
October 14, 2003 BlueGene/L Workshop – Reno 1

FFTs on BG/L

Status and Methods

Franz Franchetti

Institute for Applied Mathematics
and Numerical Analysis

Vienna University of Technology (TU Wien)

October 14, 2003 BlueGene/L Workshop – Reno 2

Acknowledgements

This work was supported by the Austrian Science Fund FWF
in the context of Project 5 of the SFB AURORA (Ueberhuber).

Thanks to our partners at IBM and LLNL
for their help and support.

People involved
Vienna University of Technology
F. Franchetti, S. Kral, J. Lorenz, C. W. Ueberhuber,
P. Wurzinger

Carnegie Mellon University (SPIRAL)
M. Pueschel, Y. Voronenko

FFTW
M. Frigo

October 14, 2003 BlueGene/L Workshop – Reno 3

Outline

ß Current Status

ß FFTs on BG/L – the challenges

ß Utilizing Double Hummer in FFT implementations
ß FFTW

ß SPIRAL

ß Vienna MAP vectorizer

ß Summary and outlook

October 14, 2003 BlueGene/L Workshop – Reno 4

Outline

ß Current Status

ß FFTs on BG/L – the challenges

ß Utilizing Double Hummer in FFT implementations
ß FFTW

ß SPIRAL

ß Vienna MAP vectorizer

ß Summary and outlook

October 14, 2003 BlueGene/L Workshop – Reno 5

Current Status
ß Very fast – fastest FFT on BG/L

ß Optimized for Double Hummer

ß Experimental, work in progress

ß Currently targets single processor

ß Automatically generated code (XLC intrinsics + C99)

Next steps
ß Utilize knowledge gained by visit to

IBM T. J. Watson Research Center

ß Make available to LLNL users

ß Utilize both processors on the PowerPC 440D

FFT Library for BG/L

October 14, 2003 BlueGene/L Workshop – Reno 6

Measured Performance

DFT 2n, double precision, complex to complex PowerPC 440D at 500 MHZ

0

200

400

600

800

1000

1200

1400

4 8 16 32 64 128 256 512 1024

Problem size

P
se

u
d

o
 M

fl
o

p
/s

5
N

 ld
 N

 /
ru

nt
im

e

libdft - best Double Hummer code w/intrinsics
ANSI C - best SPIRAL code by XLC w/o intrinsics
GNU Scientific Library
Numerical Recipies (double precision)

Speed-up (to best ANSI C code) up to 2

October 14, 2003 BlueGene/L Workshop – Reno 7

Outline

ß Current Status

ß FFTs on BG/L – the challenges

ß Utilizing Double Hummer in FFT implementations
ß FFTW

ß SPIRAL

ß Vienna MAP vectorizer

ß Summary and outlook

October 14, 2003 BlueGene/L Workshop – Reno 8

State of the Art FFTs

Number of arithmetic operations is
not strongly correlated with runtime

ß Deep memory hierarchies

ß Superscalar processors

ß ISA extensions (FMA, SIMD, prefetching,…)
 …

Fast FFT implementations
ß Vendor libraries

ß Automatic performance tuning systems

Discrete Fourier transform: O(n2) operations

Fast Fourier transform: O(n log n) operations

Ni
NNkj

jk
NNN eDFTxDFTx /2

1,,1,0, with][where pww == -= Ka

October 14, 2003 BlueGene/L Workshop – Reno 9

Automatic Performance Tuning Systems
ß FFTW: a library for FFTs

ß SPIRAL: a library generator for DSP transforms

Characteristics of advanced DFT software

ß Automatically generated and HW adapted libraries

ß Large sections of straight-line
single static assignment (SSA) code
1000s of operations using 1000s of temporary variables

ß Utilization of modern ISA extensions required
fused multiply-add (FMA) instructions,
short vector SIMD instructions (Double Hummer),…

How to get Double Hummer support?

