Actual source code: ex5f.F

  1: !
  2: !  Description: This example solves a nonlinear system in parallel with SNES.
  3: !  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular
  4: !  domain, using distributed arrays (DAs) to partition the parallel grid.
  5: !  The command line options include:
  6: !    -par <param>, where <param> indicates the nonlinearity of the problem
  7: !       problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)
  8: !
  9: !  Program usage:  mpiexec -n <procs> ex5f [-help] [all PETSc options]
 10: !
 11: !/*T
 12: !  Concepts: SNES^parallel Bratu example
 13: !  Concepts: DA^using distributed arrays;
 14: !  Processors: n
 15: !T*/
 16: !
 17: !  --------------------------------------------------------------------------
 18: !
 19: !  Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 20: !  the partial differential equation
 21: !
 22: !          -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 23: !
 24: !  with boundary conditions
 25: !
 26: !           u = 0  for  x = 0, x = 1, y = 0, y = 1.
 27: !
 28: !  A finite difference approximation with the usual 5-point stencil
 29: !  is used to discretize the boundary value problem to obtain a nonlinear
 30: !  system of equations.
 31: !
 32: !  --------------------------------------------------------------------------

 34:       program main
 35:       implicit none
 36: !
 37: !  We place common blocks, variable declarations, and other include files
 38: !  needed for this code in the single file ex5f.h.  We then need to include
 39: !  only this file throughout the various routines in this program.  See
 40: !  additional comments in the file ex5f.h.
 41: !
 42: #include "ex5f.h"

 44: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 45: !                   Variable declarations
 46: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 47: !
 48: !  Variables:
 49: !     snes        - nonlinear solver
 50: !     x, r        - solution, residual vectors
 51: !     J           - Jacobian matrix
 52: !     its         - iterations for convergence
 53: !
 54: !  See additional variable declarations in the file ex5f.h
 55: !
 56:       SNES                   snes
 57:       Vec                    x,r
 58:       Mat                    J,A
 59:       PetscInt                its,i1,i4
 60:       PetscErrorCode ierr
 61:       double precision       lambda_max,lambda_min
 62:       PetscTruth             flg
 63: #if defined(PETSC_HAVE_ADIFOR)
 64:       ISColoring             coloring
 65:       PetscTruth             adifor_jacobian,adiformf_jacobian
 66: #endif

 68: !  Note: Any user-defined Fortran routines (such as FormJacobianLocal)
 69: !  MUST be declared as external.

 71:       external FormInitialGuess
 72:       external FormFunctionLocal,FormJacobianLocal
 73: #if defined(PETSC_HAVE_ADIFOR)
 74:       external g_FormFunctionLocal,m_FormFunctionLocal
 75: #endif

 77: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 78: !  Initialize program
 79: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 81:       call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
 82:       call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)
 83:       call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)

 85: !  Initialize problem parameters

 87:       i1 = 1
 88:       i4 = -4
 89:       lambda_max = 6.81
 90:       lambda_min = 0.0
 91:       lambda     = 6.0
 92:       call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-par',lambda,                &
 93:      &                           flg,ierr)
 94:       if (lambda .ge. lambda_max .or. lambda .le. lambda_min) then
 95:          if (rank .eq. 0) write(6,*) 'Lambda is out of range'
 96:          SETERRQ(1,' ',ierr)
 97:       endif

 99: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
100: !  Create nonlinear solver context
101: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

103:       call SNESCreate(PETSC_COMM_WORLD,snes,ierr)

105: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
106: !  Create vector data structures; set function evaluation routine
107: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

109: !  Create distributed array (DA) to manage parallel grid and vectors

111: ! This really needs only the star-type stencil, but we use the box
112: ! stencil temporarily.
113:       call DACreate2d(PETSC_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_STAR,            &
114:      &     i4,i4,PETSC_DECIDE,PETSC_DECIDE,i1,i1,PETSC_NULL_INTEGER,                &
115:      &     PETSC_NULL_INTEGER,da,ierr)

