIPS R3000 based CPU
 - 90nm CMOS technology
- 41% area overhead compared with Non-PG one
 - Power Switches
 - Sleep controller

The Utilization of Each Unit

- ALU is frequently used
 - □ Should be always activated except cache misses happen
- Average sleep period
 - □ ALU/shift : about 20-40 cycles (mainly caused by cache misses)
 - □ Mult/Div: about 10000 cycles

Average Leakage Power

 $(439\mu W \rightarrow 232 \ \mu W)$

- Run-time power-gating for leakage-power reduction
- Implemented in a MIPS R3000 like processor
 - Several features for power-gating management
 - □ 47% leakage power reduction
- Useful for HPC processors
 - □ Many execution (floating-point) units
- Future work
 - Evaluation with real chip
 - Application to more sophisticated processors

Acknowledgements

- Prof. H. Nakamura
- Prof. M. Namiki
- Prof. H. Amano
- Prof. K. Usami
- Dr. Y. Hasegawa
- Mr. N. Seki
- Mr. L. Zhao
- Ms. J. Kei

- Mr. D. Ikebuchi
- Mr. Y. Kojima
- Mr. T. Kashima
- Mr. S. Takeda
- Mr. M. Nakata,
- Mr. T. Sunata
- Mr. J. Kanai
- Mr. T. Shirai.

Thank you!

Questions / Comments?

Young Investigators Symposium 2008

Backup Slides

Course-grain vs. Fine-grain

PG used by Power Ring

- Course-grain Power Gating
 - □ Traditional PG is used Power Ring
 - Added Virtual Ground(VGND) ring and Sleep tr in Core
 - □ Unit of PG is a Core or Module
 - Appling for a large semiconductor domain and controlled for long time scale (millisecond order)

- Fine-grain Power Gating
 - A few Cell are sharing the VGND (Locally shared)
 - The standard Cells are fixed for PG
 - Include the VGND rail
 - Add New port for the VGND
 - Power Switch Cell, Isolation Cell, Level shifter is added

Young Investigators Symposium 2008

Geyser-0 Design Flow

- Geyser-0 Specification
 - □ ASPLA 90nm technology
 - □ Chip size: 2.5 mm * 5 mm
 - Core VDD: 1 V
 - Operation Frequency: 200 MHz
- The Common Design flow added new phases
 - Insert Power Switch Cell, Level Shifter and Isolation Cell
 - Optimize these Cells and Re-Route

Young Investigators Symposium 2008

Challenges of Run-Time Power-Gating

- Wake-up latency when powering a execution-unit
 - □ Pre-wakeup before the unit is actually needed to hide the latency
 - □ In our design, we need to wakeup the unit one cycle before
 - Our target is 200MHz CPU
 - According to our estimation, wake-up latency is about 4 ns at maximum
- Energy Overhead for sleep-mode control
 - □ Dynamic energy caused by sleep transistors control
 - □ Important to consider for fine-grain power-gating

Background

Power efficiency

- □ A first class design constraint in today's computer systems
- □ Key to achieve good performance/cost
 - ratio even for supercomputers
 - Electrical power costs \$\$\$
 - **50MW**
 - Small footprint
 - Reliability / availability
- □ The green500 project
 - Power efficiency of top500 supercomputers
 - Maintained by Prof. Chou
 - Importance of power efficiency

Leakage Power

Leakage current

- Flows even when circuits are idle
- Expected to increase in the future
- Leakage reduction techniques
 - □ Standby time:
 - power-gating, DTCMOS, VTCMOS, …
 - Runtime:
 - Cache-decay, Drowsy-cache, …
- Leakage for logic parts (ALU, decode etc.) is still a matter

We are trying to reduce runtime leakage power of logic parts

source: Shekhar Borkar, Intel