Portable State-of-the-art
DFT Implementations

October 14, 2003 BlueGene/L Workshop – Reno 10

Straight-line SSA Code

void DFT_64(double *y, double *x)
{
 __alignx(16,x);
 __alignx(16,y);
 double f0;
 double f1;
 ...
 double f1207;
 f0 = x[0] - x[64];
 f1 = x[1] - x[65];
 f2 = x[0] + x[64];
 ...
 f7 = x[33] + x[97];
 f8 = f2 - f6;
 f9 = f3 - f7;
 ...
 f1196 = 0.2902846772544623 * f701;
 f1197 = 0.9569403357322089 * f700;
 ...
 f1206 = f1186 + f1198;
 f1207 = f1187 - f1199;
 y[94] = f1202 - f1206;
 ...
 y[127] = f1201 - f1204;
 y[62] = f1200 - f1205;
 y[63] = f1201 + f1204;
}

SPIRAL generated DFT64

• Straight-line SSA code
• Only binary Operations:
add, sub, mul

• 1208 temp vars
• 1336 assignments

Vectorization by XLC for BG/L possible?

October 14, 2003 BlueGene/L Workshop – Reno 11

XLC Vectorization

0

200

400

600

800

1000

1200

1400

4 8 16 32 64 128 256 512 1024

Problem size

P
se

u
d

o
 M

fl
o

p
/s

5
N

 ld
 N

 /
ru

nt
im

e

Best Double Hummer code w/intrinsics

Best ANSI C, -qarch=440 -qstrict

Best ANSI C + __alignx, -qarch=440d -qnostrict

DFT2n, double precision, complex to complex PowerPC 440D at 500 MHZ

XLC vectorization and FMA extraction
can’t accelerate our DFT codes

October 14, 2003 BlueGene/L Workshop – Reno 12

Double Hummer
DFT Challenges

Fused multiply-add

ß DFT is not localy balanced w.r.t. adds and muls

ß FMA extraction changes data access locality

Double Hummer vectorization
ß DFT is complex-to-complex transform, however

real arithmetics optimization is applied by SPIRAL and FFTW

ß Can vectorize codes by inserting
fmr, fxmr, fsmfp, fsmtp instructions, however

cost is prohibitive: 1 fxmr = 4 flops

440 FPU 440D Double Hummer
Variable renaming
0 instructions

Register operation
3 instructions (XLC)
12 flops wasted

October 14, 2003 BlueGene/L Workshop – Reno 13

Utilizing Double Hummer
in State-of-the-art DFT Codes

FFTW 3.01
ß Vectorization of complex-to-complex FFTs

ß Folding all data reorganization into Double Hummer FMAs possible

SPIRAL-SIMD
ß Vectorization of DSP transforms for n-way short vector machines

ß Automatic vectorization on symbolic level

Vienna MAP vectorizer
ß Two-way vectorizer for straight-line SSA codes

ß Plug-in for SPIRAL, FFTW, ATLAS,…

October 14, 2003 BlueGene/L Workshop – Reno 14

Outline

ß Current Status

ß FFTs on BG/L – the challenges

ß Utilizing Double Hummer in FFT implementations
ß FFTW

ß SPIRAL

ß Vienna MAP vectorizer

ß Summary and outlook

October 14, 2003 BlueGene/L Workshop – Reno 15

FFTW: Hardware adaptive FFT library
ß Various basic routines (codelets)

are combined to compute the desired FFT

ß Codelets are generated automatically
by codelet generator genfft

ß Codelet combination is determined at runtime
by dynamic programming

FFTW for BG/L
ß Version 3.0 provides complex-to-complex

FMA SIMD codelets well suited for BG/L

ß Method depends on specific properties of complex DFTs

ß FFTW 3.0 port to BG/L is underway
(Franchetti and Frigo)