117: !  Extract global and local vectors from DA; then duplicate for remaining
118: !  vectors that are the same types

120:       call DACreateGlobalVector(da,x,ierr)
121:       call VecDuplicate(x,r,ierr)

123: !  Get local grid boundaries (for 2-dimensional DA)

125:       call DAGetInfo(da,PETSC_NULL_INTEGER,mx,my,PETSC_NULL_INTEGER,            &
126:      &               PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,                     &
127:      &               PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,                     &
128:      &               PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,                     &
129:      &               PETSC_NULL_INTEGER,ierr)
130:       call DAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,                      &
131:      &     PETSC_NULL_INTEGER,ierr)
132:       call DAGetGhostCorners(da,gxs,gys,PETSC_NULL_INTEGER,gxm,gym,             &
133:      &     PETSC_NULL_INTEGER,ierr)

135: !  Here we shift the starting indices up by one so that we can easily
136: !  use the Fortran convention of 1-based indices (rather 0-based indices).

138:       xs  = xs+1
139:       ys  = ys+1
140:       gxs = gxs+1
141:       gys = gys+1

143:       ye  = ys+ym-1
144:       xe  = xs+xm-1
145:       gye = gys+gym-1
146:       gxe = gxs+gxm-1

148: !  Set function evaluation routine and vector

150:       call DASetLocalFunction(da,FormFunctionLocal,ierr)
151:       call DASetLocalJacobian(da,FormJacobianLocal,ierr)
152: #if defined(PETSC_HAVE_ADIFOR)
153:       call DASetLocalAdiforFunction(da,                                             &
154:      &         g_FormFunctionLocal,ierr)
155: #endif
156:       call SNESSetFunction(snes,r,SNESDAFormFunction,da,ierr)
157: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
158: !  Create matrix data structure; set Jacobian evaluation routine
159: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

161: !  Set Jacobian matrix data structure and default Jacobian evaluation
162: !  routine. User can override with:
163: !     -snes_mf : matrix-free Newton-Krylov method with no preconditioning
164: !                (unless user explicitly sets preconditioner)
165: !     -snes_mf_operator : form preconditioning matrix as set by the user,
166: !                         but use matrix-free approx for Jacobian-vector
167: !                         products within Newton-Krylov method
168: !

170:       call DAGetMatrix(da,MATAIJ,J,ierr)
171: #if defined(PETSC_HAVE_ADIFOR)
172:       call PetscOptionsGetTruth(PETSC_NULL_CHARACTER                            &
173:      &     ,'-adiformf_jacobian',                                                 &
174:      &     adiformf_jacobian,PETSC_NULL_INTEGER,ierr)
175:       if (adiformf_jacobian .eq. 1) then
176:         call DASetLocalAdiforMFFunction(da,                                       &
177:      &         m_FormFunctionLocal,ierr)
178:         call MatRegisterDAAD(ierr)
179:         call MatCreateDAAD(da,A,ierr)
180:         call MatDAADSetSNES(A,snes,ierr)
181:       else
182:         A = J
183:       endif
184: #else 
185:       A = J
186: #endif

188:       call SNESSetJacobian(snes,A,J,SNESDAComputeJacobian,                        &
189:      &                       da,ierr)
190: #if defined(PETSC_HAVE_ADIFOR)
191:       call PetscOptionsGetTruth(PETSC_NULL_CHARACTER                            &
192:      &     ,'-adifor_jacobian',                                                   &
193:      &     adifor_jacobian,PETSC_NULL_INTEGER,ierr)
194:       if (adifor_jacobian .eq. 1) then
195:         call DAGetColoring(da,IS_COLORING_GHOSTED,                                 &
196:      &                     coloring,ierr)
197:         call MatSetColoring(J,coloring,ierr)
198:         call SNESSetJacobian(snes,A,J,SNESDAComputeJacobianWithAdifor,            &
199:      &                         da,ierr)
200:         call ISColoringDestroy(coloring,ierr)
201:       endif
202: #endif


205: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
206: !  Customize nonlinear solver; set runtime options
207: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

209: !  Set runtime options (e.g., -snes_monitor -snes_rtol <rtol> -ksp_type <type>)

211:           call SNESSetFromOptions(snes,ierr)
212: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
213: !  Evaluate initial guess; then solve nonlinear system.
214: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

216: !  Note: The user should initialize the vector, x, with the initial guess
217: !  for the nonlinear solver prior to calling SNESSolve().  In particular,
218: !  to employ an initial guess of zero, the user should explicitly set
219: !  this vector to zero by calling VecSet().

