

Muon System Production Monitoring and Quality Assurance

Eric Vaandering

Vanderbilt University

Motivation

In the process of constructing the muon detector, we want to be able to determine, at a much later date, what was done

Of course we need to make sure the detector is built properly too, so we need to measure and archive lots of variables:

- ASDQ properties (supplied by vendor)
- Sources and specs. of all materials
- Measurements of tubes
 - Tension of wire
 - Current draw
 - Efficiency (cosmic rays)
- Interrelation of building blocks (which tubes are in which plank, octant, etc.)

Also, provide easy access to data (often overlooked)

Production Database

We' ex constructed and are still working on a data management system to do this

• All information stored in a central database (from all 3 construction sites)

WWW access to view (plus Perl/C++ access for analysis

and calibration code)

• Entry of data via:

GUI for test stands with DAQ

WWW forms for construction data

• Text file processing (e. g., ASDQ)

• Every element will be barcoded

Major progress was made this summer by Vaandering and undergraduate Parker Gray

Web Form for Stringing

Stringer:	Parker Cray	_ Tube	Length: 200 🛨 cm		Brass Pin:	Prote Pins 🛨	
Station:	VO Stroy Station	3	Wire Lot: From Lot 1	8	Deirin:	Prote Delm:	•
			Tubing: Tirst Proje Let	3	114.5.11111.5.5		
	□ Replace old	l data					
			Barcodes				
		2501100004007 25011000039994 2501100003970 2501100003949 2501100003952 7 401100003425					
			Notes				
	1						

Can see we are tracking sources of materials and individuals doing the work

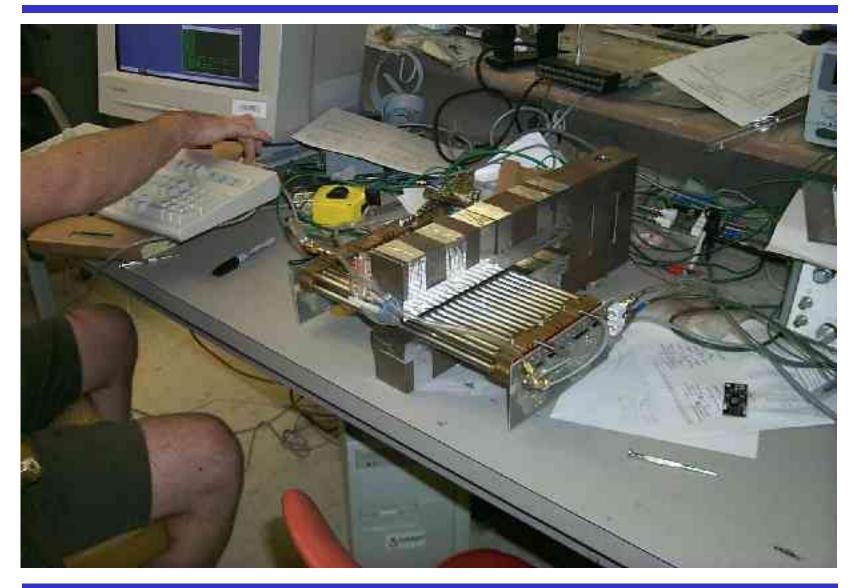
^{Βπιν} Co Web Form for Plank Assembly

	Tube S	erial Numbers	
0 2501100003918	1	2 2501100003925	3
4 2501100003932	5	6 2501100003949	7
8 2501100003956	9	10 2501100003994	11
12 2501100003987	13	14 2501100003970	15
16 2501100003963	17	18	19
20	21	22	23
24	25	26	27
28	29	30	31
		Notes	

Tension Measurement

- We measure the tension of each wire, both to make sure it is constructed properly before assembly into a plank and again to make sure the wire is not slipping.
- Oscillate wire in magnetic field, look for feedback at resonant frequency. Tension calculated from *f*, L, and mass.
- Have rebuilt our old test stand.
 - Better, faster DAQ. Still tuning speed for production.
- Will be able to do a single tube, a batch of tubes, or a complete plank
- Same test stand measures current draw vs. for each tube before assembly