Matteo Frigo
Steven G. Johnson (MIT)
www.fftw.org

FFTW

October 14, 2003 BlueGene/L Workshop – Reno 16

Performance of
FFTW 3.0 SIMD Codelets

DFTN, double precision, complex-to-complex PowerPC 440D at 500 MHZ

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64

Problem size

S
p

ee
d

-u
p

FFTW 3.0 DFT specific vectorization w/intrinsics

ANSI C, XLC -O3 -qstrict -qarch=440

ANSI C + __alignx(), XLC -O3 -qnostrict -qarch=440d

October 14, 2003 BlueGene/L Workshop – Reno 17

Outline

ß Current Status

ß FFTs on BG/L – the challenges

ß Utilizing Double Hummer in FFT implementations
ß FFTW

ß SPIRAL

ß Vienna MAP vectorizer

ß Summary and outlook

October 14, 2003 BlueGene/L Workshop – Reno 18

SPIRAL: A DSP Library Generator

Facts
• For a given transform there are many different algorithms

(equal in arithmetic cost, different in data flow)

• The best algorithm and its implementation is platform dependent

Approach Automatic algorithm generation
+ Automatic translation into code
+ Intelligent search for “best version”

= Generated platform-adapted implementation

www.spiral.net

José Moura (CMU)
Jeremy Johnson (Drexel)
Robert Johnson (MathStar)
David Padua (UIUC)
Markus Püschel (CMU)
Viktor Prasanna (USC)
Manuela Veloso (CMU)

SPIRAL
• Code generation for DSP transforms (DFT, DCT, ...)

• Automatic platform adaptation
on algorithm and implementation level

October 14, 2003 BlueGene/L Workshop – Reno 19

SPIRAL System

DSP transform
specifies

User
goes for a coffee

Formula Generator

SPL Compiler S
ea

rc
h

 E
n

g
in

e

Runtime on given platform

Control of
implementation options

Control of
algorithm generation

Fast algorithm
as SPL formula

C/Fortran/SIMD
codeS
 P

 I
R

 A
 L

(o
r an

 esp
resso

 fo
r sm

all tran
sfo

rm
s)

Platform-adapted implementation comes back

Mathem
aticia

n

Exper
t

Progr
ammer

October 14, 2003 BlueGene/L Workshop – Reno 20

A

x y

xIAy)(: 4ƒ=

Using SPIRAL to Generate
Double Hummer Code

naturally represents
vector operation

vector length

ß Use macro layer (Portable SIMD API) to hide Double Hummer specifics

ß Vector code generation in two steps
1. Symbolic vectorization (Extend Formula Generator)

2. Code generation (Extend SPL Compiler)

ß SPIRAL-SIMD is ported to BG/L and produced optimized
Double Hummer code with real hardware in optimization loop

ß Experimental FMA extraction

ß Core of BG/L DFT library

F. Franchetti, M. Püschel: „A SIMD Vectorizing Compiler for Digital Signal Processing
Algorithms“, In Proceedings of IPDPS 2002

F. Franchetti, M. Püschel: „Short Vector Code Generation for the DFT“,
In Proceedings of IPDPS 2003

October 14, 2003 BlueGene/L Workshop – Reno 21

Outline

ß Current Status

ß FFTs on BG/L – the challenges

ß Utilizing Double Hummer in FFT implementations
ß FFTW

ß SPIRAL

ß Vienna MAP vectorizer

ß Summary and outlook

October 14, 2003 BlueGene/L Workshop – Reno 22

The Vienna MAP Vectorizer

Industry-standard automatic vectorization for
straight-line code is insufficient
ß Vectorization for short vectors (length 2, 4,...) is not possible

in a straightforward manner

ß Most Industry-standard vectorizing compilers are loop based,
these kernels codes are straight-line code

ß XLC for BG/L vectorizes straight-line code, however
cannot vectorize DFT straight-line code well

The Vienna MAP vectorizer targets two-way vector units like
IBM’s Double Hummer, Intel’s SSE2, and AMD’s 3DNow!

Goal: Automatic source-to-source vectorization
for high-performance numerical
straight-line SSA code

October 14, 2003 BlueGene/L Workshop – Reno 23

MAP Vectorizer Overview

Source-to-source vectorization
ß Special-purpose vectorizing compiler

ß Input: directed acyclic graph (DAG) of numerical SSA code
e.g., generated by FFTW’s codelet generator genfft,
SPIRAL’s SPL compiler, ATLAS,...