221:       call FormInitialGuess(x,ierr)
222:       call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr)
223:       call SNESGetIterationNumber(snes,its,ierr)
224:       if (rank .eq. 0) then
225:          write(6,100) its
226:       endif
227:   100 format('Number of Newton iterations = ',i5)


230: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
231: !  Free work space.  All PETSc objects should be destroyed when they
232: !  are no longer needed.
233: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

235:       if (A .ne. J) call MatDestroy(A,ierr)
236:       call MatDestroy(J,ierr)
237:       call VecDestroy(x,ierr)
238:       call VecDestroy(r,ierr)
239:       call SNESDestroy(snes,ierr)
240:       call DADestroy(da,ierr)
241:       call PetscFinalize(ierr)
242:       end

244: ! ---------------------------------------------------------------------
245: !
246: !  FormInitialGuess - Forms initial approximation.
247: !
248: !  Input Parameters:
249: !  X - vector
250: !
251: !  Output Parameter:
252: !  X - vector
253: !
254: !  Notes:
255: !  This routine serves as a wrapper for the lower-level routine
256: !  "ApplicationInitialGuess", where the actual computations are
257: !  done using the standard Fortran style of treating the local
258: !  vector data as a multidimensional array over the local mesh.
259: !  This routine merely handles ghost point scatters and accesses
260: !  the local vector data via VecGetArray() and VecRestoreArray().
261: !
262:       subroutine FormInitialGuess(X,ierr)
263:       implicit none

265: #include "ex5f.h"

267: !  Input/output variables:
268:       Vec      X
269:       PetscErrorCode  ierr

271: !  Declarations for use with local arrays:
272:       PetscScalar lx_v(0:1)
273:       PetscOffset lx_i
274:       Vec         localX

276:       0

278: !  Get a pointer to vector data.
279: !    - For default PETSc vectors, VecGetArray() returns a pointer to
280: !      the data array.  Otherwise, the routine is implementation dependent.
281: !    - You MUST call VecRestoreArray() when you no longer need access to
282: !      the array.
283: !    - Note that the Fortran interface to VecGetArray() differs from the
284: !      C version.  See the users manual for details.

286:       call DMGetLocalVector(da,localX,ierr)
287:       call VecGetArray(localX,lx_v,lx_i,ierr)

289: !  Compute initial guess over the locally owned part of the grid

291:       call InitialGuessLocal(lx_v(lx_i),ierr)

293: !  Restore vector

295:       call VecRestoreArray(localX,lx_v,lx_i,ierr)

297: !  Insert values into global vector

299:       call DALocalToGlobal(da,localX,INSERT_VALUES,X,ierr)
300:       call DMRestoreLocalVector(da,localX,ierr)
301:       return
302:       end

304: ! ---------------------------------------------------------------------
305: !
306: !  InitialGuessLocal - Computes initial approximation, called by
307: !  the higher level routine FormInitialGuess().
308: !
309: !  Input Parameter:
310: !  x - local vector data
311: !
312: !  Output Parameters:
313: !  x - local vector data
314: !  ierr - error code
315: !
316: !  Notes:
317: !  This routine uses standard Fortran-style computations over a 2-dim array.
318: !
319:       subroutine InitialGuessLocal(x,ierr)
320:       implicit none

322: #include "ex5f.h"

324: !  Input/output variables:
325:       PetscScalar  x(gxs:gxe,gys:gye)
326:       PetscErrorCode ierr