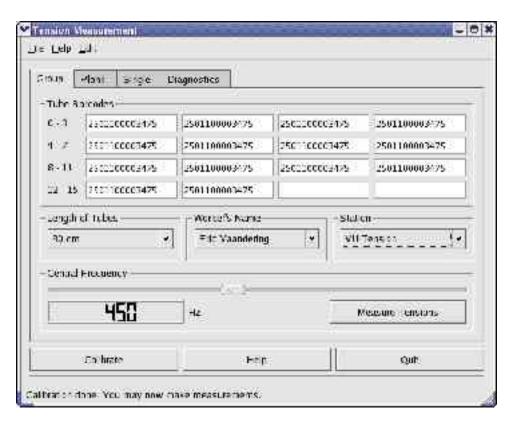
Costs for Tension Test Stand

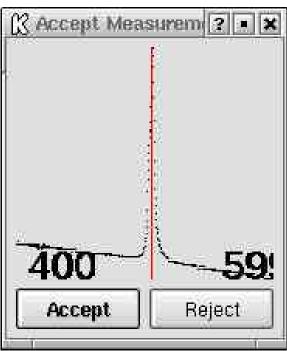

Based on the prototype test stand we' & built, we estimate the following approximate costs:

•	PC with Monitor	\$1000	
•	DAQ Card, connectors	\$900	
•	High quality power suppy	\$500	
•	Function Generator	\$300	
•	Bar Code Reader	\$300	
•	Interface electronics (minimal or in hand)	\$0	
•	HV Power Supply – FNAL Prep	\$0	
T	otal Tension and HV test stand:	~\$3000	

Need four complete test stands (1/Institution, 1 additional)

Tension Test Stand


New Tension/HV Board

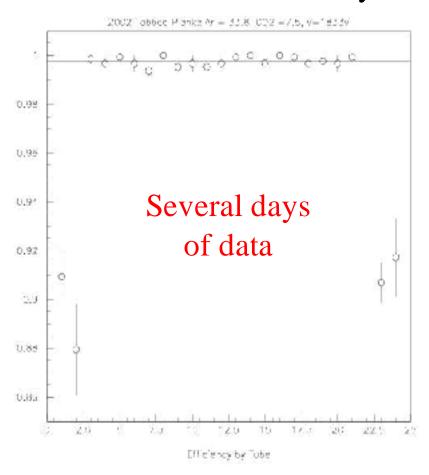


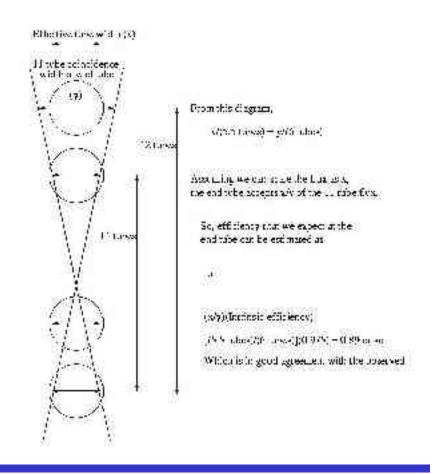
Tension Measurement

UI to measure tension and resonance peak for confirmation

Octant Test Stand

Before shipping Octants to FNAL, we want to verify system works together as a whole. We' & budgeted four test-stands to verify functionality. (1 proto-type, 1 each for Illinois, Vandy, and Fermilab). Test at FNAL on arrival.


We want this test stand to be as close the real experiment environment as is feasible:


- Same HV, LV as in experiment (at very least, the same LV and connectors)
- Hanging fixture
- Cosmic Ray triggers, fake clocks
- Gas System (probably use premix, but need gain monitoring, filtering)

Efficiency with Cosmic Rays

Hanging tests allow us to determine efficiencies from cosmic rays

Octant Test Issues

- What are the testing specifications?
- Do we need a mass spectrometer for each octant test stand? (We'll soon have a better way to analyze the gas, and we'll have test beam results and outgas study results.)
- Costs / test stand:
 - High Voltage System

 SY 2527 Mainframe 	\$10,348
 Branch Controller 	\$1,086
 Remote Chassis 	\$1,214
• A3535 Unit	\$7,925
 Low Voltage Power 	\$400
• LV/HV Cables	\$500
 DAQ (Maybe DCB) & Slow control 	~\$3,500

Total: \$24,973 (\$25K in costbook) times 4 stands

Conclusions

- In the end, we will have all the information gathered during the construction phase gathered in one place
- All tubes and larger detector elements will be tracked with bar codes
- Will allow us to do correlations if problems arise (e. g., a bad batch of wire)
- Easy access to data is key