ß Output: Vector code utilizing macros (intrinsics)

Vectorizer BackendOptimizer

Machine-
independent

vector SSA code

Machine-specific
vector SSA code

Machine-
independent

scalar SSA code

Short vector
macro code
(intrinsics)

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: „SIMD Vectorization of
Straight Line Code“, In Proceedings of EuroPar 2003

October 14, 2003 BlueGene/L Workshop – Reno 24

Vectorization Concept

Scalar temp vars Æ Tupels of scalar temp vars

ß Variable fusion

ß Temporary variable = scalar variable

ß Tupels of temporary variables = SIMD vector variables

ß Vectorization
Obtain a vector DAG operating on tupels

ß Any temp var is included in exactly one tupel

ß Vector DAG must be compatible to SIMD instructions

ß Operation fusion
Vector DAG implies SIMD operations

Æ

October 14, 2003 BlueGene/L Workshop – Reno 25

Example: DFT3

Scalar DAG Vector DAG

Scalar operations

Scalar temp vars

Variable fusion

Operation fusion

October 14, 2003 BlueGene/L Workshop – Reno 26

Implementation Details

Special search engine
ß Depth-first search with chronological backtracking

on DAG corresponding to SSA code

ß Implemented in OCaml (functional language)

ß Reasonable runtime: <1s for 2,000 statement SSA code
Huge search space but many possible solutions

Heuristics
ß Restricted set of vector instructions to prune search space

ß Search the DAG from stores towards loads

ß Different vectorization levels
If required, resort to suboptimal solution

October 14, 2003 BlueGene/L Workshop – Reno 27

MAP Performance
for FFTW Codelets

DFTN, double precision, complex-to-complex PowerPC 440D at 500 MHZ

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64

Problem size

S
p

ee
d

-u
p

Vienna MAP Vectorizer with FMA, XLC with Intrinsics and C99

ANSI C, XLC -O3 -qstrict -qarch=440

ANSI C + __alignx(), XLC -O3 -qnostrict -qarch=440d

October 14, 2003 BlueGene/L Workshop – Reno 28

MAP Vectorized Code

static const _Complex double __align(16) VECT_CONST1 =
__cmplx(-1.000000000000000, -1.000000000000000);

...
static const _Complex double __align(16) VECT_CONST21 =

__cmplx(+0.634393284163645, +0.773010453362737);

void DFT_64(double *y, double *x)
{
 _Complex double f0;
 ...
 _Complex double f603;
 f0 = __lfpd((double *)(x+64));
 f1 = __lfpd((double *)(x+0));
 f2 = __fpadd(f0,f1);
 f3 = __fpmadd(f0,VECT_CONST1,f1);
 ...
 f417 = __cmplx(__creal(f415),__creal(f416));
 f418 = __cmplx(__cimag(f415),__cimag(f416));
 ...
 f602 = __fpmadd(f511,VECT_CONST2,f407);
 f603 = __fpmadd(f358,VECT_CONST3,f476);
 __stfpd((double *)(y+34), t602);
 __stfpd((double *)(y+98), t603);
}

MAP Vectorized DFT64

• XLC intrinsics: memory access and arithmetic operations
• C99 complex syntax for cross moves

October 14, 2003 BlueGene/L Workshop – Reno 29

Outline

ß Current Status

ß FFTs on BG/L – the challenges

ß Utilizing Double Hummer in FFT implementations
ß FFTW

ß SPIRAL

ß Vienna MAP vectorizer

ß Summary and outlook

October 14, 2003 BlueGene/L Workshop – Reno 30

Summary

Results and ongoing development
ß Experimental DFT library for BG/L is already very fast

ß FFTW 3.01 for BG/L
First codelet runtime results utilizing Double Hummer

ß SPIRAL-SIMD/BGL
Double Hummer DFT implementation for N=21 to N=216

ß Vienna MAP vectorizer
Supports Double Hummer,
Connected to FFTW and SPIRAL for BG/L

Medium-term goals
ß Utilization of both CPUs of PowerPC 440d in FFT kernels

in computation offload mode

ß MPI parallel version

October 14, 2003 BlueGene/L Workshop – Reno 31

We are very interested to

run for Gordon Bell Award with

FFT-intensive LLNL application on BG/L