328: !  Local variables:
329:       PetscInt  i,j
330:       PetscScalar temp1,temp,hx,hy
331:       PetscScalar one

333: !  Set parameters

335:       0
336:       one    = 1.0
337:       hx     = one/(dble(mx-1))
338:       hy     = one/(dble(my-1))
339:       temp1  = lambda/(lambda + one)

341:       do 20 j=ys,ye
342:          temp = dble(min(j-1,my-j))*hy
343:          do 10 i=xs,xe
344:             if (i .eq. 1 .or. j .eq. 1                                  &
345:      &             .or. i .eq. mx .or. j .eq. my) then
346:               x(i,j) = 0.0
347:             else
348:               x(i,j) = temp1 *                                          &
349:      &          sqrt(min(dble(min(i-1,mx-i)*hx),dble(temp)))
350:             endif
351:  10      continue
352:  20   continue

354:       return
355:       end

357: ! ---------------------------------------------------------------------
358: !
359: !  FormFunctionLocal - Computes nonlinear function, called by
360: !  the higher level routine FormFunction().
361: !
362: !  Input Parameter:
363: !  x - local vector data
364: !
365: !  Output Parameters:
366: !  f - local vector data, f(x)
367: !  ierr - error code
368: !
369: !  Notes:
370: !  This routine uses standard Fortran-style computations over a 2-dim array.
371: !
372: !     Process adifor: FormFunctionLocal
373: !
374:       subroutine FormFunctionLocal(info,x,f,dummy,ierr)

376:       implicit none

378: #include "ex5f.h"

380: !  Input/output variables:
381:       DALocalInfo info(DA_LOCAL_INFO_SIZE)
382:       PetscScalar x(gxs:gxe,gys:gye)
383:       PetscScalar f(xs:xe,ys:ye)
384:       PetscErrorCode     ierr
385:       PetscObject dummy

387: !  Local variables:
388:       PetscScalar two,one,hx,hy
389:       PetscScalar hxdhy,hydhx,sc
390:       PetscScalar u,uxx,uyy
391:       PetscInt  i,j

393:       xs     = info(DA_LOCAL_INFO_XS)+1
394:       xe     = xs+info(DA_LOCAL_INFO_XM)-1
395:       ys     = info(DA_LOCAL_INFO_YS)+1
396:       ye     = ys+info(DA_LOCAL_INFO_YM)-1
397:       mx     = info(DA_LOCAL_INFO_MX)
398:       my     = info(DA_LOCAL_INFO_MY)

400:       one    = 1.0
401:       two    = 2.0
402:       hx     = one/dble(mx-1)
403:       hy     = one/dble(my-1)
404:       sc     = hx*hy*lambda
405:       hxdhy  = hx/hy
406:       hydhx  = hy/hx

408: !  Compute function over the locally owned part of the grid

410:       do 20 j=ys,ye
411:          do 10 i=xs,xe
412:             if (i .eq. 1 .or. j .eq. 1                                  &
413:      &             .or. i .eq. mx .or. j .eq. my) then
414:                f(i,j) = x(i,j)
415:             else
416:                u = x(i,j)
417:                uxx = hydhx * (two*u                                     &
418:      &                - x(i-1,j) - x(i+1,j))
419:                uyy = hxdhy * (two*u - x(i,j-1) - x(i,j+1))
420:                f(i,j) = uxx + uyy - sc*exp(u)
421:             endif
422:  10      continue
423:  20   continue

425:       call PetscLogFlops(11*ym*xm,ierr)

427:       return
428:       end

430: ! ---------------------------------------------------------------------
431: !
432: !  FormJacobianLocal - Computes Jacobian matrix, called by
433: !  the higher level routine FormJacobian().
434: !
435: !  Input Parameters:
436: !  x        - local vector data
437: !
438: !  Output Parameters:
439: !  jac      - Jacobian matrix
440: !  jac_prec - optionally different preconditioning matrix (not used here)
441: !  ierr     - error code
442: !
443: !  Notes:
444: !  This routine uses standard Fortran-style computations over a 2-dim array.
445: !
446: !  Notes:
447: !  Due to grid point reordering with DAs, we must always work
448: !  with the local grid points, and then transform them to the new
449: !  global numbering with the "ltog" mapping (via DAGetGlobalIndices()).
450: !  We cannot work directly with the global numbers for the original
451: !  uniprocessor grid!
452: !
453: !  Two methods are available for imposing this transformation
454: !  when setting matrix entries:
455: !    (A) MatSetValuesLocal(), using the local ordering (including
456: !        ghost points!)
457: !        - Use DAGetGlobalIndices() to extract the local-to-global map
458: !        - Associate this map with the matrix by calling
459: !          MatSetLocalToGlobalMapping() once
460: !        - Set matrix entries using the local ordering
461: !          by calling MatSetValuesLocal()
462: !    (B) MatSetValues(), using the global ordering
463: !        - Use DAGetGlobalIndices() to extract the local-to-global map
464: !        - Then apply this map explicitly yourself
465: !        - Set matrix entries using the global ordering by calling
466: !          MatSetValues()
467: !  Option (A) seems cleaner/easier in many cases, and is the procedure
468: !  used in this example.
469: !
470:       subroutine FormJacobianLocal(info,x,jac,ctx,ierr)
471:       implicit none

473: #include "ex5f.h"

475: !  Input/output variables:
476:       PetscScalar x(gxs:gxe,gys:gye)
477:       Mat         jac
478:       PetscErrorCode  ierr
479:       integer ctx
480:       DALocalInfo info(DA_LOCAL_INFO_SIZE)
481: 

483: !  Local variables:
484:       PetscInt  row,col(5),i,j,i1,i5
485:       PetscScalar two,one,hx,hy,v(5)
486:       PetscScalar hxdhy,hydhx,sc

488: !  Set parameters

490:       i1     = 1
491:       i5     = 5
492:       one    = 1.0
493:       two    = 2.0
494:       hx     = one/dble(mx-1)
495:       hy     = one/dble(my-1)
496:       sc     = hx*hy
497:       hxdhy  = hx/hy
498:       hydhx  = hy/hx

500: !  Compute entries for the locally owned part of the Jacobian.
501: !   - Currently, all PETSc parallel matrix formats are partitioned by
502: !     contiguous chunks of rows across the processors.
503: !   - Each processor needs to insert only elements that it owns
504: !     locally (but any non-local elements will be sent to the
505: !     appropriate processor during matrix assembly).
506: !   - Here, we set all entries for a particular row at once.
507: !   - We can set matrix entries either using either
508: !     MatSetValuesLocal() or MatSetValues(), as discussed above.
509: !   - Note that MatSetValues() uses 0-based row and column numbers
510: !     in Fortran as well as in C.

512:       do 20 j=ys,ye
513:          row = (j - gys)*gxm + xs - gxs - 1
514:          do 10 i=xs,xe
515:             row = row + 1
516: !           boundary points
517:             if (i .eq. 1 .or. j .eq. 1                                  &
518:      &             .or. i .eq. mx .or. j .eq. my) then
519: !       Some f90 compilers need 4th arg to be of same type in both calls
520:                col(1) = row
521:                v(1)   = one
522:                call MatSetValuesLocal(jac,i1,row,i1,col,v,                &
523:      &                           INSERT_VALUES,ierr)
524: !           interior grid points
525:             else
526:                v(1) = -hxdhy
527:                v(2) = -hydhx
528:                v(3) = two*(hydhx + hxdhy)                               &
529:      &                  - sc*lambda*exp(x(i,j))
530:                v(4) = -hydhx
531:                v(5) = -hxdhy
532:                col(1) = row - gxm
533:                col(2) = row - 1
534:                col(3) = row
535:                col(4) = row + 1
536:                col(5) = row + gxm
537:                call MatSetValuesLocal(jac,i1,row,i5,col,v,                &
538:      &                                INSERT_VALUES,ierr)
539:             endif
540:  10      continue
541:  20   continue
542:       call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
543:       call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)
544:       return
545:       end